
Field Robotics, June, 2023 · 3:766–800 · 766

Special Issue: Opportunities and Challenges with Autonomous Racing

Regular Article

An Autonomous Racing System: Design,
Implementation, and Analysis; Team
KAIST at the IAC

Chanyoung Jung* , Andrea Finazzi*, Hyunki Seong , Daegyu Lee , Seungwook Lee ,
Boseong Kim , Gyuree Kang and Hyunchul Shim
Korea Advanced Institute of Science and Technology - EE Deajon Yousunggu Deahakro 291 ki c322, Daejeon

34141 Korea (the Republic of)

Figure 1. Team KAIST at the Indy Autonomous Challenge.

Abstract: While the majority of autonomous driving research has concentrated on everyday driving
scenarios, further safety and performance improvements of autonomous vehicles require a focus
on extreme driving conditions. In this context, autonomous racing is a new area of research that
has been attracting considerable interest recently. Due to the fact that a vehicle is driven by its
perception, planning, and control limits during racing, numerous research and development issues
arise. This paper provides a comprehensive overview of the autonomous racing system built by
team KAIST for the Indy Autonomous Challenge (IAC). Our autonomy stack consists primarily
of a multi-modal perception module, a high-speed overtaking planner, a resilient control stack,
and a system status manager. We present the details of all components of our autonomy solution,
including algorithms, implementation, and unit test results. In addition, this paper outlines the
design principles and the results of a systematical analysis. Even though our design principles
are derived from the unique application domain of autonomous racing, they can also be applied
to a variety of safety-critical, high-cost-of-failure robotics applications. The proposed system was
integrated into a full-scale autonomous race car (Dallara AV-21) and field-tested extensively. As

∗These authors contributed equally to this work.
Received: 31 July 2022; revised: 5 November 2022; accepted: 8 December 2022; published: 1 June 2023.
Correspondence: Chanyoung Jung, Korea Advanced Institute of Science and Technology - EE Deajon Yousunggu
Deahakro 291 ki c322, Daejeon 34141 Korea (the Republic of), Email: cy.jung@kaist.ac.kr
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2023 Jung, Finazzi, Seong, Lee, Lee, Kim, Kang and Shim
DOI: https://doi.org/10.55417/fr.2023024

http://fieldrobotics.net

https://orcid.org/0000-0001-8104-2461
https://orcid.org/0000-0002-7169-3006
https://orcid.org/0000-0002-9336-5759
https://orcid.org/0000-0003-1147-1214
https://orcid.org/0000-0002-7437-5169
https://orcid.org/0000-0001-7769-4651
https://orcid.org/0000-0002-1929-7022
mailto:cy.jung@kaist.ac.kr
https://doi.org/10.55417/fr.2023024
http://fieldrobotics.net


An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 767

a result, team KAIST was one of three teams who qualified and participated in the official IAC
race events without any accidents. Our proposed autonomous system successfully completed all
missions, including overtaking at speeds of around 220 km/h in the IAC@CES2022, the world’s first
autonomous 1:1 head-to-head race (Figure 1).

Keywords: autonomous racing, Indy Autonomous Challenge, system design, field experiment,
computer vision

1. Introduction
The Society of Automotive Engineers (SAE) defines level 5 autonomy as the full-time performance
of the driving task without human intervention by an autonomous driving system. The potential
advantages of autonomous vehicles are immense. According to a report by the consulting firm
McKinsey and Company, autonomous vehicles will help reduce annual traffic fatalities in the United
States by up to 90%, save commute time for high productivity, decrease traffic congestion and
pollution, and boost the utilization of driving resources (Bertoncello & Wee, 2015). In parallel with
the development of hardware technology, autonomous driving software has been a focus of intense
interest among academia and industry during the past two decades. As a result, modern Advanced
Driver Assistance Systems (ADAS) systems of level 3 or highly automated prototypes are readily
accessible, and legislation mandating the adoption of ADAS on everyday vehicles is being pushed
in certain countries (Brodsky, 2016).

To achieve further safety, reliability, and performance improvements of autonomous driving
technology, the autonomous racing field of research is gaining a lot of attention these days (Betz et al.,
2022). This is the same innovation pathway that links Formula 1 to our everyday vehicles. Driven by
this growing interest, several real-world autonomous race events such as F1TENTH (O’Kelly, Zheng,
Karthik, & Mangharam, 2020), Roborace (Rieber, Wehlan, & Allgower, 2004), Indy Autonomous
Challenge (IAC, 2019), and Darpa-RACER (Darpa-RACER, 2022) have been held (see Figures 1
and 2).

Autonomous racing poses numerous research and development challenges since a vehicle is
pushed to its perception, planning, and control limits (Betz et al., 2022; Talvala, Kritayakirana, &
Gerdes, 2011). For example, an autonomous race car should be able to detect opponents from a far

Figure 2. Examples of real-world autonomous racing competitions. (Top left) F1 TENTH, using a 1:10 scaled
vehicle. (Top right) ROBORACE, using a full-scale electric race car. (Bottom left) Indy Autonomous Challenge
(IAC), using a Dallara AV-21 retrofitted Indy Lights class chassis. (Top left) DARPA-RACER program, using
autonomous ground combat vehicles in unstructured off-road terrain at speeds.

Field Robotics, June, 2023 · 3:766–800



768 · Jung et al.

distance and accurately predict future trajectories based on multiple factors, including environment,
strategy, and race rules, in order to safely overtake. Furthermore, as professional human drivers do,
autonomous racing vehicles should be able to plan their trajectory and control the vehicle at high
speeds considering vehicle dynamics. Most challenging, however, is that the autonomous system
should fulfill the combination of the above requirements with limited computational resources and
compute everything in real time.

In this paper, we present the team KAIST’s autonomy solution for the Indy Autonomous
Challenge, the world’ first head-to-head racing competition featuring full-scale, autonomous racing
vehicles (described in Section 3). Our paper is organized into three major thematic sections:
1. Principles of the overall system design 2. A full-stack software for autonomous racing 3. Results
of extensive field testing and in-depth system performance analysis. Outlining our design principles
is not only helpful to understand the proposed autonomy architecture, but also to give insight
into a wide range of field robotics applications. Following the design principles, we built a full-stack
autonomous racing software composed of a multi-modal perception module, a high-speed overtaking
planner, and a resilient control stack. Every subsystem was evaluated in the context of the
autonomous racing competition. Our software stack was fully integrated into the Dallara-AV21 which
served as the IAC’s official vehicle platform and extensively tested in the real-world. Furthermore,
we deliver the result of an in-depth computational performance analysis.

Autonomous racing has a lot of technical challenges, which come from the fact that various
algorithms, including perception, planning, and control are pushed to the limits. Furthermore,
system design also possesses considerable challenges. A complex autonomy stack should operate in
real time within limited computing resources. Our study addressed these challenges and intensively
evaluated the entire system based on real-world experiments using a full-scaled race vehicle.
Contributions of this paper are not limited to the field of autonomous driving racing. We believe
that our autonomy design and real-world evaluation results provide technical insight into research
on various autonomous robot applications operating in extreme environments.

In summary, the contributions of this paper are the followings.

1. We propose a full-stack autonomous racing system that includes multi-modal perception, high-
speed overtaking planner, and resilient control stack.

2. We integrate the proposed autonomy solution into a full-scaled autonomous race vehicle
(Dallara AV-21). The result shows that our system has capabilities by reaching speeds of over
220 km/h and lateral and longitudinal accelerations of up to 6.8 and 12.4 m/s2, respectively.

3. We evaluate the performance of every modules of our autonomy stack in the context of high-
speed/head-to-head autonomous racing.

4. We present the system’s design principles and an in-depth computational performance analysis.
Even though our design principles are derived from the field of autonomous racing, we believe
that these can be applied to various field robotics/safety-critical applications.

The paper is organized as follows. Section 2 presents the previous literature on the field of
agile/autonomous racing. Section 3 overview of the IAC including rules, timelines, and the spec of
official racing fleet. The design principles are described in Section 4. The multi-modal perception
pipeline, the high-speed overtaking planner, and the resilient control stack are covered in Section 5
with a brief introduction of the official race vehicle platform, Dallara-AV21. The field testing results
and the computational performance analysis are provided in Section 6. Finally, Section 7 summarizes
the conclusions from this two year project and future plans for the next seasons.

2. Related Work
There are numerous existing studies relating to autonomous driving systems comprising perception,
decision/planning, and control modules. This section gives an overview of previous works on the
core tasks of autonomous racing systems.

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 769

2.1. Agile Control
Model Predictive Control (MPC) is a widely and well-studied controller for high-speed autonomous
vehicles (Carvalho, Gao, Gray, Tseng, & Borrelli, 2013; Funke, 2015; Rosolia & Borrelli, 2019). Even
though we classified MPC under the control category, a benefit of the optimization approach is
that it combines some of the traditionally separate planning and control modules by creating one
optimization framework that operates on a task description and dynamics model of the system. In
the work of (Liniger, Domahidi, & Morari, 2015), the model predictive contouring control (MPCC),
which can track a given reference path, is adapted for autonomous driving applications. The authors
added a contouring cost term which represents the tracking error to the objective function. They
demonstrated high-speed driving and collision avoidance experiments using a 1:43 scaled vehicle.
(Goldfain et al., 2019) conducted rally racing in an outdoor, dirt environment using the Model
Predictive Path Integral control (MPPI) framework, a stochastic optimal controller. The authors
modeled the nonlinear vehicle dynamics using a simple neural network and trained the model in a
supervised manner. They randomly rolled out the vehicle’s future states repetitively and generated
the optimal control signal via information theory. They integrated the proposed framework into a
1:5 scaled offroad vehicle platform and tested it in an unpaved road environment. However, the
performance of model-based approaches is directly affected by the accuracy of the models. Finding
the model parameters is not trivial, and the result is necessarily an approximation. Thus most
previous studies simplified the optimization problem using linearized models.

With the development of machine learning technologies, recently, a number of studies have
demonstrated the success of using model-free deep RL for autonomous driving, and racing (Cai,
Mei, Tai, Sun, & Liu, 2020; Grigorescu, Trasnea, Cocias, & Macesanu, 2020; Jaritz, De Charette,
Toromanoff, Perot, & Nashashibi, 2018; Kendall et al., 2019; Riedmiller, Montemerlo, & Dahlkamp,
2007; Wurman et al., 2022). (Fuchs, Song, Kaufmann, Scaramuzza, & Dürr, 2021) Demonstrated
high-speed autonomous driving using model-free RL within a high-fidelity simulation environment
by utilizing a course-progress proxy reward. They argue that because their model directly outputs
the control command (one-step RL), it has the advantage of not relying on high-level trajectory
planning and following while generating trajectories qualitatively similar to those chosen by the
best human drivers. Even though RL approaches show promising results in the field of control, it
still poses a lot of technical and practical challenges when it comes to the real-world field robotics
domain. For example, RL based policy can not be clearly validated before deployment. Especially,
one-step RL setup makes hard to incorporate with the other navigation and control algorithms
which leads the lack of system resilience.

2.2. Planning for Racing
Given the vehicle and track models, minimum lap time or time-optimal trajectory planning has
been studied in various automation fields. Multiple algorithms have been studied to create an
optimal line focusing on lap-time or fuel consumption depending on their target applications.
An attempt was made to develop it based on data from professional race car drivers in the
racing field with the sole purpose of achieving minimum lap time (Milliken, Milliken, et al.,
1995). The analysis result of the driving trajectory was used to shorten the lap time and design
the vehicle. In early 2000, (Casanova, 2000) proposed a Nonlinear Programming (NLP)-based
method which optimizes the path and velocity profile simultaneously using a nonlinear vehicle
dynamics model. Another widely used approach is to convert the minimal lap time problem into
an MPC problem (Liniger et al., 2015; Timings & Cole, 2013). They all created a nonlinear
model-predictive framework to solve an optimal control problem with time as the objective. As
an alternative, the shortest lap time problem can be approximated by minimizing the lateral
acceleration problem, leading to finding the race line with the minimum curvature. Of course,
because it does not explicitly tackle the optimization problem of lap time, this solution cannot
ensure global optimality. It can, however, be useful when the precise vehicle dynamics and nonlinear

Field Robotics, June, 2023 · 3:766–800



770 · Jung et al.

tire model parameters are unknown. (Heilmeier et al., 2019) used quadratic programming to compute
a minimum-curvature racing line, and simulation testing revealed that it performs fairly similarly to
the minimum-lap time. This method has the advantage of not requiring sophisticated vehicle model
parameters.

Local trajectory planning for high-speed vehicles is a module that plans a noncolliding and
dynamically feasible fixed horizon of trajectory near a given global race line. MPC is mainly used
in the optimal control field, but it is also used as a path planner through state propagation using a
model and optimal control output (Funke, Brown, Erlien, & Gerdes, 2016; Subosits & Gerdes,
2019; Williams, Drews, Goldfain, Rehg, & Theodorou, 2016). Another category for local path
planning is using motion primitives in a more general control-space sampling-based planner. This
approach generates multiple candidates by propagating the model given the vehicle’s current state
and selecting the best one based on the designed cost function. (Liniger & Lygeros, 2015) Generate a
library of trajectories by forward-simulating the vehicle using a grid of vehicle velocities and steering
angles up to a certain horizon. The final local trajectory was chosen by minimizing the curvature
while traversing the track to maximize the velocity and keep the vehicle as straight as possible. By
adjusting the size of the sampling space, this approach presents a trade-off between optimality and
computational burden. To leverage the fact that the track geometry is fixed, (Stahl, Wischnewski,
Betz, & Lienkamp, 2019) proposed a two steps sampling-based local path planner for a race vehicle.
In an offline process, they build the track as a graph consisting of layers, nodes, and edges. The
connectivity of node and edge is determined based on the kinematic constraints of the vehicle. Then,
a cost is assigned to each edge according to the displacement from the race line and the curvature.
The local path is planned in the online process by performing a minimum cost path search of a fixed
time horizon branch based on the track graph model. This planner was integrated into a Roborace
vehicle and validated over the 200 km/h speed range.

2.3. Autonomous Race Vehicles and Competitions
The majority of research on autonomous racing has been conducted utilizing simulation, or scaled
vehicle platforms (Herman et al., 2021; Kabzan et al., 2020; Liniger & Lygeros, 2017; Weiss & Behl,
2020). Exploiting advanced physics engine and graphic technology, simulation enables a variety of
experiments that would be difficult to carry out in the real world. Also, considering the cost of
operation and safety, the scaled platform has been employed in several researches. Unfortunately,
there is still a gap between simulation and reality, making simulation impossible to estimate the
algorithm’s scalability precisely. This section will concentrate on a full-scaled autonomous vehicle
and competitions.

In collaboration with Stanford University, Audi debuted Shelly, an autonomous TTS capable of
high-speed autonomous driving (Funke et al., 2012). They reached a top speed of about 305 km/h
at the Salt Flats in Utah, and high-speed autonomous driving at the Pikes Peak International Hill
Climb in 2009. Since they focused on time trial race or high-speed driving, it is only equipped with
an integrated Differential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU)
as sensors.

The Roborace platform is based on an electric vehicle designed for the autonomous racing
competition (Rieber et al., 2004). The platform is based on a Le Mans Prototype chassis and
is equipped with cameras, LiDARs, and radars. Starting in 2018, the competition was held as a
season event, with time trials. There were virtual obstacles on the track, and each team should
develop a software stack aiming to complete the race mission without any time penalty. Vehicles
are not provided for each team but rather in a way that allows their software to be deployed across
vehicles.

The Indy Autonomous Challenge (IAC) is the most recent autonomous racing competition. The
Dallara-AV21, the official vehicle platform for the competition, was constructed on an Indy Lights
chassis and has a combustion engine. More information about the race will be provided in the section
that follows.

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 771

Figure 3. Overview of the IAC timeline. (Left) Simulation phase. (Middle) The first real-world high-speed
competition at IMS. (Right) 1:1 head-to-head autonomous race event at LVMS.

3. Indy Autonomous Challenge
As shown in Figure 3, IAC began in November 2019. It was divided into several stages: document
screening, hackathons, simulation races, and real-world races. About 30 teams participated in
the simulation race, and 9 of them, including our team, competed in the real-world autonomous
race competition. The first real-world competition held at Indianapolis Motor Speedway (IMS) in
2021 and was conducted with a time trial racing format. Teams had to complete pit-in, pit-out,
performance lap, and static avoidance tasks following the race control signals. The next race, part
of the official CES 2022 event, was held in a 1:1 head-to-head race format, with two vehicles racing on
the course simultaneously. Several artificial rules were imposed: 1. The defending vehicle must only
run on the inner line of the track at the commanded speed. 2. The defending and attacking vehicles
must adhere to race control, and overtaking is restricted to a specific region and race flag. 3. The
attacking vehicle should close the overtaking maneuver when a safety distance of 20m is secured.

The participating teams used the same vehicle platform, the Dallara AV-21, adapted for au-
tonomous racing, and they had to design and integrate their own autonomy stack. The vehicle is
rear-wheel drive, powered by an internal combustion engine which produces 335 kW (449 hp) and
has a six-speed sequential gearbox. Computing devices, sensors, and controllers were placed instead
of the driver seat. Six Gig-E cameras, three Radars, three solid-state LiDARs, and an RTK GPS
are equipped as a sensor package. The computing platform included an Intel Xeon CPU with an
Nvidia Quadro RTX 8000 GPU. Figure 4 shows the system diagram of the Dallara AV-21.

4. Design Principles
Autonomous racing poses a few challenges in addition to the functional requirements of an urban-
oriented autonomous driving system. The capabilities of the platform in terms of acceleration and
maximum speed, along with the particular environment that are racing tracks, make the application
domain unique. Moreover, the pioneering nature of the IAC competition introduces a high level of
uncertainty in the definition of the functional requirements.

To cope with the above-mentioned challenges, dependability, evolvability, and performance were
identified as the highest-priority software qualities at the early stages of the design process. Our key
design principles are shown in Figure 5. Dependability is the measure of the trustworthiness of a
software system. (Sommerville, 2015) describes it as a five-dimensional quality. Being autonomous
racing a safety-critical and high cost-of-failure application, we define dependability as an aggregate
measure of reliability, safety, and resilience, as availability and security are of secondary importance
in this work’s application domain. Evolvability refers to the ability of a system to respond to
functional requirements modifications, handle domain uncertainty, and absorb change without
incurring disruption. This software quality is an important aspect of field-robotics systems since
the requirements of the problem can change according to various factors, such as environmental

Field Robotics, June, 2023 · 3:766–800



772 · Jung et al.

Figure 4. System diagram of the Dallara AV-21.

Figure 5. Key design principles of team KAIST autonomy stack.

conditions, field testing scenarios, and so on. Lastly, performance; this can be defined in several
ways, and different classifications of performance and real-time systems are available in the literature
(Oshana, 2006). In our work, performance is intended as the capability of the system to respect
execution deadlines and operation frequencies defined at the design stage, analogously to what is
asked to a soft real-time system.

Out of these properties, the following requirements were defined and adopted throughout the
development of the system.

• Self-monitoring: the system has the ability to detect and react to potential failures at different
levels (infrastructure, application, platform).

• Fault-aware: the potential occurrence of faults (either internal or external) is taken into
account as a fundamental modeling principle. Clear separation of duties and a fail-fast (Shore,
2004) development approach were adopted to satisfy this requirement.

• Modular: adding, removing, and exchanging functional components with minimal integration
effort is necessary to respond effectively to software evolution and functional requirements
uncertainty.

• Scalable: the architecture as a whole, as well as the single components, must be able to grow
as the system’s complexity increases and new functionalities are introduced.

• Real-time capable: execution deadlines and operation frequency have to be defined and
respected by the software components, as in an embedded soft real-time system.

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 773

Figure 6. Overview of team KAIST’s software architecture.

5. Autonomous Racing System
5.1. Architecture Overview
Figure 6 depicts a high-level functional block diagram of the proposed autonomous racing system.
Our autonomy stack is designed to address the head-to-head race scenarios. The system comprises
several subsystems: (1) system status manager, (2) perception layer, (3) planning layer, and (4) high-
level and low-level control layers. Every subsystem is developed following our design principles with
different requirements (e.g., update frequency, type of output).

As previously stated, our autonomy stack follows the traditional perception-planning-control task
flow. We designed a multi-modal perception pipeline based on the equipped sensors of the Dallara-
AV21. The perception module’s outputs are fed into the planning module. Then, the planning module
is responsible for generating a collision-free trajectory that can also overtake the other opponent.
Finally, the control subsystem computes the desired lateral and longitudinal control commands
to precisely follow the planned trajectory while considering vehicle dynamics. Furthermore, our
control stack is designed to support multiple control algorithms running in parallel to cope with
system failures. Besides the functional subsystems (perception, planning, and control layers), a
system status manager was designed to ensure system resilience by monitoring the health of each
subsystem. For instance, if any module is not in the nominal status, the system status manager
dynamically reacts at a system level to recover or safely stop the vehicle. More information regarding
our system will be provided in the following sections.

5.2. System Status Manager
Autonomous racing is a safety-critical and high-cost of failure application. As a result, a fully
automated mechanism is necessary to detect system abnormalities and initiate appropriate recovery

Field Robotics, June, 2023 · 3:766–800



774 · Jung et al.

Table 1. Pre-set node status list and codes.
Node Status Name Code
NODE_OK 0
NODE_INITIALIZED 64
NODE_INACTIVE 100
NODE_NOT_INITIALIZED 128
NODE_ERROR 200
NODE_DEAD 255

Figure 7. Overview of the behavior of system status monitor by operation stage.

behavior. With that aim, we have configured a system status manager (hereafter referred to as SSM)
that supervises the state of submodules that compose the autonomy stack. As shown in Figure 7, our
SSM contributes to the system’s resilience through different criteria according to the operation phase.

The SSM starts by checking parameters in the operation configuration to ensure safe deployment.
Multiple parameters must be preset according to the testing purpose and race operation strategy.
However, manually inputted parameters by the user may be incorrect and lead to significant
performance degradation or fatal accidents during vehicle operation. To prevent faulty operation by
human operators, our SSM validates the parameters during the deployment/launching phase, such
as preset value range, sign, and data type. Representative parameters managed by the SSM include
maximum speed, maximum acceleration/deceleration, time-out threshold for sensors, and watchdog
threshold. In case any parameter does not meet the conditions, the SSM immediately suspends the
autonomy launch and applies full braking.

After the SSM confirms that configurations are OK, every algorithm module is launched. During
the online autonomy phase, the SSM periodically checks the health of sensory signals. Here, we
consider the update rate and the size of the sensor data as health indicators. The SSM manages all
the status of sensory data centrally, and every algorithm module which utilizes the raw sensor data
was strictly designed to check its health before the algorithmic computation. Similarly, all algorithm
blocks (hereafter referred to as nodes) that compose the autonomy stack report the node status to
the SSM. As shown in Table 1, the state of each node is updated based on its phase. As a result,
the SSM determines that the current system is under a nominal situation only when all registered
node status codes are OK (code 0). The SSM responds differently depending on the type of error
and on the node where the error occurs.

To monitor the system’s state more precisely, the nodes communicate the reliability of algorithm’s
result during operation. Measuring the reliability or uncertainty of solutions is one of the key aspects
of designing a resilient system. Our idea was to cope with abnormality by using the degraded mode of
operation. For example, when our system is not confident about the GNSS-based localization result,
our SSM lowers the maximum speed, acceleration, and so on. Furthermore, when the localization
node incurs into fatal error at high-speed driving, the SSM switches to a controller that does not
rely on GNSS-based location signals. Details about our efforts for monitoring the system status will
be provided in the according sections.

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 775

Figure 8. Dallara AV-21 sensor configuration.

Figure 9. Schematic flow diagram for the object detection pipeline.

5.3. Multi-modal Perception Pipeline
Estimating the ego’s state and understanding the surroundings are the first steps of the autonomous
driving task. Perception performance directly impacts the system’s capability and its overall
robustness. Unique features of the perception system for autonomous racing are as follows. (1) Since
the race vehicle drives only in a known and controlled environment (i.e., a race track), the perception
system can fully utilize its geometric information. (2) It can be reasonably assumed that only race
vehicles exist on the track in most cases. (3) Considering the driving speed, the perception range
and the detection update rate should be long and fast enough to safely operate.

Given the nature of high-speed autonomous driving problem, we built a multi-modal perception
pipeline using the sensory system of the vehicle, as shown in Figure 8. Our perception stack mainly
comprises a GNSS-based ego state estimator and an environmental perception part, which includes
detection, tracking, and prediction (see Figure 9). In the following sections, we will present the
details of our approach and our implementation results.

5.3.1. Ego State Estimation
Reliable state estimation is crucial for autonomous robots, especially under high-speed driving
conditions. Since it is a long-studied problem, there are various ways, including Simultaneous
Localization And Mapping (SLAM), odometry estimation, and GNSS-based navigation. Each
approach presents advantages and weaknesses in accuracy, consistency, computational burden, etc.
However, after testing SLAM-based methods (Qin et al., 2020; Shan & Englot, 2018; Shan et al.,
2020) at the IMS, we concluded that SLAM-based navigation is not appropriate for the racing
domain since it needs considerable computation resources. Also, it does not work well in feature-poor
environments such as long straight sectors.

Eventually, we designed our state estimator using two GNSS receivers with Kalman Filtering
(KF). Our state estimator was designed to output the state information and an indicator of the
solution quality for system-level resilience. The motivation behind this design choice is that, if one
of the two GPS units has critical issues due to failures in signal receiving (e.g., spikes, drift, null)
or hardware malfunctioning, the state-estimation task can be carried out relying on the other unit
(Failure of both GPS units case should be handled differently and we will introduce our solution in
Section 5.5.3).

Figure 10a depicts our state estimator architecture. Two KF-based state estimation algorithms
(Karimipour & Dinavahi, 2015) are running in parallel using two different GNSS sources. Each

Field Robotics, June, 2023 · 3:766–800



776 · Jung et al.

(a) (b)

Figure 10. (a) Resilient ego state estimation pipeline. (b) Schematics of one cycle of the IMM-UKF-PDAF
using CV, CTRV, and RM models.

algorithm estimates position, orientation, velocity, and acceleration. Two estimation outputs are
passed to the quality checker. The quality checking part has two main functions related to reliable
state estimation and system-level resilience: (1) measures the quality for the individual estimation
outputs and selects the best and (2) reports the state estimator’s health to the system status
manager. We measured the quality of estimation using a Mahalanobis distance (De Maesschalck,
Jouan-Rimbaud, & Massart, 2000) between estimation and sensor measurements as follows:

Dh , (x− z)TΣ−1(x− z), (1)

where x is the estimation output, z is the sensor measurement, and Σ−1 is the process covariance.
We empirically set some ranges of Mahalanobis distance to represent the state estimation quality
and is reported to the system status manager. For more details of our localization module, please
refer to (Lee, Jung, Finazzi, Seong, & Shim, 2022).

5.3.2. Opponent Detection and Tracking
LiDARs and radars were used for opponent vehicle detection. Even though we had implemented a
vision-based deep learning detection algorithms (Howard et al., 2019; Liu et al., 2016), a few practical
issues prevented us from using this method. First, we could not collect enough vision data in the
real-world environment for training and validation. As an alternative, we augmented our training
dataset using web-crawled data and a simulator. However, the real-world detection performance was
not reliable enough. Also, external sensor fusion between cameras and LiDARs was not fast enough
for high-speed driving scenarios.

Our perception pipeline begins with preprocessing sensor data. The ground removal algorithm
distinguishes between the ground plane and nonground points in lidar point cloud data. The most
representative process is to assume one plane within the sensing range and remove the points
associated with the plane using plane fitting. However, the target track is an oval with banking in
all sectors, and the change in bank angle is significant, particularly in the area entering or exiting
the corners from or into the stretch. To that end, we created a nonground point filtering algorithm
based on height distribution (see Algorithm 1). Our preprocessing method projects three-dimensional
LiDAR points into XY plane and represents into grid cells. After that, two factors are considered:
(1) number of points in the grid and (2) Height distributions of the grid. When these two different

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 777

Algorithm 1. Height-distribution-based ground filtering algorithm.

Require: Raw LiDAR point cloud, P, Grid cell size, gc
Ensure: Non-ground LiDAR points, Pn

Pp ← pro jectToXY pl ane(P )
G ← gr idDiscret izat ion(Pp, gc )
Pn ← {}

for g ∈ G do
np ← countNumOf Point (g)
hd ← cal cHeightDist r ibut ion(G, g)
if np > nthres and hd > hthres then

Rn ← reconst ructTo3D(G, g)
Pn = Pn ∪ Rn

end if
end for
returnPn

Figure 11. Ground filtering result of 3D point clouds based on height distribution. (Left) Merged LiDARs point
clouds before ground filtering. (Right) Ground filtered result.

criteria are over thresholds, we assumed that the grid is occupied by nonground objects. Figure 11
shows the output of ground filtering on the LiDAR point cloud. In addition, a geofencing filter is
applied using a track model for both LiDAR and radar data. Sensor data around 1 m from the track
boundary was removed.

After the preprocessing step, the filtered data contains only a few points corresponding to the
opponent vehicle on the track. Then, we adapted a clustering algorithm that is widely used in
autonomous robots for grouping and labeling points associated with an object (Uppada, 2014). The
clustering of point clouds in this work is accomplished using a hierarchy-based method (Madhulatha,
2012). The hierarchy-based clustering algorithm, also known as connectivity-based clustering,
classifies objects based on the distance between neighboring points. However, this clustering method
is sensitive to outlier points and may result in separating a single object into multiple clusters. We
used two consecutive clustering steps with different connectivity criteria to obtain more accurate
results. The clustering result was defined as the object’s center point and maximum width and length.
By comparing the finally detected width and length with the vehicle’s geometry, we cross-checked
the opponent’s relative position on the track.

Clustered objects represented in 3-Dim local coordinate are fed into the tracking module to
estimate the object’s dynamic states. This information is necessary for the trajectory prediction
module, the last step of our environmental perception module. The tracking problem can be modeled
as a filtering problem in which the object states might be noisy. Bayes filtering is one of the widely
used statistical theories that can be applied directly with multiple types of models. Because of its
heuristic-free approach, this filter can generally be applied to numerous robot applications (Thrun,
2002). Kalman Filter (Gutman & Velger, 1990) is the analytical implementation of the Bayesian

Field Robotics, June, 2023 · 3:766–800



778 · Jung et al.

method that seeks to compute the optimal filter gain from its posterior density recursively. Generally,
it assumes that the target objects’ dynamic and posterior density at the previous observation follows
Gaussian distribution, and the measurement function is linear. The Extended Kalman Filter (EKF),
as well as the Unscented Kalman Filter (UKF) (Wan, Van Der Merwe, & Haykin, 2001), are filters de-
veloped to overcome the limitation imposed by linear modeling when trying to capture object motion.

We implemented the Interacting Multiple Model UKF Probabilistic Data Association Filter
(IMM-UKF-PDAF, or IMM for short) proposed by (Arya Senna Abdul Rachman, 2017) in order
to track robustly in varied race circumstances where X(k), P (k), Z(k), and Λ(k) represent state,
covariance, measurement, and the likelihood for the observation at time k, respectively. It estimates
an object’s ambiguous dynamic behavior by combining several models rather than using a single
motion model for the existing filter for state estimation. IMM can be made up of n filters that run
different models in parallel and output individual probabilities. Then, IMM uses a weighted average
of each model output to calculate a single combined estimate state and its corresponding variance
for the next iteration. We employ three models for object tracking: (1) constant velocity (CV) and
(2) constant turn rate and velocity (CTRV) (3) Random Motion (RM). We set the initial weights
for each model to 0.5, 0.3, and 0.2, respectively. Figure 10b schematically shows one cycle of our
tracking module’s operation.

Finally, the output of the tracking module contains the 3-Dim position and XY velocity vector
in local coordinates. The results are transformed into global coordinates using the ego vehicle’s
status and upsampled to 50 Hz. Figure 12 illustrates the detection performance evaluation result
during the semifinal race with PoliMOVE (For evaluation, we used 50 samples from the logged
data during the race event at LVMS. PoliMOVE provided their GPS log, which we used as ground
truth.). The LiDAR-based perception result showed the highest average precision (AP); however,
its maximum detection range was around 70 m. On the other hand, raw radar data showed the
longest detection range but lowest recall performance. Our multi-modal detection approach, as
shown in the green, showed a balanced performance in terms of accuracy and range. Additionally,
we conducted the perception performance analysis according to the range. We used the L2-norm
distance to measure how our detection output is geometrically close to the ground truth. Note that,
we only collected samples when the driving speed is over 100 mph. For generating the ground truth,
we manually measured the position of the other vehicle using ego-vehicle’s state and raw Lidar
data. We divided the validation samples into three cases: closer than 50 m, over 50 m but less than
100 m, over 100 m but less than 120m. As shown in the Figure 12 right, our deployed method (Lidar
and radar based detection and tracking) showed a well balanced in terms of detection accuracy
and and its performance consistency. Given the validation case when the sampled targets are closer

Figure 12. Perception performance analysis results. (Left) AP and inference speed comparison results for three
different methods. (Right) L2 norm of position error according to sampled detection ranges.

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 779

than 50 m, Lidar only clustering based detection method showed the best performance among three
implementations.

5.3.3. Future Trajectory Prediction
Based on the perception results, autonomous vehicles must plan a safe motion trajectory considering
the predicted opponent’s trajectory. Accurate prediction of other vehicles’ trajectories increases
the safety of the autonomous vehicle and has an impact on general traffic safety, and efficiency
(Claussmann, Revilloud, Gruyer, & Glaser, 2019). For these reasons, substantial research on
trajectory prediction and ego-motion planning has been actively conducted in autonomous mobile
robotics (Elbanhawi & Simic, 2014; Laumond et al., 1998; Petti & Fraichard, 2005).

The majority of predictions for surrounding vehicles were made in an urban environment.
However, in a racing scenario, the opponents’ trajectory prediction differs from that of an urban
setting. In an urban driving environment, for example, road geometry is one of the essential cues
for the prediction module. In a race, however, the race line, which shows the minimum lap time,
can be used for predicting an opponent’s future trajectory. Furthermore, a strategic trajectory that
prevents neighboring vehicles from overtaking can predict a free-racing scenario (one in which no
arbitrary race restrictions apply). A few studies have modeled race as a noncooperative game.
In our previous work (Jung, Lee, Seong, Finazzi, & Shim, 2021), we used the Stackelberg Game
to model free-racing. We consecutively build independent Stackelberg games amongst neighboring
vehicles to change the n-player game to two-player games, and each game is solved recursively. We
assumed in each game that two cars were seeking to maximize their progress, with the following
agent accounting for collisions. The progress term is converted to a payoff function similar to the
MPC objective function. Our method was evaluated in a simulated environment and demonstrated
the capability to pass in multi-agent competitive race scenarios.

However, the real-world IAC competition was ultimately decided to be a 1:1 overtaking competi-
tion for safety reasons. Also, the race rules imposed the defending vehicle to maintain a commanded
speed (by racing control) along the inner side of the track. We designed the prediction task more
straightforwardly following the competition’s rules, and we made the following two reasonable
assumptions for prediction:

1. The opponent will stay on track Xtrack.
2. During the prediction, the opponent will keep lateral displacement from the track center line

and velocity.

The prediction problem is to forecast the set of future states Pi=1,2,...,n = {p0
i , p

1
i , . . . , p

tpred
i }

for the prediction time instant 0 to tpred, where pti = (xti, yti , vti). x, y, and v denote the spatial
Cartesian coordinates x and y and velocity, respectively. We used the Frenet coordinate system for
prediction which is a well-known coordinate system in trajectory planning and control theory. The
Frenet frame is made up of three vectors: the normal vector ~nr, the tangential vector ~tr, and the
binormal vector ~br. These vectors can describe the kinematic properties of a particle moving along
a continuous curve, as illustrated in Figure 13, s(t) and d(t) represents the progress alongside the
reference path and the lateral displacement at time t, respectively.

Assuming that the track’s center line is ~rc, the predicted trajectory of the surrounding vehicles
~x is expressed in Frenet coordinate space as follows, following the aforementioned assumptions (see
Figure 13):

~x(s(t), d(t)) = ~rc(s(t)) + d(t) ~nc(s(t)); (2)

1. ~x(s(t), d(t)) ∈Xtrack;
2. d(t) = d(t0), ṡ(t) = ṡ(t0), s̈(t) = 0 ∀0 ≤ t < tpred.

We calculated the lateral displacement from the center line of the track, d0 = d(t0), and its
progress, s0 = s(t0). Here, we set the prediction time horizon to 4 seconds with a sampling time of

Field Robotics, June, 2023 · 3:766–800



780 · Jung et al.

Algorithm 2. Prediction solution updating algorithm.

1: procedure updatePred ict ion
2: while True do
3: tp ← GetCurrentT ime() . Update time.
4: Fp ← CheckPercept ionOut put () . Check whether there is perception output.
5: if Fp then
6: Pc ← GetPercept ionOut put () . This only activate when there is perception result.
7: tc ← GetCurrentT ime() . Update time when the perception result is updated.
8: Pp ← GenPred ict ionOut put (Pc )
9: return(Pp)

10: else
11: if Pp 6= ∅ and tc + tthres ≤ tp then
12: Pp ← PropagateOnPrev iousResul t (Pp)
13: return(Pp)
14: else
15: Pp ← Cl ear ()
16: end if
17: end if
18: end while
19: end procedure

Figure 13. Representation of a trajectory in a Frenet frame.

0.1 sec. Prediction results are kept even if perception results are not updated for a certain period
(here, we set 2 secs) to cope with the instant loss of the tracked objects. To this end, the internal
loop updates the trajectory by propagating the object’s status using the previous prediction result.
Algorithm 2 shows the principal steps of our prediction process.

5.4. High-speed Overtaking Planner
5.4.1. Global Race Line Generation
The definition of the race line is the path that minimizes the lap time considering the vehicle
dynamics and track geometry. Following this definition, the race line generation problem can be
modeled as a nonlinear optimization problem as follows:

Minimize t =
∫
dt =

∫
dt

ds
ds =

∫ 1
v
ds

subject to κv2 − µg ≤ 0,
κ ≤ κmax,

v ≤ vmax,

amin ≤ a ≤ amax,

(3)

where t is the total time, s is the vehicle’s travel length, v is the vehicle’s velocity, a is the acceleration,
µ is the tire-road friction coefficient, and κ denotes the curvature.

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 781

Figure 14. Visualization of track modeling results. (Top row) Indianapolis Motor Speedway (IMS) mapping
result. (Bottom row) Las Vegas Motor Speedway(LVMS) track modeling flow using USGS data.

Various approaches to calculating the optimal race line have been proposed (Christ, Wischnewski,
Heilmeier, & Lohmann, 2021; Dal Bianco, Bertolazzi, Biral, & Massaro, 2019; Lovato & Massaro,
2022). Most of the previous researches utilized nonlinear vehicle and tire dynamic models and
solved Equation 3 directly via optimization framework, and the properties of the vehicle were
incorporated into the constraint functions. However, acquiring the model parameters is not trivial.
Also, the performance degradation due to model mismatch is one of the well-known limitations of
“model-based” approaches. (Heilmeier et al., 2019) demonstrated experimentally that the minimum
curvature trajectory performs nearly as well as the model-based optimal racing line. The path’s
curvature is minimized, which maximizes the achievable velocity.

We generated the race line using the minimum curvature trajectory following the idea from
(Heilmeier et al., 2019). On top of that, we also considered the travel distance since the lap time is
a function of speed and distance. To this end, we started from collecting the track boundaries. We
modeled the track using LEGO LOAM (Shan & Englot, 2018) and the United States Geological
Survey (USGS) LiDAR point cloud data. We manually extracted the track’s inner and outer
boundary points from the 3D map and interpolated them using a cubic spline model. Figure 14 shows
our map-building results and examples of USGS data. After that, we generated the geometrically
centered line of the track, the reference line representing the track, using the average operation on
the sampled two-track boundary point sets, and it can be written as follows:

~rn = ~pn + αn~nn, (4)

where ~pn is the center line point, ~nn is the unit normal vector, and αn is the distance to the track
boundary.

Given the track model, minimum curvature trajectory was generated using open source imple-
mentation from (Heilmeier et al., 2019). Furthermore, the shortest path was incorporated using a
simple geometric-weighted sum operation. Assuming that the minimum curvature race line is Pmc
and the shortest travel distance path is Psd, our final race line can be represented as follows:

Pc = ζPmc + (1− ζ)Psd, (5)

Field Robotics, June, 2023 · 3:766–800



782 · Jung et al.

Table 2. Results of estimated lap times under different weights, ζ , and
maximum speed limit conditions. If the maximum speed of the autonomous
system is below the dynamics limit of the vehicle itself, it can be seen that the
minimum curve-based race line does not always show the minimum lap time.

Track
Maximum Velocity

Constraint
Estimated Lap Time [sec]

ζ = 0.0 ζ = 0.3 ζ = 0.6 ζ = 0.8

LVMS
220 km/h 44.003 43.197 42.847 42.889

170 km/h 56.266 56.149 56.423 56.501

where ζ is the geometric weight parameter between two different paths. Note that, since our target
track is an oval track, we set the inner boundary as the shortest path.

We verified our idea by experimentally measuring the lap time of Pc generated under various
conditions using a high-fidelity racing simulator. Table 2 shows the estimated lap time results. Note
that estimated lap times can be different from the real-world testing results. However, we can see
that incorporating the shortest path into the race line can help to reduce the lap time in certain
operation conditions (e.g., maximum speed).

5.4.2. Local Trajectory Planning for High-speed Overtaking
Overtaking is referred to as the core of racing. Professional race car drivers simultaneously push
the vehicle to the limit while adhering to the race rules and performing strategic moves based on
contextual understandings of opponents’ intentions. The local trajectory planner takes responsibility
for high-speed overtaking in our autonomy stack.

The proposed local trajectory planner is primarily made up of three hierarchical module stages:
(1) decision, (2) planning, and (3) feasibility checking. The predicted trajectory of the opponent, the
current ego states and race flag (provided from the race control), and the planned trajectory from
the previous step were used as inputs. Our planner starts by making overtaking decisions based on
the current ego state and the predicted opponent’s trajectory. The decision to attempt overtaking
or not is crucial in high-speed driving scenarios since it can not be accomplished even though it is
collision-free. To decide whether overtaking can be safely done under our operation setup and system
capability, we adapted the Rendezvous Guidance (RG) (Kunwar & Benhabib, 2006) and applied it
to the overtaking problem. The decision module determines whether overtaking is possible within a
given time frame. Then, the decision outcome is passed to the sampling-based trajectory generation
module. Our trajectory generation module plans the optimal jerkiness trajectory (Werling, Ziegler,
Kammel, & Thrun, 2010) considering the driving speed and the vehicle dynamics. As the last step,
the collision and tire model-based feasibility were checked before execution. Figure 15 depicts the
overall structure of our hierarchical planning module. In the following, we will deliver details of
each step.

Rendezvous Guidance based Overtaking Decision Making. The proposed overtaking decision-
making algorithm is inspired by (Ghumman, Kunwar, Benhabib, et al., 2008) and is based on the
RG (Kunwar & Benhabib, 2006). The rendezvous problem is well-known as a chase-target problem
in which the target does not require evading acceleration due to common space debris. RG was
used for the space docking mission. Analytically, it has been demonstrated that RG provides the
optimal solution for rendezvous with immobile targets based on the parallel navigation law. There
are two types of participants in an autonomous rendezvous: chaser and target (see Figure 16a).
Given current chaser’s velocity, vc, and target vehicle’s velocity, vt, RG is responsible for generating
the velocity control signal of the chaser that will eventually match these two plants. According to
the parallel-navigation law, the relative velocity between the chaser and the target, ~̇r, should remain
parallel to the Line of Sight (LOS), ~r. If this condition is satisfied, the chaser’s distance from the
target will decrease until they collide.

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 783

Figure 15. Schematic diagram of hierarchical overtaking trajectory planning module.

(a) (b)

Figure 16. (a) Construction of rendezvous line based on parallel-navigation law. (b) Construction of ORL and
FVR.

The parallel-navigation law is defined by the equations below. Equation 6 guarantees that ~r
and ~̇r remain colinear, whereas Equation 7 guarantees that the chaser does not recede from the
chaser. Both equations can be solved for ~̇r in a parametric form using Equation 8 where α is a
positive real number. The RG’s output is a time-optimal velocity command for the chaser under the
parallel-navigation law. As illustrated in Figure 16a, if the chaser maintains a velocity command
parallel to the Rendezvous Line(RL), the direction of LOS remains constant, ensuring positional
matching between the chaser and the target.

~r × ~̇r = 0, (6)

~r · ~̇r < 0, (7)
~̇r = −α~r. (8)

The RG, position matching guidance, is applied to an overtaking problem by creating a virtual
target (see Figure 17). Our virtual target is spawned parallel to the predicted trajectory at tovertake
point (here, we set 6 seconds). Using the virtual target, we modified the RG to determine whether
our autonomy is capable of overtaking or not. Figure 16b visualized the modified RG plot.

Field Robotics, June, 2023 · 3:766–800



784 · Jung et al.

Figure 17. Conceptual visualization of virtual target generation for overtaking decision making.

Considering the maximum acceleration based on the vehicle’s current speed, race flag, and track
sector, the Feasible Velocity Region (FVR) is generated. Here, we assumed that the vehicle can
accelerate up to 80% of the maximum acceleration for generating the FVR as a safety-performance
balance. Finally, the decision module outputs the overtaking trigger signal if the FVR is beyond the
Overtaking Rendezvous Line (ORL), which indicates that overtaking is roughly feasible under the
current operating configuration. As examples, we visualized two different chaser’s velocity vectors in
Figure 16b using vc1 and vc2. With the vc1, FVR with blue boxed area is over the ORL, which can
be interpret that our vehicle can be proceed more than the virtual target position at tovertake. On
the other hand, vc2 with the red boxed area is not long enough to cross the ORL, which means that
the ego vehicle will be still behind during the overtaking horizon. As we briefly mentioned before,
the size of FVR is decided by multiple factors including vehicle states, race flag, and track sectors.
Note that these multiple factors were chosen heuristically.

Minimum Jerkiness Overtaking Trajectory Generation. In this step, the ego-motion trajectory,
which will be driven in the near future, is generated. We take the overtaking maneuver as the path
switching of the race line and one of the path candidates. Five different reference paths parallel to the
track’s center line, Pcandidate ∈ Pleft, Pleft,center, Pcenter, Pright,center, Pright were used. Our local tra-
jectory planner is in charge of generating the connecting trajectory segment, τ = {pt0 , pt1 , . . . , ptot},
between the current and the target path, where pt is the set of position at time t.

Our planner aims to generate a minimum jerkiness trajectory to safely and quickly merge to
the target path. Jerkiness is a widely used indicator of comfort in autonomous passenger vehicles,
but in the case of a race vehicle, it also impacts the vehicle’s stability. Inspired by (Werling et al.,
2010), we generated the minimum jerkiness trajectory by using lateral and longitudinal models in
Frenet-frame coordinates as follows:
d(t) = cd0 + cd1t+ cd2t

2 + cd3t
3 + cd4t

4 + cd5t
5,

s(t) = cs0 + cs1t+ cs2t
2 + cs3t

3 + cs4t
4,

(9)

where ci,i={d0,d1,d2,d3,d4,d5} and ci,i={s0,s1,s2,s3,s4} are the coefficients of the lateral and longitudinal
components, respectively (we refer to (Werling et al., 2010) for the theoretical proof). Since our
goal for the local planner is to merge to the target path, we can set the end condition as d(tot) = 0.
Using a set of time, tot ∈ 6, 4, 2, we generated trajectories with a variety of longitudinal patterns.
For the sake of simplicity, we assumed acceleration is zero during planning. By solving Equations 10
and 11, lateral and longitudinal polynomial parameters can be easily calculated given the initial
and final states:
t50 t40 t30 t20 t10 1
t5ot t4ot t3ot t2ot t1ot 1
5t40 4t30 3t20 2t10 1 0
5t4ot 4t3ot 3t2ot 2t1ot 1 0
20t30 12t20 6t10 2 0 0
20t3ot 12t2ot 6t1ot 2 0 0

 ·

cd5
cd4
cd3
cd2
cd1
cd0

 =



d0
dtot = 0
ḋ0

ḋtot = 0
d̈0

d̈tot = 0

 , (10)

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 785

Algorithm 3. Trajectory clearance checking.

1: C ← F al se . Clear collision flag.
2: for Pe ∈ E gopl an do
3: for Po ∈ Oppopred do
4: F ← SAT (Pe,Po)
5: if F == True then . If any intersection exist.
6: t (Pe,Po)← cal cT imeDif f (t (Pe,Po))
7: if t (Pe,Po) < tthres then . Check time difference, here, we set tthres as 1 sec.
8: return C ← True
9: end if

10: end if
11: end for
12: end for
13: return C

Figure 18. Collision detection based on opponent’s predicted trajectory using SAT algorithm.


t40 t30 t20 t10 1
4t30 3t20 2t10 1 0
4t3ot 3t2ot 2t1ot 1 0
12t20 6t10 2 0 0
12t2ot 6t1ot 2 0 0

 ·

cs4
cs3
cs2
cs1
cs0

 =


s0
ṡ0

ṡ1 = ṡ0
s̈0

s̈1 = 0

 . (11)

Trajectory Feasibility Checker. The last step of the proposed overtaking planner verifies whether
the generated trajectory collides with any predicted trajectory and also is dynamically feasible. For
collision checking, a Separating Axis Theorem (SAT) was used (Gottschalk, 1996). Figure 18 and
Algorithm 3 illustrate the collision checking procedure visually and algorithmically. For each point
in both generated and predicted trajectories, a box shape polygon was created based on the vehicle
dimension (see Figure 18), and collisions were detected by checking the intersection between two
polygons using SAT. When trajectory clearance checking module confirm that there is no collision,
the planned trajectory is investigated whether it also satisfies the tire constraint using the centripetal
force equilibrium (Pacejka, 2005). Finally, a collision-free and dynamically feasible trajectory is input
to the controller to generate control commands to follow accurately.

5.5. Resilient Control Stack
5.5.1. Overview
The control stack is in charge of generating throttle/brake position and steer angle to follow the
planned trajectory accurately. Our high-level control stack is built on various control algorithms
for overall system resilience. Control command was calculated strictly at 100 Hz and passed to
the drive-by-wire system. Figure 19 visualizes the various types of high-level controllers and their
configurations within our control stack.

We noted that MPCC was integrated but only for the simulation race and is not be covered in
this paper. For more details of our MPCC controller, refer to (Jung et al., 2021; Liniger et al., 2015).

Field Robotics, June, 2023 · 3:766–800



786 · Jung et al.

Figure 19. Overview of the control stack, including brief descriptions of each controller. Each controller is as-
signed a position based on the level of computational burden and model usage. In terms of real-time computability
and performance, the LQR-based longitudinal and lateral controller was chosen as the primary controller.

We used a linear–quadratic regulator controller (LQR) as a primary controller for the real-world
races. To ensure real-time operability, we created the state feedback gain as a look-up table during
the offline optimization. The proposed stack also includes the Stanley controller (Thrun et al., 2006)
and the pure pursuit controller (Coulter, 1992). These controllers are based on a simple kinematic
model, have a simple implementation, and are exceptionally computationally light. These controllers
are used as a backup solution when the primary controller has any issues (e.g., algorithm crash,
calculation delay). The solely perception-based emergency controller is another resilience feature of
our control stack. As the name suggested, it is independent of the global localization quality and
only uses the locally sensed data (here, we used LiDARs points). It is designed to activate when the
system status manager reports a fatal error or bad quality from the localization module.

Calculated steer angle and desired acceleration from the high-level controller are passed to the
low-level controller to actuate throttle, brake, and steer. Dallara-AV21 is equipped with Schaeffler
Paravan SpaceDrive, Drive-by-Wire (DBW) system. For the lateral control, it takes the desired steer
angle for the position control. The acceleration command was converted to the pedal positions using
engine torque and gear map for the longitudinal control. Implementation details are provided in the
following sections.

5.5.2. Explicit LQR-based Controller
As the primary controller of the control stack, we used the LQR-based full-state-feedback controller
using linearized system models (Lewis, Vrabie, & Syrmos, 2012; Rajamani, 2011; Spisak et al., 2022).

For the lateral motion model, we used the lateral dynamic bicycle model, whose state elements
are represented in terms of position and orientation errors with respect to a reference path. The
position error, ey, and the heading error, eψ, are modeled as follows:

d

dt


ey
ėy
eψ
ėψ

 =


0 1 0 0
0 − 2Cαf+2Cαr

mVx

2Cαf+2Cαr
m − 2Cαf lf−2Cαrlr

mVx
0 0 0 1
0 − 2Cαf lf−2Cαrlr

IzVx

2Cαf−2Cαr
Iz

− 2Cαf l2f+2Cαrl2r
IzVx



ey
ėy
eψ
ėψ



+


0

2Cαf
m
0

2Cαlf
Iz

 δ +


0

− 2Cαf lf−2Cαrlr
mVx

− Vx
0

− 2Cαf l2f−2Cαrl2r
IzVx

 ψ̇des +


0
g
0
0

 sin(φ),

(12)

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 787

where Cαf and Cαr are the cornering stiffness of the front and rear tires, respectively. The model
consists of differential equations with respect to the state vector [ey, ėy, eψ, ėψ]T and steering angle
control δ. The other terms are governed by the desired yaw rate ψ̇des and bank angle of the track
φ, which are given by the reference path and track condition. As ψ̇des and φ are not included in the
state vector, we compensated those terms by using a feedforward control component to minimize
the steady-state error (Rajamani, 2011). Without considering the compensated terms, since the
mass m, yaw moment of inertia Iz, and distance from the center of gravity to the front and rear
axle lf , lr are constants, the model can be well-formed as a state space model, assuming the current
longitudinal velocity Vx is constant.

Our LQR-based controller’s state space model can be then represented as follows:

ẋt = Axt +But, (13)

where xt = [ey, ėy, eψ, ėψ]T and ut = δ. The optimal state feedback control then is derived as a
quadratic programming problem that minimizes a quadratic cost function J as

J =
∫ ∞

0
(xTt Qxt + uTt Rut)dt (14)

with gain matrices Q > 0, R > 0. The resulting optimal control output u∗t = Ktxt is computed with
the LQR gain Kt. The original LQR calculates the control gain by solving the algebraic Riccati
equation (Lewis et al., 2012). However, the computational cost of solving the equation online is not
negligible. Therefore, we derived Kt by solving the Riccati equation offline via the Explicit LQR
algorithm (Spisak et al., 2022). The solutions are then used for initializing a set of LQR gains.
Therefore, our controller queries a feasible Kt with respect to the current velocity, Vt, without an
expensive online optimization process.

The longitudinal model can be described in terms of the nonlinear traction force and aerodynamic
drag acting on the ego vehicle. However, since the ego vehicle generates traction force from its
engine-based powertrain, it is challenging to model the longitudinal motion with a single dynamic
model. Therefore, we designed the longitudinal model to be hierarchical, with a high-level drive-train
model and a low-level engine-based powertrain model following the ideas from (Kabzan et al., 2020)
and (Rajamani, 2011).

5.5.3. Real-time Perception based Emergency Controller
Most vehicle controllers use global localization and vehicle status, and the performance of localization
directly impacts vehicle control performance. A race vehicle driving at high speed in an uncertain
localization condition, such as when the GPS sensor responsible for position recognition fails, or
the localization result diverges, requires the ability to safely drive (or stop) the vehicle. To this
end, our control stack includes a real-time perception-based controller that functions regardless
of the current state of localization. As the name implies, the controller employs only real-time
environmental sensor data (in this case, LiDARs) to calculate the path the vehicle will take
in body coordinates in real-time and generates a control signal to follow. This controller is
engaged only when the system manager detects a fatal failure or bad quality of the localization
module. The failure modes of localization include GPS signal disconnection or a high estimation of
localization uncertainty. The control’s conceptual visualization and algorithmic order are depicted
in Figure 20.

Our key idea is to generate the virtual local path parallel to the track boundary and safely stop
the vehicle without a crash. We used preprocessed LiDAR point cloud (introduced in Section 5.3.2)
and conducted polynomial fitting. To minimize fitting error, we chose a model with a smaller fitting
error among the first and third-order polynomial models. To minimize the lateral maneuvering in
emergency stop scenarios, the virtual path begins from (0,0) in body coordinate if the distance from
the wall is over 1.5 m. On the other hand, if the distance to the wall is less than 1.5 m, the virtual
path will be generated parallel to the wall with a 1.5 m lateral bias. A pure pursuit controller is in
charge of calculating the lateral control.

Field Robotics, June, 2023 · 3:766–800



788 · Jung et al.

Figure 20. Conceptual visualization and algorithm flow of real-time perception-based lateral vehicle controller.

Figure 21. Diagram of a low-level longitudinal controller that outputs the accelerator pedal position from the
reference velocity.

5.5.4. Engine Torque Map based Longitudinal Controller
Desired acceleration should finally be converted into throttle and brake positions, inputs of the
drive-by-wire module. The longitudinal control diagram is shown in Figure 21. As shown in the
diagram, the feedforward control part computes throttle position based on the engine torque map
obtained from the chassis dynamometer testing. In designing the feedforward control module, we
make the following assumptions to simplify the problem.

1. Velocity of the vehicle is decided only by engine and brake forces. Only the throttle
and brakes are required to control the vehicle’s speed while driving. The track’s geometry
(e.g., slope, bank) and environmental conditions (e.g., wind) can be ignored.

2. The torque converter is fully locked. Torque from the engine passes directly through the
transmission without loss.

3. The tire slip is negligible. There is no tire slip if the low-level follows the desired velocity.

Deceleration and control errors are corrected using a simple PID-based feedback controller. For more
details, please refer to Seong, Chung, and Shim (2023).

6. Experimental Results
6.1. High-speed Solo Lap
This section presents the field testing results of high-speed driving conducted on January 4, 2022,
to validate the system’s stability before the race event in LVMS. The maximum speed was set to
235 km/h, while the maximum acceleration was set to 3 m/s2. The experiment was conducted while

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 789

Figure 22. High-speed solo driving experimental results. (First row) Orange and blue lines represent the lateral
deviation and yaw error with respect to the reference line. (Second row) Orange and blue lines represent the steer
command and position in degree, respectively.

Figure 23. Lateral deviation from the race line plot according to the driven trajectory. The numbers overlaid in
the left figure match with timestamps of Figure 22.

gradually increasing the maximum speed. The control result at the time is depicted in Figure 22.
In addition, Figure 23 shows the driving speed and lateral deviation.

Figure 24 shows the lateral deviation from the race line. The maximum cross-track error was
about 1.15 m at speeds over 220 km/h. Furthermore, 87% of the cross-track errors showed positive
signs, which means that our vehicle was on the left side of the race line. This is because the
DALLARA-AV21 has an oval setting (left camber setting) which is not modeled in our vehicle
model. Also, the yaw error is depicted in Figure 24 on the left. There was a considerable yaw error
at 75 km/h because of switching from the pit-out path to the race line on the track. In other cases,
97% of yaw errors are kept within the 0.02 rad. The quantitative analysis results of a high-speed lap
are summarized in Table 3. In this experiment, we could drive at a maximum speed of 227.2 km/h.

Field Robotics, June, 2023 · 3:766–800



790 · Jung et al.

Table 3. High-speed driving performance analysis result.

Velocity
Range [km/h]

Tracking Error [m]
Max Yaw
Error [rad]

Max Driving
Speed [km/h]Max

Absolute
Mean

Standard
Deviation

v< 100 0.59 0.15 0.192 0.074

227.2100< v<150 0.71 0.17 0.214 0.07

150< v 1.15 0.3 0.443 0.067

Figure 24. Tracking error results. (Left) Lateral deviation. (Right) Yaw error.

6.2. 1:1 Head-to-head Race Event
This section introduces the race results at the IAC’s quarter-final and semifinal rounds. A total of 5
teams that passed qualification participated in the competition: TUM (Germany), KAIST (South
Korea), PoliMOVE (Italy), TII EuroRacing (Italy), and Auburn (USA). The race was held in a
tournament format. The team who successfully overtook the opponent advanced to the next round.
PoliMOVE was given a bye because they demonstrated the fastest driving during qualifications.
Auburn was our quarter-final rival. Race control set the starting defender’s target velocity at
128 km/h (80 mph). We were instructed by race control to begin the race as an attacker, while
Auburn started as a defender. To ensure safety, the two vehicles exit the pit box in the order of
defender and attacker.

The control result from the pit out in the quarter-final round is shown in Figure 25. We began the
race as an attacker attempting to overtake the opposing team. We performed pit-out and formation
laps based on race control signals. A green area denotes the section where pit-out was done. During
the pit-out mission, the speed was around 50 km/h. As soon as the pitting out is completed, our
vehicle aligns with the race line. The formation lap following the race control was shown in the
pink area.

Following the race control, the attacker should reduce the gap between himself and the defender.
We communicated with the race control during the formation lap and increased the maximum speed.
In Figure 25, PB1 indicates when the false detection (hereafter referred as to FD) firstly occurred,
and unnecessary deceleration was performed. At the time, our vehicle was running the formation
lap following the inner side of the track, and a FD from the perception module occurred near the
right track boundary. At the time of PB2, the race control provided an attacker flag, allowing us
to attempt overtaking, and our planner switched to the outer line, the attacker mode’s default line.
Simultaneously, second phantom braking occurred due to a FD. We increased the attacker mode’s

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 791

Figure 25. Quarter-final driving result. Green areas indicate pit-outs. The formation lap was performed according
to communication with race control, indicated by the pink area. A purple area indicates the section overtaking a
vehicle traveling at 128 km/h (80mph), and the driving speed at that time was about 212 km/h.

speed to 198 km/h to quickly catch the opponent. At ACC, Auburn’s vehicle was accurately detected
for the first time at a distance of about 100m and decelerated to the defender speed of 128 km/h
(80 mph) to maintain the distance. After a while, four times phantom brakes (PB3, PB4, PB5, and
PB6) occurred, and the speed dropped to about 100 km/h (60 mph). After the FD disappeared,
our vehicle accelerated again up to our top speed, 200 km/h (124 mph), following the race line.
When the distance gap between the two vehicles was about 34 m in the front stretch, our speed
was approximately 185 km/h (115 mph), and we started overtaking by safely switching the path
to the outer line. After passing, we returned to the inner track line about 32 m of safety margin
from Auburn’s vehicle. The above-mentioned situations are shown in Figure 26 in order of time.
We performed defender-attacker role switching after our overtaking, but the race control halted the
race due to an error in the Auburn’s system.

As in the quarter-final, we performed a total of three times of defender and two times of attacker
in the semifinal with PoliMOVE. Figure 27 shows the overall control results in the semifinal.
We also experienced phantom braking several times, similar to the quarter-finals. The first time
we faced the phantom braking is shown by PB1 in the third row of Figure 27. After the FD
disappeared, our vehicle slowed down (ACC1) to maintain the distance while waiting for the front
stretch overtaking zone. C1 timestamp shows when the vehicle got the overtaking flag from the
race control and switched to the race line since there was no collision within 2 seconds. At EB1, our

Field Robotics, June, 2023 · 3:766–800



792 · Jung et al.

Figure 26. Onboard camera view with perception and planning result visualization results at quarter-final race.

vehicle started to overtake the front vehicle at a speed of 150 km/h (see Figure 28, Overtaking(80)-1,
and Overtaking(80)-2). The next round of defender speed was set to 160 km/h (100 mph). PB2 is
a phantom braking point that occurred while closing the distance with the PoliMOVE, and we
accelerated up to 204 km/h (126 mph), successfully overtaking an opposing vehicle traveling at
160 km/h (100 mph). We started overtaking at the end of the front stretch due to phantom braking,
and both vehicles were side-by-side at turn 1. Our planner did not permit closing overtaking in
the high banking angle zone and completed the overtaking maneuver at the backstretch. However,

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 793

Figure 27. Semifinal driving result. Overtaking in attacker mode (80 and 100mph) was performed a total of
2 times, and defender role (80, 100, and 115 mph) was performed three times. All missions of pit-in and out,
formation lap, and race were performed, and driving was performed for about 18 minutes. When overtaking a
vehicle traveling at 100mph, the top speed was about 204 km/h. FDs caused repeated phantom braking. We
decided it was unsafe for both teams, so we finally asked the race control a black flag for a pit-in, and the pink
area shows the point in time.

we decided to request a black flag to race control for the retirement because of repeated phantom
braking (shown in the pink area of Figure 27).

In the same way as the method introduced in Section 6.1, the control performance in the head-to-
head race was analyzed. Figure 29 shows the lateral displacement and yaw error. Figure 29 appears
similar to Figure 24, which means that our controller can accurately track the fixed path but
also dynamically changing path. The quantitative analysis results are summarized in Table 4. Our
maximum speed during the semifinal was 212 km/h (132 mph), and accelerations up to 12.41 m/s2.
The root cause of all FDs was a mismatch of the right side of the track boundary, especially at the
curve sectors. Thus our geofence filter with a 1 m threshold distance sometimes could not correctly
remove the LiDAR-based clustering noise or raw radar data.

6.3. Computational Performance Analysis
Real-time systems, relying on either soft or hard timing constraints, require proper diagnostics to
verify that the design constraints are respected at run-time. Timing analysis for complex systems is

Field Robotics, June, 2023 · 3:766–800



794 · Jung et al.

Table 4. Head-to-head race analysis result. (ABYE: Absolute max yaw error. MLA: Max longitudinal
acceleration. AMLA: Absolute max lateral acceleration. MS: Max speed.)

Tracking Error ↓ [m]

Velocity Range
[km/h] Max

Absolute
Mean

Standard
Deviation

ABYE
[rad]

MLA
[m/s2]

AMLA
[m/s2]

MS
[km/h]

v< 100 0.4005 0.1068 0.0995 0.0415

100< v<150 1.2318 0.3846 0.2905 0.0815

150< v 1.7791 0.4872 0.3606 0.0812

12.4155
(1.266 g)

6.8750
(0.701 g)

212.5
(132mph)

x

Figure 28. Onboard camera view with perception and planning result visualization results at semifinal race.

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 795

Figure 29. Tracking error histogram according to the driving speed during the CES2022 head-to-head au-
tonomous race. (Left) Lateral deviation. (Right) Yaw error.

Table 5. Timing analysis workstation’s specifications.
Component Specification
CPU Intel Core i9-20980HK 2.40 GHz (16T, 8C)
GPU Nvidia GeForce RTX 3080 Laptop x 1
RAM 32GB
Storage 2TB Samsung 970Evo NVMe SSD
Software ROS2 Galactic on Ubuntu 20.04

an active research topic. Recent techniques, including some specifically designed for ROS2 (Bédard,
Lütkebohle, & Dagenais, 2022; Li, Hasegawa, & Azumi, 2022), have been released only recently. In
this section, an analysis of the timing properties of our proposed autonomy stack is given. The timing
measurements have been carried out on the platform detailed in Table 5, by replaying recorded data.
The tracing tool adopted to measure the software performance is derived from Autoware_perf (Li et
al., 2022), which in turn is based on the ros2_tracing (Bédard et al., 2022) and LTTng (Desnoyers
& Dagenais, 2006) tools.

We measured the execution time of the functions that compose the main execution pipeline
(registered as ROS2 topic or timer callbacks). For the performance analysis, we plot the number
of samples over their execution time (discretizing the timeline). Both the evaluation workstation
and the computation system on Dallara-AV21 run on the default Linux 5.8 kernel, which employs
a Completely Fair Scheduling algorithm (Pabla, 2009). Figure 30 shows various task duration
plots.

The timing requirements set during the design phase (i.e., 100 Hz operation frequency), are met
by the stack, according to the data. The nodes composing the localization-planning-control sequence
performs well-below the 10 ms deadline, with reasonably low variance (Figures 30a, 30d, and 30e).
Similar conclusions can be drawn with regard to the main horizontal component, the System
Status Manager (Figure 30f). The perception stack (intended as the detection-tracking-prediction
sequence) shows lower performance compatibly with the higher resource-consuming nature of
the task. In particular, the lidar clustering algorithm sets its mean execution time at 10.52ms,
peaking at 34.37ms (Figure 30b), while the geofence filtering function averages at 4.41ms with a
registered maximum of 16.86ms (Figure 30c). Moreover, while the former’s variance is reasonably
limited, the spread-out shape of the latter’s plot suggests that the function’s flow might have an
irregular duration. This result, although not optimal, sets the worst-case operation frequency of the
perception task around 30 Hz, compatibly with the best-case performance of the available laser-based
sensors.

Although the results’ scale can be heavily influenced by environmental factors (e.g., hardware
and OS configuration, number of concurrent processes, external conditions), the relative proportion
of time consumption is well represented by the given data, regardless of the testing environment. As

Field Robotics, June, 2023 · 3:766–800



796 · Jung et al.

(a) State estimation module. (b) LiDAR clustering module. (c) Geofence filtering module.

(d) Overtaking planner module. (e) LQR controller module. (f) System status manager module.

Figure 30. Latency analysis results.

per an evaluation of the end-to-end latency, the data suggest that the average latency sets well-below
10 ms for what concerns the control path (state estimation, planning, control), including the impact
of inter-process communication, which averaged around 0.01 ms on our timing analysis workstation.

7. Discussion and Conclusion
In this paper, we presented the full-stack autonomous racing software developed by team KAIST for
the Indy Autonomous Challenge (IAC). Our autonomy solution comprises multi-modal perception,
a high-speed overtaking planner, a resilient control stack, and a system status manager. All the
subsystems of the proposed autonomy stack are developed following our key design principles,
aiming to achieve dependability, evolvability, and performance. Even though our autonomy solution
is developed targeting the autonomous racing domain, we believe that our system architecture and
design principles can be applied to a wide range of robotic applications, especially when it comes
to the high-performance, safety-critical, and high-cost-of-failure application domains.

The proposed system was integrated into a full-scaled autonomous race car (Dallara AV-21) and
extensively validated through field tests and race events. We, team KAIST, accomplished every
mission (including autonomous pit-in/out, static obstacles avoidance, and obeying race flags) in
the IAC at Indianapolis Motor Speedway (IMS) in Oct 2021. During IAC at Las Vegas Motor
Speedway (LVMS) in Jan 2022, our autonomy demonstrated high-speed head-to-head racing by
reaching speeds over 220 km/h and accelerations of up to 12.41 m/s2. Our team was one of three
teams that successfully finished both race events without system failures or crashes.

Even though we believe that the proposed autonomy solution and the provided results can provide
valuable insights to the field robotics community, there are still some technical gaps when it comes
to human-like head-to-head racing scenarios. Our autonomy solution was designed based on the IAC
race rules, which allowed us to make some fundamental assumptions. For example, our prediction
module simplifies the problem by assuming that the other vehicle will maintain a constant speed
and a constant displacement from the inner track boundary. However, this assumption is not valid
for human-like races. Also, our trajectory planner follows a sampling-based approach which has an
advantage in terms of computation burden. However, our planning algorithm has limited capabilities
when handling multiple opponents in a competitive scenario. For advanced human-like autonomous

Field Robotics, June, 2023 · 3:766–800



An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 797

races, a contextual understanding based on learning methods plays a key role. We believe this
technology has an enormous impact in multiple application domains ranging from urban autonomous
driving to service robots in social environments. At the same time, we would like to leave an open
research question: “How can we maintain the system resilience when adopting unobservable learning
models?” One promising research topic is explainable deep learning, which has evolved significantly
in the last few years. Also, system designs that combine classical and learning-based methods in a
complementary way can represent a solid solution to the problem of deployable learning models.
With efforts in these fields, we believe that learning algorithms can be more actively adopted in
real-world autonomous systems.

Acknowledgments
This work is partially supported by SK Hynix Inc and Institute of Information communications
Technology Planning Evaluation (IITP) grant funded by the Korea government (MSIT, 2021-0-
00029). We would like to thank Energy System Network (ESN), Juncos Hollinger Racing, and all
other participating teams for their support and contributions to the project. Especially, we would
like to thank MIT-PITT-RW for collaborating on an LQR controller design and camera-based
perception module. Also, we thank PoliMOVE for sharing their semifinal log data with us, which
was used for perception performance evaluation in this work.

ORCID
Chanyoung Jung https://orcid.org/0000-0001-8104-2461
Hyunki Seong https://orcid.org/0000-0002-7169-3006
Daegyu Lee https://orcid.org/0000-0002-9336-5759
Seungwook Lee https://orcid.org/0000-0003-1147-1214
Boseong Kim https://orcid.org/0000-0002-7437-5169
Gyuree Kang https://orcid.org/0000-0001-7769-4651
Hyunchul Shim https://orcid.org/0000-0002-1929-7022

References
Ackerman, E. (2022). Darpa’s racer program sends high-speed autonomous vehicles off-road. https://

spectrum.ieee.org/darpa-robot-racer.
Arya Senna Abdul Rachman, A. (2017). 3d-lidar multi object tracking for autonomous driving: multi-target

detection and tracking under urban road uncertainties.
Bertoncello, M., & Wee, D. (2015). Ten ways autonomous driving could redefine the automotive world.

McKinsey & Company, 6 .
Betz, J., Zheng, H., Liniger, A., Rosolia, U., Karle, P., Behl, M., … Mangharam, R. (2022). Autonomous

vehicles on the edge: A survey on autonomous vehicle racing. IEEE Open Journal of Intelligent
Transportation Systems.

Brodsky, J. S. (2016). Autonomous vehicle regulation: How an uncertain legal landscape may hit the brakes
on self-driving cars. Berkeley Technology Law Journal, 31 (2), 851–878.

Bédard, C., Lütkebohle, I., & Dagenais, M. (2022). ros2_tracing: Multipurpose low-overhead framework
for real-time tracing of ros 2. IEEE Robotics and Automation Letters, 7 (3), 6511-6518. doi: 10.1109/
LRA.2022.3174346

Cai, P., Mei, X., Tai, L., Sun, Y., & Liu, M. (2020). High-speed autonomous drifting with deep reinforcement
learning. IEEE Robotics and Automation Letters, 5 (2), 1247–1254.

Carvalho, A., Gao, Y., Gray, A., Tseng, H. E., & Borrelli, F. (2013). Predictive control of an autonomous
ground vehicle using an iterative linearization approach. In 16th international ieee conference on
intelligent transportation systems (itsc 2013) (pp. 2335–2340).

Casanova, D. (2000). On minimum time vehicle manoeuvring: The theoretical optimal lap.
Christ, F., Wischnewski, A., Heilmeier, A., & Lohmann, B. (2021). Time-optimal trajectory planning for a

race car considering variable tyre-road friction coefficients. Vehicle system dynamics, 59 (4), 588–612.

Field Robotics, June, 2023 · 3:766–800

https://orcid.org/0000-0001-8104-2461
https://orcid.org/0000-0001-8104-2461
https://orcid.org/0000-0002-7169-3006
https://orcid.org/0000-0002-7169-3006
https://orcid.org/0000-0002-9336-5759
https://orcid.org/0000-0002-9336-5759
https://orcid.org/0000-0003-1147-1214
https://orcid.org/0000-0003-1147-1214
https://orcid.org/0000-0002-7437-5169
https://orcid.org/0000-0002-7437-5169
https://orcid.org/0000-0001-7769-4651
https://orcid.org/0000-0001-7769-4651
https://orcid.org/0000-0002-1929-7022
https://orcid.org/0000-0002-1929-7022
https://spectrum.ieee.org/darpa-robot-racer
https://spectrum.ieee.org/darpa-robot-racer


798 · Jung et al.

Claussmann, L., Revilloud, M., Gruyer, D., & Glaser, S. (2019). A review of motion planning for highway
autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 21 (5), 1826–1848.

Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm (Tech. Rep.). Carnegie-
Mellon UNIV Pittsburgh PA Robotics INST.

Dal Bianco, N., Bertolazzi, E., Biral, F., & Massaro, M. (2019). Comparison of direct and indirect methods
for minimum lap time optimal control problems. Vehicle System Dynamics, 57 (5), 665–696.

De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The mahalanobis distance. Chemometrics
and intelligent laboratory systems, 50 (1), 1–18.

Desnoyers, M., & Dagenais, M. (2006, 01). The lttng tracer: A low impact performance and behavior
monitor for gnu/linux. OLS (Ottawa Linux Symposium).

Elbanhawi, M., & Simic, M. (2014). Sampling-based robot motion planning: A review. Ieee access, 2 , 56–77.
Fuchs, F., Song, Y., Kaufmann, E., Scaramuzza, D., & Dürr, P. (2021). Super-human performance in

gran turismo sport using deep reinforcement learning. IEEE Robotics and Automation Letters, 6 (3),
4257–4264.

Funke, J. (2015). Collision avoidance up to the handling limits for autonomous vehicles. Stanford University.
Funke, J., Brown, M., Erlien, S. M., & Gerdes, J. C. (2016). Collision avoidance and stabilization for

autonomous vehicles in emergency scenarios. IEEE Transactions on Control Systems Technology, 25 (4),
1204–1216.

Funke, J., Theodosis, P., Hindiyeh, R., Stanek, G., Kritatakirana, K., Gerdes, C., … Huhnke, B. (2012). Up
to the limits: Autonomous audi tts. In 2012 ieee intelligent vehicles symposium (pp. 541–547).

Ghumman, U. S., Kunwar, F., Benhabib, B., et al. (2008). Guidance-based on-line motion planning for
autonomous highway overtaking. University of Toronto.

Goldfain, B., Drews, P., You, C., Barulic, M., Velev, O., Tsiotras, P., & Rehg, J. M. (2019). Autorally: An
open platform for aggressive autonomous driving. IEEE Control Systems Magazine, 39 (1), 26–55.

Gottschalk, S. (1996). Separating axis theorem. Technical Report TR96-024. Department of Computer
Science. University of North Carolina, Chapel Hill, 20–46.

Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning techniques for
autonomous driving. Journal of Field Robotics, 37 (3), 362–386.

Gutman, P.-O., & Velger, M. (1990). Tracking targets using adaptive kalman filtering. IEEE Transactions
on Aerospace and Electronic Systems, 26 (5), 691–699.

Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz, J., Lienkamp, M., & Lohmann, B. (2019).
Minimum curvature trajectory planning and control for an autonomous race car. Vehicle System
Dynamics.

Herman, J., Francis, J., Ganju, S., Chen, B., Koul, A., Gupta, A., … Nyberg, E. (2021). Learn-to-race: A
multimodal control environment for autonomous racing. In Proceedings of the ieee/cvf international
conference on computer vision (pp. 9793–9802).

The history of the indy autonomous challenge powered by cisco. (2019). https://www
.indyautonomouschallenge.com/history.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., … others (2019). Searching for
mobilenetv3. In Proceedings of the ieee/cvf international conference on computer vision (pp. 1314–
1324).

Jaritz, M., De Charette, R., Toromanoff, M., Perot, E., & Nashashibi, F. (2018). End-to-end race driving
with deep reinforcement learning. In 2018 ieee international conference on robotics and automation
(icra) (pp. 2070–2075).

Jung, C., Lee, S., Seong, H., Finazzi, A., & Shim, D. H. (2021). Game-theoretic model predictive control
with data-driven identification of vehicle model for head-to-head autonomous racing. arXiv preprint
arXiv:2106.04094 .

Kabzan, J., Valls, M. I., Reijgwart, V. J., Hendrikx, H. F., Ehmke, C., Prajapat, M., … others (2020). Amz
driverless: The full autonomous racing system. Journal of Field Robotics, 37 (7), 1267–1294.

Karimipour, H., & Dinavahi, V. (2015). Extended kalman filter-based parallel dynamic state estimation.
IEEE transactions on smart grid, 6 (3), 1539–1549.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., … Shah, A. (2019). Learning to drive
in a day. In 2019 international conference on robotics and automation (icra) (pp. 8248–8254).

Kunwar, F., & Benhabib, B. (2006). Motion planning for autonomous rendezvous with vehicle convoys. In
2006 ieee intelligent transportation systems conference (pp. 1568–1573).

Laumond, J.-P., et al. (1998). Robot motion planning and control (Vol. 229). Springer.

Field Robotics, June, 2023 · 3:766–800

https://www.indyautonomouschallenge.com/history
https://www.indyautonomouschallenge.com/history


An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC · 799

Lee, D., Jung, C., Finazzi, A., Seong, H., & Shim, D. H. (2022). Resilient navigation and path planning
system for high-speed autonomous race car.

Lewis, F. L., Vrabie, D., & Syrmos, V. L. (2012). Optimal control. John Wiley & Sons.
Li, Z., Hasegawa, A., & Azumi, T. (2022). Autoware_perf: A tracing and performance analysis framework

for ros 2 applications. Journal of Systems Architecture, 123 , 102341. doi: https://doi.org/10.1016/
j.sysarc.2021.102341

Liniger, A., Domahidi, A., & Morari, M. (2015). Optimization-based autonomous racing of 1: 43 scale rc
cars. Optimal Control Applications and Methods, 36 (5), 628–647.

Liniger, A., & Lygeros, J. (2015). A viability approach for fast recursive feasible finite horizon path
planning of autonomous rc cars. In Proceedings of the 18th international conference on hybrid systems:
Computation and control (pp. 1–10).

Liniger, A., & Lygeros, J. (2017). Real-time control for autonomous racing based on viability theory. IEEE
Transactions on Control Systems Technology, 27 (2), 464–478.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on computer vision (pp. 21–37).

Lovato, S., & Massaro, M. (2022). A three-dimensional free-trajectory quasi-steady-state optimal-control
method for minimum-lap-time of race vehicles. Vehicle System Dynamics, 60 (5), 1512–1530.

Madhulatha, T. S. (2012). An overview on clustering methods. arXiv preprint arXiv:1205.1117 .
Milliken, W. F., Milliken, D. L., et al. (1995). Race car vehicle dynamics (Vol. 400). Society of Automotive

Engineers Warrendale, PA.
O’Kelly, M., Zheng, H., Karthik, D., & Mangharam, R. (2020). F1tenth: An open-source evaluation

environment for continuous control and reinforcement learning. Proceedings of Machine Learning
Research, 123 .

Oshana, R. (2006, 1). Overview of Embedded Systems and Real-Time Systems. DSP Software Development
Techniques for Embedded and Real-Time Systems, 19–34. doi: 10.1016/B978-075067759-2/50004-1

Pabla, C. S. (2009). Completely fair scheduler. Linux Journal, 2009 (184), 4.
Pacejka, H. (2005). Tire and vehicle dynamics. Elsevier.
Petti, S., & Fraichard, T. (2005). Safe motion planning in dynamic environments. In 2005 ieee/rsj

international conference on intelligent robots and systems (pp. 2210–2215).
Qin, C., Ye, H., Pranata, C. E., Han, J., Zhang, S., & Liu, M. (2020). Lins: A lidar-inertial state estimator

for robust and efficient navigation. In 2020 ieee international conference on robotics and automation
(icra) (pp. 8899–8906).

Rajamani, R. (2011). Vehicle dynamics and control. Springer Science & Business Media.
Rieber, J. M., Wehlan, H., & Allgower, F. (2004). The roborace contest. IEEE Control Systems Magazine,

24 (5), 57–60.
Riedmiller, M., Montemerlo, M., & Dahlkamp, H. (2007). Learning to drive a real car in 20 minutes. In

2007 frontiers in the convergence of bioscience and information technologies (pp. 645–650).
Rosolia, U., & Borrelli, F. (2019). Learning how to autonomously race a car: a predictive control approach.

IEEE Transactions on Control Systems Technology, 28 (6), 2713–2719.
Seong, H., Chung, C., & Shim, D. H. (2023). Data-driven model identification via hyperparameter

optimization for the autonomous racing system. arXiv preprint arXiv:2301.01470 .
Shan, T., & Englot, B. (2018). Lego-loam: Lightweight and ground-optimized lidar odometry and mapping

on variable terrain. In 2018 ieee/rsj international conference on intelligent robots and systems (iros)
(pp. 4758–4765).

Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., & Rus, D. (2020). Lio-sam: Tightly-coupled lidar
inertial odometry via smoothing and mapping. In 2020 ieee/rsj international conference on intelligent
robots and systems (iros) (pp. 5135–5142).

Shore, J. (2004, sep). Fail fast. IEEE Software, 21 (05), 21-25. doi: 10.1109/MS.2004.1331296
Sommerville, I. (2015). Software engineering (10th ed.). Boston: Pearson.
Spisak, J., Saba, A., Suvarna, N., Mao, B., Zhang, C. T., Chang, C., … Ramanan, D. (2022). Robust

modeling and controls for racing on the edge. arXiv preprint arXiv:2205.10841 .
Stahl, T., Wischnewski, A., Betz, J., & Lienkamp, M. (2019). Multilayer graph-based trajectory planning

for race vehicles in dynamic scenarios. In 2019 ieee intelligent transportation systems conference (itsc)
(pp. 3149–3154).

Subosits, J. K., & Gerdes, J. C. (2019). From the racetrack to the road: Real-time trajectory replanning
for autonomous driving. IEEE Transactions on Intelligent Vehicles, 4 (2), 309–320.

Field Robotics, June, 2023 · 3:766–800



800 · Jung et al.

Talvala, K. L., Kritayakirana, K., & Gerdes, J. C. (2011). Pushing the limits: From lanekeeping to
autonomous racing. Annual Reviews in Control, 35 (1), 137–148.

Thrun, S. (2002). Probabilistic robotics. Communications of the ACM , 45 (3), 52–57.
Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., … others (2006). Stanley: The

robot that won the darpa grand challenge. Journal of field Robotics, 23 (9), 661–692.
Timings, J. P., & Cole, D. J. (2013). Minimum maneuver time calculation using convex optimization.

Journal of Dynamic Systems, Measurement, and Control, 135 (3), 031015.
Uppada, S. K. (2014). Centroid based clustering algorithms—a clarion study. International Journal of

Computer Science and Information Technologies, 5 (6), 7309–7313.
Wan, E. A., Van Der Merwe, R., & Haykin, S. (2001). The unscented kalman filter. Kalman filtering and

neural networks, 5 (2007), 221–280.
Weiss, T., & Behl, M. (2020). Deepracing: a framework for autonomous racing. In 2020 design, automation

& test in europe conference & exhibition (date) (pp. 1163–1168).
Werling, M., Ziegler, J., Kammel, S., & Thrun, S. (2010). Optimal trajectory generation for dynamic street

scenarios in a frenet frame. In 2010 ieee international conference on robotics and automation (pp.
987–993).

Williams, G., Drews, P., Goldfain, B., Rehg, J. M., & Theodorou, E. A. (2016). Aggressive driving with
model predictive path integral control. In 2016 ieee international conference on robotics and automation
(icra) (pp. 1433–1440).

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh, T. J., … others
(2022). Outracing champion gran turismo drivers with deep reinforcement learning. Nature, 602 (7896),
223–228.

How to cite this article: Jung, C., Finazzi, A., Seong, H., Lee, D., Lee, S., Kim, B., Kang, G., & Shim, H.
(2023). An autonomous racing system: Design, implementation, and analysis; team KAIST at the IAC. Field
Robotics, 3, 766–800.

Publisher’s Note: Field Robotics does not accept any legal responsibility for errors, omissions or claims and
does not provide any warranty, express or implied, with respect to information published in this article.

Field Robotics, June, 2023 · 3:766–800


