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Abstract: Autonomous underwater vehicles have become essential tools for the collection of
high-resolution bathymetric and geophysical data. An inertial navigation system, aided by a Doppler
velocity log and a surface-mounted ultrashort baseline acoustic positioning system, is generally ca-
pable of providing sufficient accuracy at conventional survey scales. However, the accuracy decreases
with depth, and the resulting relative positioning across different transects may not be sufficient to
resolve features of interest at fine scales. This work presents a method for accurate coregistration of
the position of adjacent transects. The approach is based on detecting and matching local features
in overlapping multibeam echosounder swaths. The navigational errors for the transects are taken to
be described by latent Gaussian processes, observed through these matches. The hyperparameters
of the Gaussian process are learned from the data themselves and do neither require tuning of
filter parameters nor intimate knowledge of the autonomous system or its sensor configuration.
The proposed method is robust to outliers by considering a non-Gaussian observation model. The
approach is demonstrated on a data set collected at the Arctic Mid-Ocean Ridge (AMOR). The
method can be used to construct high-resolution bathymetric models from repeated passes over
the same area or to accurately coregister other sensors such as cameras, subbottom profilers, and
magnetometers. The primary contribution of this work is the application of feature-based matching
of bathymetry with a robust Gaussian process.
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1. Introduction
Autonomous underwater vehicles (AUVs) are untethered sensor carrying platforms capable of
performing tasks without real-time interaction by an operator. AUVs have virtually replaced the
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deep-tow survey tools previously used for deep-water petroleum-industry applications (Campbell
et al., 2015). Moving the sensor carrying platform closer to the seabed increases the attainable
spatial resolution of the collected data significantly. Geomorphological studies of small-scale features
of interest, such as erosive processes, hydrothermal vents, and coral mounds, are, for example, not
resolved in sufficient detail by ship-mounted instruments (Huvenne et al., 2018). Operating in closer
proximity to the seabed also permits the use of instruments with stricter range requirements, such
as optical sensors. Images collected by AUVs have, for example, been used as ground truth for
high-resolution AUV bathymetry in order to provide semiquantitative assessments of manganese
nodule coverage (Peukert et al., 2018). As the spatial resolution of the collected data increases, the
navigational requirements for coregistering these data also becomes stricter.

It is preferable to use the instrument providing the highest spatial resolution and accuracy as a
navigational aid if possible. Camera-based navigation aiding has therefore been actively researched.
The use of feature detectors and structure from motion (SfM) together with simultaneous localization
and mapping (SLAM) algorithms can reset the navigational errors by detecting a loop closure
with previously visited areas. In practical applications, this can be carried out by planning self-
intersections in order to increase the chance of loop-closure (Johnson-Roberson et al., 2010). Camera-
based methods are most effective on AUVs with hovering capability, however, as they can move in
closer proximity and at a lower velocity without loss of controllability (Paull et al., 2014). Survey-
class AUVs are built to maximize the endurance of the vehicle and data acquisition at higher
altitudes, and are generally not capable of hovering near the seafloor. Underactuated AUVs may
struggle to maintain a fixed altitude setpoint in areas of rough topography, such as mid-ocean ridges.
The quality of camera images varies significantly with fluctuations in altitude, due to the attenuation
of light in water. For this reason, the performance of methods based around matching of images,
such as visual SLAM, may be inconsistent.

This work presents a method for relative coregistration of adjacent transects based on multibeam
echosounder data collected in near-seabed conditions onboard an underactuated AUV. The acoustic
data have a wider swath compared to optical imagery, and sufficient overlap is therefore easier to
attain. The chosen approach is feature-based, meaning that landmarks are found in each transect
independently and matched using local feature descriptors. Exactly as the name suggests, this
approach requires local variation in the bathymetry on a scale large enough to be resolved by
the acoustic measurement but still small enough to provide unique features on a reasonable scale.
Feature-based approaches for underwater localization has previously been investigated for side-scan
sonars (Aulinas et al., 2010; King et al., 2017; Nguyen et al., 2012), where the intensity of the
acoustic returns are used. Similarly, acoustic backscatter data from a multibeam echosounder has
been used to coregister multibeam echosounder transects with side-scan sonar transects (Shang
et al., 2019). For bathymetric sonar data, emphasis has been placed on featureless approaches in
combination with SLAM techniques due to the difficulty in defining features recognizable from
different directions (Roman and Singh, 2007). One example of this is bathymetric distributed
particle SLAM (BPSLAM), where the depth soundings are registered in a grid-map and fused
using an extended information filter (Barkby et al., 2011). Point cloud matching algorithms, such
as the iterated closest point algorithm (ICP), can be used to relate point clouds by transla-
tions and rotations—but can converge to local minima and yield suboptimal results (Besl and
McKay, 1992). However, ICP has successfully been used for a SLAM formulation, by extending
it in a probabilistic setting (Palomer et al., 2016). This extension is able to account for the
horizontal uncertainty being larger than the vertical and ignores featureless areas through a
subsampling heuristic. Bathymetry from multibeam sonars are collected line-by-line, and these
methods must consider subsets of the full transects in order to account for gradual navigational
drift.

The data in this work were collected in an area on the mid-ocean ridge where the volcanic and
tectonic activity provides a good basis for extracting salient bathymetric features (e.g., pillow lava
formations). The methodology is not intended as a general replacement for featureless approaches,
but is an attractive alternative or supplement in areas where such salient features are available.
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1.1. Underwater Vehicle Navigation
Global navigation satellite systems (GNSS) are not available underwater. State of the art inertial
navigation systems (INS) aided by a Doppler velocity log (DVL), which measures the velocity relative
to the seabed or surrounding water body, can enable operation for extended durations. The INS
typically fuses the measurements in a probabilistic state estimation filter, e.g., Kalman filter, using
models of the sensor noise characteristics, kinematics, and/or rigid-body kinetics. The best DVL-INS
systems can achieve an along-track drift of 0.1% of distance traveled when running in a straight line
with a DVL bottom lock, which is the worst-case scenario in terms of bias estimation (Hagen et al.,
2007). Ignoring installation misalignment, the horizontal drift is primarily caused by low-frequency
errors of the DVL and heading error (Hegrenaes et al., 2016). The induced position error by the
DVL is close to a magnitude larger than that of the accelerometers and gyroscopes for straight-line
trajectories (Jalving et al., 2003). There are numerous error sources for the DVL, of which many
scale with the velocity, thus worsening the performance in the main direction of travel. Examples
of this are absorption bias, terrain bias, sound of speed bias, side-lobes, beam angle, and clock
drift (Taudien and Bilén, 2017). Many of these are time-varying and dependent on external factors.
Acoustic positioning relative to a transponder with a known global position, such as an ultrashort
baseline (USBL) system mounted on a ship, may be used to bound the navigational drift over time
and estimate slow-varying systematic errors. Although this may reduce the uncertainty to the order
of meters, going beyond this generally requires auxiliary data sources or a bottom-mounted acoustic
positioning network unless operating at shallow depths. In the short term, micro delta position
aiding can provide auxiliary pseudovelocity measurements from small displacements as measured
by a synthetic aperture sonar or camera (Hagen et al., 2007). Bathymetric measurements can be
compared with a known map in terrain aided navigation (TAN) or with previously visited locations
using SLAM (Paull et al., 2014).

1.2. Gaussian Processes
A Gaussian process is a generalization of the Gaussian probability distribution, describing random
variables, to a stochastic process which describes the properties of functions (Rasmussen and
Williams, 2006). The function values of a GP have a joint Gaussian distribution. A GP is completely
specified by its mean function (m) and covariance kernel (κ). The mean is often taken to be zero.
This does not imply that the mean of the posterior process is confined to be zero, however (i.e.,
when conditioned on observations).

f(x) ∼ GP(m(x), κ(x,x′)). (1)

A valid covariance matrix is symmetric and positive semidefinite. The covariance of a Gaussian
process is for this reason typically specified through a kernel function, which can ensure that these
properties are present.

Cov {f(x), f(x′)} = κ(x,x′). (2)

Many possible choices exist for the kernel; linear regression, splines, and Kalman filters are all
examples of GPs with particular kernels (Duvenaud, 2014).

The posterior of a Gaussian process with a Gaussian likelihood function (i.e., observation model)
can be exactly inferred in closed form. This incurs a computational complexity on the order of O(n3)
and memory requirements of O(n2). Exact inference therefore quickly becomes untractable for larger
datasets, and various approximations have been proposed in order to improve its computational
characteristics (Liu et al., 2020). In this work, sparse variational GPs are used, where the posterior
distribution of the full GP is approximated using a low-rank representation through a set of inducing
inputs. The placement of these inducing inputs and kernel hyperparameters are determined through
variational optimization by maximizing a lower bound to the true log marginal likelihood (Titsias,
2009). This lower bound can be optimized using stochastic variational inference (SVI), where the
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variational objective is updated based on noisy gradient estimates from subsamples of the full data
set (i.e., batches of observations) (Hoffman et al., 2013). The variational inference can also be
efficiently used to approximate the posterior of models with non-Gaussian likelihoods (Hensman
et al., 2013), which is also exploited in this work in order to be robust to outliers.

Linear Coregionalization
Originally developed in the context of geostatistics under the name cokriging, the linear model of
coregionalization (LMC) is an approach to multivariate modeling (Álvarez et al., 2012). The LMC
models the outputs as a linear combination of several independent latent functions. These can be
modeled as Gaussian processes g(x) ∈ RL, which are mixed by a matrix W ∈ RP×L to form the
outputs f(x) ∈ RP ,

f(x) = Wg(x). (3)

When applied to a sparse Gaussian process, the inducing variables can be defined in the latent
space, with the mean and variance projected through the mixing matrix in order to form the outputs.
The mean and variance of the outputs are then given by the following equations (van der Wilk et al.,
2020).

µf = Wµg and Σf = WΣgW
T . (4)

Here, the latent covariance matrix Σg is taken to be diagonal since the latent functions are considered
independent.

1.3. Preliminaries
Matrices are written in bold capital letters and vectors are written in bold lower case letters. The
short-hand notation ca and sa is used for cosines and sines with respect to the specified angle, a. A
variable in the Euclidean space with dimension n is denoted Rn, while matrices of dimension n×m
are denoted Rn×m. Superscript in curly brackets denotes the reference frame to which a given vector
is expressed. For example, p{n} is a position in the north-east-down (NED) frame. The reference
frames used are NED (n) and BODY (b). A rotation matrix Rb

a ∈ SO(3) between reference frames
uses a subscript for the frame transformed from, and superscript for the frame transformed to. The
following notation is used for rotations about the principal axes:

Rx,φ1 0 0
0 cφ −sφ
0 sφ cφ


Ry,θ cθ 0 sθ

0 1 0
−sθ 0 cθ


Rz,ψcψ −sψ 0

sψ cψ 0
0 0 1

 .
The transformation from BODY to NED is denoted Rn

b (Θ) = Rz,ψRy,θRx,φ, where Θ =
[φ, θ, ψ]T is the Euler angle parametrization following the zyx convention.

The skew-symmetric matrix S(λ) ∈ SS(3) denotes the vector cross product operator defined as
follows:

S(λ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 , λ =

λ1
λ2
λ3

 . (5)

2. Methods
This section outlines the methods used in order to detect local features in the multibeam echosounder
data, and to find possible matches between transects. These are subsequently taken to be observa-
tions of latent Gaussian processes modeling the relative error as functions correlated in time. This
enables the errors to be estimated while enforcing a smoothness constraint on the possible solutions.
In these transects, approximately 200m in length, there is enough within-transect variation to make
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Figure 1. Operational area in which the dataset was collected, at depth of about 2350m. The smaller map on
the lower left shows an overview in which the Loki’s Castle hydrothermal vent site is visible. The interval between
the depth contour lines is 5m.

a global matching impractical. While it is possible to mitigate this by subdividing into smaller
patches, selecting appropriate patch sizes and enforcing smoothness or consistency between them
can be challenging. Additionally, nonparametric methods such as Gaussian processes can find the
error model from the data, which may otherwise be difficult to determine.

2.1. Experimental Setup and Dataset
The dataset used in this work was collected by a Kongsberg Hugin 1000 AUV during an expedition
to the Atlantic Mid-Ocean ridge (Ludvigsen et al., 2016). Survey lines were planned along a shelf on
the northeastern flank of the Loki’s Castle hydrothermal vent site. Here, near-seabed transects were
planned in alternating directions at altitudes between 6.5 to 15 m. Sending an underactuated AUV
in close proximity to the seabed in an area of high bathymetric relief such as this is not without
its risks. The forward facing sonar used for collision avoidance and terrain tracking was mounted
in a vertical fan, and provides little predictive information while turning. The AUV was therefore
instructed to gain altitude at the ends of the transects before making a turn. A map of the eight
transects and surrounding bathymetry is shown in Figure 1.

The AUV was equipped with a navigation-grade Honeywell HG9900 IMU, Teledyne RDI WHN
300 kHz DVL, and was aided by a ship-mounted Kongsberg HiPAP USBL 502 USBL system.
The data were collected using a Kongsberg EM2040 multibeam echosounder, with 400 beams at
a center frequency of 400 kHz. This sonar is capable of of dynamic near-field focusing, in order
to correct for nonoptimal beam-forming in its near-field regime, such as during near-seabed data
collection (Lurton, 2002). The navigation data used in this work were first post-processed by
NavLab, which performs offline smoothing based on an Error-State Kalman Filter (ESKF) and
a Rauch-Tung-Striebel (RTS) smoother implementation (Gade, 2005; Willumsen and Hegrenæs,
2009). The smoothing ensures that the nominal navigation estimates are free from discontinuities
due to acoustic position updates. This is important, as discontinuities violate the smoothness prior
of the Gaussian process.

2.2. Multibeam Measurements
A multibeam sonar obtains depth measurements by transmitting a fan-shaped acoustic pulse,
reflected by the seabed, and later measured by a transceiver sensitive to acoustic signals orthogonal
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to the transmit pulse. The product of both the transmit and receive characteristics forms a
directional measurement most sensitive to returns along a beam, or main lobe. Time of flight and
digital beam-steering is applied in order to record a set of depth soundings along the fan-shaped
transmit pulse. The measured scalar range (r), known bearing (α), and elevation (β), can be used
to compute the relative displacement of a sounding in the north-east-down (NED) frame, r{n}. This
can be added to the vehicle position in the same frame p{n}V to obtain the absolute position of the
sounding p{n}S :

p
{n}
S = p

{n}
V + r{n}

= p
{n}
V +Rn

b (Θ)
[
p
{b}
M +Rz,αRy,β [0, 0, r]T

]
.

(6)

Here, the measured range is rotated and translated to the body-fixed vehicle frame about the z-y
axes according to the bearing, elevation, and multibeam lever arm (p{b}M ). This is subsequently
related to the NED frame according to the vehicle attitude (Euler angle representation, Θ).
Equation 6 assumes that ray-bending due to a changing sound-velocity profile has been accounted
for.

An approximate measurement covariance can be derived through a first order linear approxi-
mation. Assuming that the lever arm is known and fixed, the stochastic variables are the vehicle
position, vehicle attitude, the direction of the depth sounding, and the range of the depth sounding.
Zero-mean perturbations are added in the local beam frame in order to represent the uncertainty
in the beam direction (e.g., beam footprint, beam-forming fluctuation):

p
{n}
S = p

{n}
V +Rn

b (Θ)
[
p
{b}
M +Rz,αRy,βRy,δ2Rx,δ1 [0, 0, r]T

]
. (7)

The Jacobian, Jz, for the variables z = [φ, θ, ψ, δ1, δ2, r] can be used to approximate the
propagated uncertainty as follows:

Cov
{
p
{n}
S

}
≈ Cov

{
p
{n}
V

}
+ JzΣzJ

T
z . (8)

The covariance matrix Σz is a diagonal matrix containing the variances of the variables. In
this work, the variances of the Euler angles are taken from the post-processed navigation, and the
variance in the range is computed from the quality factor reported by the multibeam echosounder.
The uncertainty in the direction is harder to quantify, and is therefore set to the −3 dB beam-width
of the echosounder. The above has previously been used to derive the approximate propagated
uncertainty of an ultrashort baseline position measurement (Sture et al., 2020).

2.3. Feature Extraction and Matching
This section describes the process of computing key points and features from the bathymetric
measurements. The transects are first gridded to equidistant grids, such that each pixel has a square
footprint in meters. The scaling does not need to be equal across the transects. The image grids are
defined by affine transformations (A) relating the north-east world coordinates (p{n}n , p{n}e ) to the
image coordinates (u, v). This relationship is shown below for a single sonar point:

[
u
v

]
= A

p{n}n

p
{n}
e

1

 =
[
acθ −asθ tn
asθ acθ te

]p{n}n

p
{n}
e

1

 . (9)

Here, tn and te are translations along the x-y axes, a is a scaling factor, and θ the orientation.
The affine transformation is found by minimizing the reprojection error using RANSAC followed by
a Levenberg-Marquardt refinement step, implemented in the OpenCV library (Bradski, 2000). This
is done in order to obtain an image grid which is aligned with the primary survey direction. It is also
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Figure 2. Results from feature-based matching on a subset of two transects over the same area at different
altitudes. The images were constructed through Delaunay triangulation and linear interpolation to the grid defined
by the affine transformation in Equation 9.

possible to simply use a north-east oriented grid with sufficiently high resolution, but will consist of
larger areas with no data compared to the oriented grid. Once the affine transformation has been
defined, the depth values are linearly interpolated to the grid from the scattered multibeam points
using a Delaunay triangulation.

Scale-invariant feature transform (SIFT) is used as the feature descriptor in this work. Other
image-based feature descriptors, such as ORB and BRISK were attempted, but had a tendency to
cluster around areas with sharp edges, due to for example interpolation errors or acoustic artifacts.
SIFT uses gradient magnitudes and orientations computed for windows surrounding the key point
as its feature descriptor. The SIFT key points were matched using a k-nearest neighbor search in
the SIFT feature space. A threshold of 0.8 on the ratio between the feature distance (L1 norm) to
the closest and second closest neighbor was used to accept matches (Lowe, 2004). Figure 2 shows
an example of matches between two different transects. Note that the scale differs between the
transects, but is correctly detected by SIFT due to its scale invariance. Scale invariance is not
strictly necessary, as the true scale of the measurements is known, but enables reusing the same
features against all transects without oversampling to the same resolution. The feature descriptor
should also be somewhat robust to small affine distortions, in order to account for a biased body-
fixed velocity. The SIFT algorithm attains its invariance to rotations by relating the descriptor
orientations to the dominant orientation of local image gradients. The original SIFT algorithm
used 36 bins, each covering a 10◦ sector, to determine the dominant orientation. Since the data
were collected by an AUV equipped with a north-seeking gyroscope, with an estimated standard
deviation of 0.005◦ from NavLab, the orientation of the data is fairly certain. For this reason, the
number of mismatches was reduced by relating the local image descriptors to the same heading θ
(i.e., north).

2.4. Navigation Residual Error Estimation
The goal in this section is to take the matches found and estimate the time-variable errors in position
between adjacent transects. The post-processed navigation solution is used as a prior navigation

Field Robotics, April, 2023 · 3:544–559



Feature-based bathymetric matching of autonomous underwater vehicle transects using robust Gaussian processes · 551

estimate, and refined using the multibeam matches as auxiliary observations. First, an expression
for a multibeam measurement in terms of a true position and a position error will be derived.
This is subsequently used to derive the measurement equation for a match between two transects.
The following assumes that the primary error sources are the position of the vehicle and heading
error.

Continuing from Equation 6, the error states can be added as follows. The frame notation is
omitted from this point for brevity, as all variables are in the north-east-down frame. The variables
δpV and Rz,δψ represent the error induced by position and heading offsets, respectively:

pS + δpS = pV + δpV +Rz,δψr. (10)

If we assume that the deviations in heading are modest, we can apply the following small-angle
approximation in order to maintain a linear expression. For sine and cosine, this exceeds a 1%
relative angular error at about 8◦ and 14◦, respectively:

Rz,δψ =

cδψ −sδψ 0
sδψ cδψ 0
0 0 1

 ≈
 1 −δψ 0
δψ 1 0
0 0 1

 = I3 + S
(

[0, 0, δψ]T
)
. (11)

The expressions for the true position and position error can be split up by separating the small-
angle approximation into diagonal and skew-symmetric parts. The matrix S(λ) was defined in
Equation 5.

p+ δp =
p︷ ︸︸ ︷

pV + r+

δp︷ ︸︸ ︷
δpV + S

(
[0, 0, δψ]T

)
r . (12)

The goal is to estimate the position error, δp, based on matches between key points from the
multibeam measurements. We can observe these errors indirectly by taking the difference between
the estimated position for key point i and j.

zi,j = (pi + δpi)− (pj + δpj) . (13)

Since the true position of the depth measurement is free of errors, they are equal pi = pj . This
leads to the following observation of the residual errors:

zi,j = δpi − δpj =

δpV,i +

−δψire,iδψirn,i
0

−
δpV,j +

−δψjre,jδψjrn,j
0

 . (14)

Here, the range-measurement vectors, r = [rn, re, rd]T , are expanded into their scalar components.
If the error states are assembled in a vector, the measurement can be described as a linear
combination of errors in position and heading. The error in depth is not modeled, as it has a
negligible drift within the same dive and provides no valuable information about the other states.

δx = [δpV,n,i, δpV,n,j , δpV,e,i, δpV,e,j , δψi, δψj ]T , (15)

Wi,j =
[
1 −1 0 0 −re,i re,j
0 0 1 −1 rn,i −rn,j

]
, (16)

zi,j = Wi,jδx. (17)

The mixing matrix Wi,j relates two matches, each with three underlying latent variables, to two
observations; the deviation in north and east between the matches. If more than two transects
observe the same key point, they can also be added to the mixing matrix. When a match is
established from a key point to multiple transects, matches between all those transects can also
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be inferred. In other words, if transect A has a match with transect B and C individually, this also
means that a match between B and C can be inferred. In the case that a match already exists
between B and C, the Mahalanobis distance of the propagated uncertainty from Equation 8 is used
to select the most likely match. For the case of two observations per pair of transects and three
latent states per transect, the mixing matrix has the following dimensions with nt denoting the
number of transects.

W ∈ RP×L, L = 3nt, P = nt!
(nt − 2)! . (18)

The objective is to estimate the latent error processes as functions of time per transect, while
accounting for the presence of measurement noise and possible outliers. If the latent functions are
sufficiently smooth, a Gaussian process prior can be applied. Due to the small-angle approximation,
the output processes can be modeled by linear coregionalization with the mixing matrix above.

The covariance of the latent functions is described by a kernel function, which must be selected.
The actual movement of the vehicle is assumed to have continuous derivatives in both position and
velocity due to inertia. As noted in Section 1.1, the horizontal drift of a DVL-aided INS is primarily
determined by time-varying errors in the body fixed velocity measurements. The assumption is
therefore made that the residual errors after the Kalman smoothing are also dominated by biases in
the body-fixed velocity. For this reason, the Matérn 5/2 kernel is selected, as a Gaussian process prior
with this kernel ensures that the function is at least twice differentiable (Stein, 1999). Intuitively,
this kernel strikes a good balance in smoothness of the prior, but other stationary isometric kernels
were also tested with similar results. The Matérn 5/2 kernel is given by the following, where d is
the Euclidean distance metric, l is a length-scale parameter scaling the input distance, and σ is the
output variance scale parameter (Rasmussen and Williams, 2006). In this work, the kernel is applied
to a scalar difference of time within each transect, d = |∆t|.

κ5/2(d) = σ2
(

1 +
√

5d
l

+ 5d2

3l2

)
exp

(
−
√

5d
l

)
. (19)

In order to account for outliers in the observations, for example, due to mismatches, a Student-T
likelihood function is used. This is a heavy-tailed distribution, which describes values far away from
the mean as more likely compared to a Gaussian likelihood. It’s possible to first fit the observations
to a Gaussian process with a Student-T likelihood, reject outliers, and subsequently fit the inliers to
a Gaussian process with a Gaussian likelihood function (Martinez-Cantin et al., 2018). This provides
both robustness to outliers and a correct likelihood under the assumption that the inliers follows a
Gaussian distribution.

The scale parameter of the likelihood, the variance parameter of the Matern kernel, and placement
of the inducing inputs are optimized through stochastic gradient descent using the Adam method
(Kingma and Ba, 2015). The above was built on top on GPFlow, a framework for Gaussian process
inference in Tensorflow (Matthews et al., 2017; van der Wilk et al., 2020).

It is worth noting that the latent states could be modeled as one long sequence rather than
dividing into distinct transects. Splitting into distinct transects discards any correlation in time
between them. In other words, the end of the previous transect and start of next transect are
considered to be uncorrelated. There is a computational benefit in doing this, as each transect is
defined by its own set of inducing inputs rather than sharing an increasing number of inducing
inputs in order to support a larger input domain. Strategies for handling boundary conditions
between the partitions, such as adding pseudo-observations at the boundaries as an approximate
continuity condition can be considered in the future (Park and Apley, 2018).

3. Results
Eight distinct transects were processed using the described method. The latent processes estimated
for each transect are shown in Figure 3. These show the deviation in north, deviation in east,
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Figure 3. The estimated latent processes (δpV,n, δpV,e , δψ) for each trajectory. The shaded regions are the
97.5th percentiles of the processes (95% confidence interval). The x axes are the times from start to finish for
each transect and does not correspond to the same points in time.

Figure 4. Comparison of the match locations from a spatial subset of the transects. Matches are plotted as
points colored according to the transect, with a line connecting them to the mean of that cluster of matches
(in black). The plot on the right contains the same matches, where the outliers have been removed with the
Student-t likelihood, and the inliers subsequently fitted to a Gaussian process with a Gaussian likelihood function.

and heading deviation plotted against the relative time since the beginning of each transect. The
shaded areas are the 97.5th percentile of the latent processes. The percentiles increase towards
the start and end of the transects, a natural consequence of there being fewer observations there.
This can be used to determine how trustworthy the estimates are. The error in position attributed
to heading deviation is modest, which is expected given the accuracy of the ring-laser gyroscope.
Figure 4 depicts key points and matches for a spatial subset of the full transects. The key points
are connected to the mean of the matches by a line. The left figure contains the matches prior to
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Figure 5. Histograms of residuals with respect to the mean in each cluster of matches, after subtracting the
estimated error processes, for residuals below 1m. Four sets of residuals are compared: (a) uncorrected, (b) GP
with a Gaussian likelihood, (c) GP Student-t with likelihood, and (d) GP with Student-t likelihood for outlier
rejection followed by a GP with a Gaussian likelihood.

any corrections, and the right figure contains corrected matches. The matches are corrected by first
rejecting outliers, and then fitting a Gaussian process to the inliers.

To investigate the effect of a Gaussian process with the Student-t likelihood, the residual distances
to the mean of each cluster of matches are compared after subtracting the errors estimated by the
Gaussian process. Histograms for these residual errors below 1 m are shown in Figure 5. Four cases
are compared: (a) uncorrected observations, (b) GP with Gaussian likelihood, (c) GP with Student-t
likelihood, and (d) GP with Gaussian likelihood on inliers, after determining outliers using the result
from (c). The GP with the Gaussian likelihood is able to reduce the residuals significantly, but is
clearly affected by outliers when compared to the correction with a Student-t likelihood. The mean
absolute error compared for only the matches defined as inliers yields the following results for
the four cases; ea = 42.9 cm, eb = 13.8 cm, ec = 6.63 cm, and ed = 6.65 cm. The residuals after
correcting Gaussian Student-t likelihood with outliers are nearly identical to a Gaussian likelihood
with outliers removed. Observations exceeding a threshold placed on the 97.5th percentile were taken
to be outliers. It would seem that the approach outlined by Martinez-Cantin et al. (2018) does not
reduce the residuals in this case. It is possible that this may be caused by some mild outliers that
remain.

Figure 6 and Figure 7 shows the absolute errors along the z axis between a reference transect
and two other transects, respectively. A clear improvement in the overall alignment is demonstrated.
The error visible in the rightmost part of Figure 6 is due to a constant offset in depth between the
transects, possibly due to the sharp turn in the reference transect. The local features themselves
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Figure 6. Absolute error in z values between a reference transect (3) and transect 5. The top and bottom figures
are the errors before and after correction, respectively. The outline is the extent of the data from the reference
trajectory. These transects pass in opposite directions and across.

Figure 7. Absolute error in z values between a reference transect (3) and transect 6. The top and bottom figures
are the errors before and after correction, respectively. The outline is the extent of the data from the reference
trajectory. These transects follow the same path at different altitudes.

seem to be well matched, although the reference transect has lower resolution in the outer part of
the turn. In Figure 7, small errors due to either heave or pitch are plainly visible as stripes spanning
the entire swath. The leftmost part contains some constant offset error in the reference transect,
possibly due to the turn similar to the previous figure.

Finally, a combination of corrected data for all eight transects in the same area is provided
as a final illustration in Figure 8b. The result is a high-density point cloud, where slight shading
has been applied to accentuate the features. No smoothing has been performed on the depth data
themselves, and for this reason, the gradient estimates are in some places poor, which are visible
as apparent holes.
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(a) Two uncorrected transects.

(b) Mesh of merged data for eight corrected transects for a subset of the full transects. The combined data
consist of approximately 500 000 points. No smoothing has been applied, but slight shading has been added to
accentuate smaller features.

Figure 8. Comparison of multibeam echosounder point clouds for uncorrected and corrected transects in a
selected area. The extent of the area is approximately 18.5 by 15.5 meters.

3.1. Future Work
The presented method relies on local features, where the majority are inliers, in order to resolve
the navigational offset between the transects. Although the Student-T process makes the method
robust to outliers, the quality of the results depend on the features extracted. A feature extraction
method capable of operating directly on the soundings, or point cloud, rather than interpolating
to a regular grid is desirable. In this work, transects with high-density soundings and few holes
were investigated, and thus an approach based on conventional image processing was possible.
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Given irregularly spaced data, more holes, or larger holes, other means of detecting salient features
needs to be investigated. Ideally, this method should directly be capable of accounting for the
sounding uncertainty. SIFT-like shape descriptors has been generalized to point clouds (Jiang et al.,
2018). Feature-based matching of lidar scans for self-driving vehicles has also been investigated,
for example by making neural networks learn which features are robust for matching (Lu et al.,
2019).

The latent error residuals were estimated without considering the effect of the velocity. It may
be possible to include prior knowledge regarding the rate of change of the latent process, since
the standard deviation of the velocity measurements is known to vary according to the velocity. A
strategy may also involve using the outlined method to reject outliers, and then use the matches in
a conventional extended Kalman filter or error state filter formulation, where all observations are
assumed to be inliers.

4. Conclusion
A method for aligning multiple autonomous underwater vehicle transects has been presented. The
approach is data-driven, and does not require intimate knowledge of the sensors and target system,
and finds most parameters through optimization. The approach is robust to outliers by rejecting
unlikely matches based on a Student-T process. The threshold at which to reject matches depends
on the quality of the collected data, and is specified by the user. The method is validated on a
dataset containing varying altitudes, alternating directions, and orientations and has been found to
significantly improve the fine-alignment of the multibeam echosounder data.
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