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Abstract: Swarm robotics systems have the potential to transform warfighting in urban envi-
ronments but until now have not seen large-scale field testing. We present the Rapid Integration
Swarming Ecosystem (rise), a platform for future multi-agent research and deployment. rise enables
rapid integration of third-party swarm tactics and behaviors, which was demonstrated using both
physical and simulated swarms. Our physical testbed is composed of more than 250 networked
heterogeneous agents and has been extensively tested in mock warfare scenarios at five urban
combat training ranges. rise implements live, virtual, constructive simulation capabilities to allow
the use of both virtual and physical agents simultaneously, while our “fluid fidelity” simulation
enables adaptive scaling between low and high fidelity simulation levels based on dynamic runtime
requirements. Both virtual and physical agents are controlled with a unified gesture-based interface
that enables a greater than 150:1 agent-to-operator ratio. Through this interface, we enable efficient
swarm-based mission execution. rise translates mission needs to robot actuation with rapid tactic
integration, a reliable testbed, and efficient operation.

Keywords: human robot interaction, swarm robotics, tactics

1. Introduction
Coordinated, collaborative robotic swarms have the potential to offer transformational societal
impacts. For example, swarms are expected to significantly improve disaster response activities such
as search and rescue and damage assessment, in addition to providing a communication network and
even delivering supplies. Swarming may also benefit industries like agriculture and farming through
autonomous operations that reduce cost, save time, and improve precision (Albani, IJsselmuiden,
Haken, & Trianni, 2017). In our work, we focus on the military application of large-scale swarms
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through the Defense Advanced Research Projects Agency (DARPA) OFFensive Swarm-Enabled
Tactics (OFFSET) program. The employment of a robotic swarm increases a military unit’s span of
control from 1:1 (Soldier:Platform) to 1:150+. In this way, a swarm may increase mission effectiveness
by several orders of magnitude. Swarming is considered a nonlinear dispersed (NLD) operation with a
RAND report by S. J. A. Edwards (2005) positing that swarming is the most aggressive form of NLD
and that it will play a central role in future military operations when heavy forces are unavailable.

Advances in low-cost robotics hardware, network solutions, sensing algorithms, and artificial
intelligence help bring practical large scale robot swarms closer to reality (Chung et al., 2016). These
advancements are typically fragmented across unique and isolated problem domains. However, robot
swarming is interdisciplinary, spanning several interrelated fields. Autonomy, distributed perception,
logistics, mobile ad hoc networking, and human-swarm teaming (Chung et al., 2016; S. J. Edwards,
2000) are example domains where advances in one area may have positive compounding effects in
another. Consequently, to understand the impact of new capabilities on swarm mission outcomes,
one must integrate and evaluate their technologies into a swarming ecosystem. This in itself
is problematic as few holistic robotic swarming systems exist for large scale swarm research,
development, and deployment, especially those that have been fielded and proven to operate with
a sufficient technical readiness. Our technology, the Rapid Integration Swarm Ecosystem (rise), is
one such system that addresses this problem.

More importantly, we address the question: can a multi-robot ecosystem designed for rapid
integration and one-to-many control can be fielded, where a single operator commands 150+
autonomous vehicles in tactical maneuvers? Large scale swarms have yet to be deployed outside
of simulation, and it remains unclear what software and hardware architecture can support single
operator command at this scale. Earlier efforts in this direction have been made by (Chung et al.,
2016) and (Clark, Usbeck, Diller, & Schantz, 2021), though they are limited in either scope or scale.
For the first time, we demonstrate with rise that large scale swarm control for offensive tactical
operations is possible. Further, in this work we discuss our architecture design choices and the
requirements that informed our design, which practitioners can use to guide their own work.

In general, a swarming ecosystem requires a specialized command and control (C2) interface
for swarm control. When we designed rise, it was our goal that our C2 system would enable
a single operator to control hundreds of platforms by specifying only high level commands, and
enable the operator to build tactics without having to program robot behaviors. To this end, we
were inspired by playbook frameworks and decided to leverage the hierarchical swarm framework of
Tactics, Primitives, and Algorithms that were established for the DARPA OFFSET program shown
in Figure 1. This framework is similar to the work of Giles and Giammarco (2017), and both drew
inspiration from swarm experiments at the Naval Postgraduate School.

The main contribution of this work is rise,1 an end-to-end robot swarming ecosystem that
enables rapid development, research, testing, and deployment of large scale heterogeneous robot
swarm technologies. The rise contribution further comprises as follows.

1. A human-swarm team interface that enables a single operator to command large scale swarms.
2. A platform for swarm tactic development and execution that bridges the operator to robots

and enables practitioners unfamiliar with robotics software to author tactics.
3. A lightweight, mobile ad hoc network solution that enables reliable communication at scale

between hundreds of agents and other devices.

In addition to the rise software, we customized, configured, and maintained a swarm testbed of
over 250 physical, small, unmanned air and ground vehicles. We demonstrated rise on this swarm
testbed at five military ranges over the last four years. The most recent event in November 2021

1 rise software is maintained by Northrop Grumman Corporation and the US Government. Contact Erin Cherry
(erin.cherry@ngc.com) for more information on procedures for gaining access.
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Figure 1. The DARPA OFFSET view on how warfighting needs may be hierarchically decomposed into
algorithms that interact with robot hardware. A human operator translates mission objectives into tactical swarm
maneuvers that in turn decompose into robot primitives utilizing algorithms. Each layer is present in RISE via
a unique software architecture designed to facilitate rapid development and integration. Image adopted from
(DARPA, 2017).

Figure 2. Large-scale unmanned aerial vehicle (UAV) launch for field experiment FX-6 at Ft. Campbell, TN.

(Figure 2) was the culminating OFFSET swarm field experiment, where we demonstrated one user
controlling 174 platforms (84 air and 90 ground).

2. Related Work
In this section, we discuss existing work in several fields relevant to rise. Where possible, we describe
the major papers in those fields. Throughout this section, we also refer the curious reader to existing
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surveys for further information. We also note that swarms consist of many intelligent “agents,”
individual entities which are capable of autonomous sensing, decision-making, and actuation (Van
der Hoek & Wooldridge, 2008). We use the words “agent” or “swarm agent” to refer to the robotic
hardware platform together with the software which runs upon it. Further, we sometimes make a
distinction between simulated agents and physical agents, where the former uses simulated hardware
and the latter uses real hardware.

2.1. Multi-Robot Systems
In the literature, “swarm robotics” typically refers to homogeneous systems that have a biological
inspiration and which communicate using pheromones or other nonswitched networking methods.
While rise is a “swarming ecosystem,” it is also more accurately a “multi-robot system” (MRS)
or more generally a “multi-agent system” (MAS). This distinction is highlighted by (Rizk, Awad,
& Tunstel, 2019), who perform an extensive and high-quality survey of multi-agent and multi-
robot systems. Additional surveys of interest include Dorigo, Theraulaz, and Trianni (2021), which
focuses on homogeneous swarm robotics, and Schranz, Umlauft, Sende, and Elmenreich (2020),
which provides a high-level overview of swarm and multi-robot projects. Rather than reiterate the
results of these surveys here, we will only highlight especially relevant works. Note that while we
refer to rise as both a “swarm robotics” and a “multi-robot” systems in this paper, we limit our
discussion to that of multi-robot systems, since they are most similar to rise.

In particular, we first focus on multi-robot systems which function as testbeds for further research.
A survey of multi-robot testbeds is given by Jiménez-González, Martinez-de Dios, and Ollero (2013),
although several advances have occurred since its publication. Significant early testbeds included
the Mobile Emulab (D. Johnson et al., 2006), HoTDeC (Stubbs et al., 2006), and raven (How,
Behihke, Frank, Dale, & Vian, 2008). The Mobile Emulab and HoTDeC were characterized by
homogeneous robotic platforms and constrained operating environments, only capable of operation
in a lab. Both are designed to provide access to remote users who may control the systems’ operations
via the internet. In both testbeds, robots are extremely simple with limited localization or sensing
capabilities of their own, instead relying on centralized camera systems. Importantly, neither study
develops abstract swarm concepts such as tactics or primitives, instead providing only a basic
computing platform on each agent without a swarm software framework.

Of these early multi-robot testbeds, perhaps the most similar to rise is raven, a heterogeneous
air and ground swarm testbed designed for experimentation with a variety of multi-robot scenarios.
While the software architecture is similar to that of rise, raven is limited to ten vehicles and may
only be used in a lab with some external sensing apparatus. Additionally, raven’s C2 paradigm is
mostly focused on direct control of individual vehicles, whereas rise focuses on command of the
swarm as a whole to maximize the agent-to-operator ratio.

In Pickem, Lee, and Egerstedt (2015) and later in Pickem et al. (2017), the authors showcase
a multi-robot testbed created by their GRITSBot platforms. More recently, the “ARGroHBotS”
testbed was published by Ospina, Mojica-Nava, Jaimes, and Calderón (2021) and “Crazyswarm”
was published by Preiss, Honig, Sukhatme, and Ayanian (2017). Again, these testbeds are limited
to lab use and have no or limited command and control functionality.

The Swarmanoid project developed a heterogeneous swarm or multi-robot system consisting of
both unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) (Dorigo et al., 2013).
As with other projects, the Swarmanoid authors do not clearly define a framework for swarm tactics
and overall behavior, and do not clearly state how additional behaviors may be integrated with their
system. However, they provide an advanced multi-robot simulator, ARGoS, which remains in use
for multi-agent research to this day (Dorigo et al., 2013).

The COMRADE multi-robot system is an advanced multi-robot system intended for clearing
mines and explosive devices in conflict zones. COMRADE provides multi-robot search, data fusion,
task allocation, and a basic C2 interface, and is designed for real-world use (Dasgupta, Baca,
Guruprasad, Muñoz-Melendez, & Jumadinova, 2015). However, the authors do not expand on the
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concept of tactics or other abstractions for the design of new swarm behaviors; rather, the system
is single-purpose. Additionally, the C2 system is extremely rudimentary, providing only the barest
of controls to direct individual agents and apparently lacking the ability to manually command the
swarm as a whole by issuing new tasks for allocation.

The RUTA heterogeneous swarm (Abukhalil, Patil, Patel, & Sobh, 2016) is developed primarily
for research on dynamic task allocation. However, it takes a similar approach to robotic hardware
abstraction as rise, allowing for extreme heterogeneity. Some definition of the different layers of
software execution for swarm behaviors is provided, with RUTA’s “actions” being similar to rise’s
agent-level “primitives” or “algorithms” (Abukhalil et al., 2016). However, the swarm is small and
not designed for scale with only five robots. Additionally, the system primarily focuses on task
allocation and does not include any concepts related to C2.

More recently, Chamanbaz et al. (2017) developed a hardware and software package to enable
simple integration of robotic platforms into a multi-robot system. It consists of computing and
networking hardware which can be integrated with existing platforms, along with a software library
to enable creation of new behaviors using those platforms. This platform is tested on two separate
swarm systems. However, the authors do not differentiate between different layers of the behavior
stack (tactics, primitives, and algorithms) and do not consider any human-computer interaction
factors. In fact, the authors make no mention of any type of user interface or control.

A significant multi-robot system is presented by Chung et al. (2016), in which fifty UAVs are
simultaneously controlled by a team of two. This work may be thought of as a direct predecessor
of OFFSET with the same program manager, Dr. Timothy Chung, with similar goals of enabling
multi-robot systems to perform complex coordinated actions while under the control of a minimal
number of operators. This work is expanded upon by Davis, Chung, Clement, and Day (2018),
in which two of the UAV swarms created by Chung et al. (2016) battle for air dominance. rise
expands upon this work with a far greater number of agents, innovative new C2 concepts, a software
architecture designed for integration of new tactics and behaviors, the introduction of heterogeneity,
and more.

Recently, a number of tools which ease the development of multi-robot systems have been
created. One such tool is ROS2swarm, a hardware and package for the Robot Operating System 2
framework (ROS 2) that can be retrofitted to existing platforms. ROS2swarm provides multi-robot
programming capabilities using a similar breakdown of swarm software to our tactics, primitives,
and algorithms concept (Kaiser et al., 2022). However, ROS2swarm does not enable dynamic
transitions between tactics. In other words, the agents may only perform one tactic in a single
execution run without a complete reboot of the robot software. ROS2swarm also does not provide
any command and control capabilities, unlike rise. Additionally, ROS2swarm currently uses a
centralized network (access point-based) topology, while rise uses a decentralized topology. While
the ROS2swarm is tested with just six agents, we are quite certain that the ROS2swarm system is
actually incapable of supporting large numbers of agents (150+), given its use of ROS 2’s built-in
networking mechanism. rise replaces ROS 2’s default networking mechanism with a custom solution
for inter-agent communication. See Section 4.3 for further details on rise’s networking solutions.

An alternate platform, SwarmUS, is provided by Villemure et al. (2022), which includes both
a hardware retrofit board and a software package, similar to Kaiser et al. (2022). This provides
necessary services for a multi-robot system such as communication, coordination, and localization.
An Android-based C2 interface is also provided, but appears to be rudimentary and is not designed
for control of a large-scale swarm by a single operator. In fact, SwarmUS was tested on no more than
six robots, as opposed to rise’s hundreds (Villemure et al., 2022). Importantly though, SwarmUS
appears to focus primarily on hardware design, whereas rise primarily focuses on software design.
Thus the two are difficult to compare further.

rise is contemporaneous with “CCAST”, developed by our counterparts on the DARPA OFFSET
program (Clark et al., 2021). As CCAST and rise solve the same problems and are designed for
the same program and experiment scenarios, most of their capabilities are quite similar. However,
rise differs from CCAST in its use a decentralized mesh network for communication, as opposed
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to CCAST’s access point approach. Additionally, rise makes use of innovative common gesture
commands for easy cross-platform use on laptops, touchscreen devices, and virtual and augmented
reality, whereas CCAST uses a point-and-click virtual reality interface. CCAST shares the behavior
decomposition of tactics, primitives, and algorithms with rise.

2.2. Robotic Platforms
Since rise is a complex system of software which may be used with a variety of hardware platforms
(see Figure 25), we do not elaborate on prior hardware platforms used for swarm robotics or multi-
agent research. Surveys on this area may be found in the literature, such as the one by Schranz et
al. (2020) which lists a number of platforms.

2.3. Swarm Networking
Swarm robotics systems in the literature may be broadly divided between those which use biologi-
cally inspired “pheromone” systems, directional communications such as in Kornienko, Kornienko,
and Levi (2005), and nondirectional radio-based networks. We will focus here on undirected digital
radio-based networks, since we believe that the former methods are so different from our approach
as to be nearly incomparable.

Three types of radio network architecture are commonly used: central access points, local
wireless broadcasts, and mobile ad hoc networks (MANETs). In traditional wireless networks,
agents communicate only with fixed infrastructure (known as an access point). Direct agent-to-agent
communication is impossible. Instead, agents must first send data to the access point, which then
retransmits the data to the destination agent. By contrast, a MANET allows both traditional agent-
to-infrastructure communication and direct agent-to-agent communication (Hoebeke, Moerman,
Dhoedt, & Demeester, 2004).

A central access point approach is used by the CCAST system (Clark et al., 2021). The authors of
that study found that agent connection to the access point became a major concern because agents
were unable to communicate directly with their neighbors, thus increasing collision risk. For two
neighboring agents to communicate, each needed an active connection to the access point, something
not always possible in urban environments. This approach is also found in Stubbs et al. (2006) and
numerous other implementations.

Local wireless broadcast architectures are more common. While they often do not require a
central access point, these architectures typically do not support relaying of data, distinguishing
them from true “MANETs” by the definition in Hoebeke et al. (2004). In Konolige et al. (2006),
an agent-to-agent local wireless broadcast is used. A similar system is employed by Rubenstein,
Cornejo, and Nagpal (2014), where data is not relayed to agents beyond reception range of the
transmitting agent, and only “local” communication with nearby neighbors is possible. Similar
methods are implemented in Caprari and Siegwart (2005); Dorigo et al. (2013).

Cianci, Raemy, Pugh, and Martinoli (2007) implement a true MANET. Their approach makes use
of the ZigBee mesh protocol. ZigBee is also used to implement a MANET by Fernandes, Couceiro,
Portugal, Machado Santos, and Rocha (2015), Jevtić, Gazi, Andina, and Jamshidi (2010), and
Zahugi, Shabani, and Prasad (2012), among others. By far, the ZigBee system is the most popular
MANET implementation in the literature. A MANET solution by Rajant Corporation is also used
with success in an unmanned aerial vehicle swarm application by Engebråten, Nummedal, Gilbreath,
Yakimenko, and Glette (2019), and in a mine-exploration swarm in I. D. Miller et al. (2020).

2.4. Simulation
As with any robotic development, simulation is a critical tool, but especially so with multi-agent
and swarm systems. Simulations dealing with multiple agents vary widely in implementation, but
even more so in their ability to translate from simulation to actual hardware. A large majority
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of swarm simulations typically consist of custom-built simulation environments to do evaluation
on particular algorithms (Hamer & Ortega-Sanchez, 2010). While this is appropriate for those
particular evaluations, a setup of this nature would not suffice for a rapid integration swarming
ecosystem such as rise. Given this, we focused more on simulation environments that emphasize
one-to-one translation to hardware, such as Gazebo (Aguero et al., 2015). We leveraged lessons
learned and best practices of simulations of this nature and then focused on making the necessary
adjustments to maintain the real world translation while still reaching the necessary number of
simulated agents (250+ per the OFFSET program). In Section 9, we go into more detail of this
approach and additional acknowledgments of other relevant simulations.

2.5. Human-Swarm Interface
Human-swarm interaction specifically and human-robot interaction generally is an active area of
research that includes interface design, control, communications, autonomy, and human factors
such as situation awareness and cognition load, among others (Drew, 2021; Chen & Barnes, 2021;
Kolling, Walker, Chakraborty, Sycara, & Lewis, 2015; Hocraffer & Nam, 2017). However, in this
section, we focus on work that enables a one-to-many operator control over an offensive swarm,
beginning with command complexity and ending with user interface customization.

Command complexity draws parallels with computational complexity in that total effort is bound
by the number of decisions and actions an operator must take to complete a task (Lewis, Wang, &
Scerri, 2006). When robots work independently, effort grows linearly with the number of robots n an
operator must command, O(n). Conversely, tasks requiring careful coordination between robotics
may result in superlinear complexity O(> n). Lewis provides by way of example the coordination
of two unmanned vehicles pushing on the corners of a box, where the operator oscillates between
each robot to move and straighten the box.

Although command complexity enables practitioners to compare the bounded efficiency of
different command strategies, fan-out is another useful measure proposed by Olsen and Goodrich
(2003) that one uses to estimate how many homogeneous robots an operator can effectively operate
at one time. Fan-out is defined mathematically as (NF + IT )/(IT ), where neglect time NT is
the expected duration of time a robot can be ignored without degrading beyond a minimum
performance threshold, and interaction time IT is the duration of time required to interact with a
robot (Crandall, Goodrich, Olsen, & Nielsen, 2005). Intuitively, the more a robot can do without
requiring operator attention and the faster an operator can set up commands, the more total robots
an operator can command without falling below a required level of performance. Prior work has
shown an operator can command between eight and twelve robots simultaneously (H. Wang, Lewis,
Velagapudi, Scerri, & Sycara, 2009), depending on a variety of factors. This implies we must move
away from direct robot control toward a higher level of abstraction in order to support large scale
offensive swarming.

One solution is to increase swarm autonomy (Mi & Yang, 2013). Command complexities moving
toward order O(1) can be achieved in part through the use of planners (Lewis, 2013). Consider
that without path planners and obstacle avoidance, it has been found that operators are unable
to supervise more than a few UAVs (Cummings, Nehme, Crandall, & Mitchell, 2007). Delegating
certain tasks to an autonomy can further improve command complexity and fan-out. For example,
McLurkin et al. (2006) designed a swarm interface inspired by the poplar real-time strategy games
WarCraft and StarCraft. These games enable a player to control individual units, groups of units, or
an entire army with simple high level commands such as mine, build, and attack. By distributing a
single command to multiple robots, amortized interaction time can be significantly reduced and fan-
out improved. Similarly, command complexity becomes sublinear when the operator can command
multiple robots with only a single command when he or she is able to rely on the underlying
automation. Another example called Playbook (C. Miller, Pelican, & Goldman, 2000; Calhoun,
Ruff, Behymer, & Frost, 2018) provides operators with a library of play templates that the operator
can modify and which automation adapts to the situation. Playbook is analogous to a sports team’s
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playbook, where a leader selects a play that the team executes, and several studies have shown the
benefits of templated plays.

We adopt a similar approach to these delegation strategies. In rise, an operator controls the
swarm by using mission level tactic commands that appropriate resources and coordinate the actions
of multiple robots. An operator may combine tactics to form a course of action (COA) and modify
the plan in real time as the situation changes. During mission planning with human warfighters,
commanders communicate tactics through COA diagrams that include tactical control measures to
establish responsibility and constrain operations that prevent units from interfering with each other
(United States Army, 2015). This concept is easily extended to swarm command using a sketch
and gesture based interface to simulate the natural use of pen and paper. Hammond et al. (2010),
for example, developed a system for free-hand COA diagram sketch recognition with support for
military symbology, achieving high accuracy on 485 symbols.

One issue is that COA diagrams are drawn with standardized military symbology, such as those
defined by MIL-STD 2525D (United States Army, 2020). However, rise swarm tactics and control
measures are constantly evolving and for some time will remain unstandardized. For this reason,
practitioners who develop new tactics and control measures require rapid interface integration for
development, test, and deployment. This can be achieved through gesture customization using rapid
prototyping gesture recognizers (Taranta et al., 2017). In this way, we are able to expand our tactics
library without requiring direct interface developer support or cluttering the interface, all while
supporting a one-to-many low command complexity relationship.

3. Background
3.1. On the Decomposition of Warfighting Needs into Robot Actuation
We illustrate the hierarchical relationship between warfighting needs and robotics algorithms as
envisioned by DARPA’s OFFSET program in Figure 1. This decomposition leads to a multilevel
classification system that maps warfighting into operator, swarm, robot, and hardware component
objectives. Each level corresponds to a unique perspective, world view, and development approach.
Although we did not intentionally design rise’s architecture to reflect this hierarchy, it nevertheless
organically evolved into a distributed system comprising four components that directly correlate to
the hierarchy: a user interface for translating warfighting needs into tactics, a system for tactics
development, a platform composition of primitives, and a framework for algorithm design and
integration. In further detail, top-down.

• Warfighting Needs. Based on mission objectives, warfighters generate mission plans that
evolve through time and drive swarm command. One must therefore translate mission plans into
swarm tactics that satisfy mission objectives. However, one must maintain situation awareness
(SA) in order to adapt the mission plan to new information. This requires that the swarm
reports relevant information to the command and control (C2) team. Our C2 interface for
mission planning, tactics execution, and SA is described in Section 5.

• Tactics. Tactics encompass the ordered arrangement and maneuver of forces on or near the
battlefield (LeFavor, 2020). Whereas primitives are robot-centric, tactics herein are swarm-
centric, being software that organizes and employs agents to achieve mission level objectives.
An “overhead scan” is an example tactic that partitions an aerial space into regions, each
of which requires reconnaissance. Overhead scan may then utilize multiple agents by issuing
multiple move-to primitives to complete its objective. Like primitives, one may construct tactics
hierarchically. A “breach” tactic may incorporate tactics for persistent surveillance and building
entry, followed by exploration and securement. In rise, we enable tactics development through
a python-based software application called PyC2 (see Section 6).

• Primitives. Primitives are software components that utilize algorithms to achieve robot-centric
objectives. One example primitive is the “move-to" behavior, where an agent travels to a specific
battlefield location while avoiding threats. Move-to employs algorithms for localization, path
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planning, and obstacle avoidance. In parallel, a second continuously running primitive enables
the agent to maintain situation awareness via sensor input analysis and communication with
other agents. Although move-to works to avoid threats, a third primitive may recognize an
immediate inescapable danger, preempt move-to, and engage the threat. Primitives are there-
fore compositional and hierarchical. Our interface for primitive development and integration is
described in Section 7.

• Algorithms. Algorithms are the software components that interface with hardware by ana-
lyzing sensor input and driving actuator output. Example algorithms include computer vision
techniques like YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) that recognize objects
embedded in video frame data, localization techniques that perform dead-reckoning from
continuous inertial measurement unit (IMU) data (Brossard, Barrau, & Bonnabel, 2020),
and actuation of motor control systems from velocity commands. Single algorithms enable
platform capabilities; they are also known as skills. Our interface for algorithm development
and integration is described in Section 8.

3.2. The Human-Swarm Team
Over the course of five large-scale field experiments and several intermediate integration tests, we
self organized our human team into five disparate roles that we refer to as the swarm commander,
swarm operator, swarm health engineer, field operations officer, and field support personnel. Each
role not only accounts for one aspect of running a successful mission, but also correlates with the
amount of responsibility we found one person could handle without overloading the individual. We
envision that these roles will further evolve as robotics technologies, swarming, and rise continue to
mature, and that they can be adopted to a variety of organizational structures. The roles in detail
are as follows.

• Swarm Commander. A commander leads the C2 team by defining mission objectives,
converting those objectives into a mission plan, modifying the plan as the mission progresses,
and coordinating with C2 team members. A commander interacts with C2 software to maintain
situation awareness but does not directly command the swarm. In this way, the swarm
commander’s interaction with C2 software correlates with how a platoon or company leader
would use the tool.

• Swarm Operator. An operator interfaces with the swarm by converting the mission plan
into swarm tactics using C2 software. An operator is also responsible for maintaining situation
awareness, reporting intelligence information to the commander, and making tactical recom-
mendations based on evolving circumstances and swarm capabilities. The operator may also
request support from the swarm health engineer to command individual agents or investigate
error conditions. While there are currently no military occupational specialties (MOS) for
swarm operators, we expect this role will map to several MOS categories, including the 15W,
which is a single UAV operator.

• Swarm Health Engineer. A health engineer monitors the communications network as well
as individual agents’ health. An engineer is a technician who is able to diagnose and remotely
resolve robotics issues. In an operational setting, this role could fit into a variety of engineering
MOS specialties.

• Field Operations Officer. The field operations officer is responsible for logistics involving
agent deployment, recovery, physical maintenance, field personnel coordination, and operational
safety. An operations officer coordinates with the commander and may lead a small ground
team of field support personnel. The field operations officer role is an artifact of the logistical
construct of the field experiment events, the swarm hardware utilized (e.g., limited battery
life), and safety requirements for system testing at scale.

• Field Support. Field support personnel report to the field operations officer and provide
the logistical power needed to deploy and maintain the swarm. Given the known limitation
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of hardware and the need for sustained operations over extended periods of time, this team
provides the means to recover vehicles and prepare them for redeployment. We expect that as
the technology continues to mature, the need for this role will subside.

In line with DARPA OFFSET program objectives, we employed a heterogeneous swarm of low-
cost ground and aerial vehicles. For aerial operations, we leveraged quadcopter platforms and vertical
take-off and landing (VTOL) fixed wing aircraft. Each platform type offers unique operational
benefits, but also comes with its own limitations. Further details on the platforms we leverage and
their tradeoffs are presented in Section 11.2.2.

3.3. Live, Virtual, and Constructive
Time, logistics, and cost constraints prohibit frequent testing of single agent and large-scale swarm
solutions. To support rapid development and integration, it is therefore critical that engineers
are able to iterate their software designs without having access to physical hardware. Simulation
facilitates this goal, but only when the simulation and deployment environments are uniform.
Otherwise, engineers lose time supporting multiple related but incompatible interfaces. In other
words, software developed in simulation should transition directly to the real world without concern
over what is real or virtual. For this reason, we take care to ensure our software is abstracted from
an underlying reality, such that user interface features, tactics, and primitives are unaware of the
underlying platform’s true nature. We further discuss our Live, Virtual, and Constructive (LVC)
approach in Section 9.

4. The Rapid Integration Swarming Ecosystem (RISE)
4.1. Requirements
The design of our swarming architecture is informed by program requirements as well as our
experiences as an OFFSET systems integrator. We present some high-level system requirements
below:

Req. 1 Capable of one-to-many (150+) operator-to-agent ratio for control of swarm agents.

In reviewing prior systems, we found that operators were unable to effectively command more
than a handful of individual platforms (see Section 2.5). Thus one of our primary goals for rise is to
enable the operation of hundreds of vehicles simultaneously by a single operator. This necessitates
the concept of “swarm operation” as opposed to individual agent operation, whereby the operator
directs the swarm as a single unit rather than providing commands to individual agents.

Req. 2 Capable of supporting 250 networked agents.

As part of the DARPA OFFSET program, rise is required to support at least 250 networked
agents in simultaneous operation, although this number was not reached in any official field exper-
iments (see Section 11) due to logistical (not technical) limitations. This requirement necessitated
the creation of advanced networking protocols and techniques (see Section 4.3).

Req. 3 Capable of operation in a real-world, uncertain environment.

The rise swarm must be capable of operating in real-world, nonlab environments. To enable
intelligent decisions and effective C2 in the field, this requires agent-level sensing and autonomy
along with robust networking and communication.

Req. 4 Tactics development abstracted from robotics software.

We found that many involved in swarm-based research are not roboticists, especially those focused
on tactics development. These individuals prefer to view robots as entities capable of autonomous
navigation through the environment with which they have only occasional interactions. Their
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concerns primarily lie in the organization and coordination of independent agents that serve an
operational objective, such as to intelligently acquire and maintain situation awareness. In other
words, tactical engineers typically take an exocentric world view, solving problems at a level of
abstraction above the robot. An architecture serving tactical engineering needs will then separate
tactics from behaviors, enabling the engineer to focus on converting a mission level objective into a
set of robot commands. Therefore rise must provide such an abstraction to allow these engineers
to easily develop new tactics.

Req. 5 Robotic development for primitives and algorithms to support tactic creation.

While tactic development was abstracted in such a way that robotics expertise is not needed,
there is still the need for capable robotic platforms. Most off-the-shelf platforms do not come setup
with the capabilities required to perform the tactics that were created within rise. The tactics have
a dependency upon the robots being capable of autonomous navigation through the environment
and environmental interactions. These dependencies drive the development described in Section 7
and Section 8.

Req. 6 Flexible swarm command interface for tactical coordination.

Tactics vary in complexity and oversight. While a tactical engineer may not be concerned with
the underlying task management system, support for allocating robot cohorts, initiating direct and
indirect command, synchronizing command execution, canceling outstanding tasks, and receiving
command status is required.

Req. 7 Interface for exposing new tactics, tactic parameters, and tactical control measures.

To facilitate rapid development and because tactical engineers often do not use end-user interface
software, an engineer must be able to easily define a new tactic description, means of invocation,
associated parameters, and required tactical control measures, which are then immediately available
to the operator.

Req. 8 Support for virtual hardware in real experimentation.

While the rise software is hardware-agnostic, research programs such as DARPA OFFSET often
have funding limitations and use off-the-shelf platforms (see Figure 25) with limited capabilities.
Thus not all desired experiment scenarios may be feasible with the physical hardware. For this
reason, rise is required to provide support for simultaneous operation of simulated and physical
agents.

Req. 9 Low fidelity simulation for rapid development.

While high-fidelity simulations are useful for development of robotic behaviors and for testing,
we found that tactic developers often did not have the computing resources necessary for a full
simulation. Therefore one of rise’s earliest requirements is to enable low-fidelity simulation that
can be run on a basic laptop computer. This allows rapid iteration on tactics development by our
third-party collaborators (see Section 10).

Req. 10 Simulation for robotic development and evaluation.

While the low fidelity simulation is primarily utilized for tactic development, there is still a
need for a simulation that supports primitive and algorithm development. Without a simulation of
this nature, robotic development is tedious and always requires on platform testing. Therefore the
simulation must support both mock sensor feeds and actual hardware endpoints.

4.2. The RISE Architecture
The rise architecture presented in Figure 3 conforms with the decomposition of warfighting needs
into robot actuation, as discussed in Figure 1. One of the major components is called Swarm Engine™
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Figure 3. The RISE architecture. Consisting of four main components split between agent side computation and
command and control computation.

and houses the command and control solution, which includes C2 and PyC2. The former (C2; referred
to as “Unity Base” in Figure 3) implements our user interface software for environment visualization,
situation awareness, and sketch-based swarm command. We implemented C2 using the Unity game
engine2 because of its cross-platform compatibility; ability to support advanced desktop, VR, and
AR interactions; and built-in simulation support, in addition to having a large active community.
PyC2 is a python-based software application designed for rapid tactics development. It comprises
a number of tools designed to assist developers with writing tactics that interact with sketch input,
query the environment, and generate robot primitive commands. PyC2 implements a task allocation
system, and provides low fidelity simulation support so that engineers can iterate tactic designs
without having to run robot software, as specified by Requirement 4. We chose to build PyC2
in python because of the language’s ease of use, extensive library, and wide use, thus fulfilling
Requirement 7.

Agent software is divided into “Robot Core” and “Robot Extensions” modules, both encapsu-
lated by a Docker container. Together, these components fulfill Requirement 5. Robot Core is a
platform-agnostic compilation of ROS/ROS 2 nodes that handle key functions for task bidding,
task execution, health monitoring, swarm communication, and situational reasoning and reporting.
All external communication from agent to agent or agent to swarm is also facilitated through the
Robot Core system. This creates a layer of abstraction that enables any agent running the Robot
Core software stack to become part of the swarm. Robot Core interacts with agents via their given

2 https://unity.com
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Robot Extensions codebase. The Robot Extensions codebase contains all the ROS nodes responsible
for sensor or hardware interaction, as well as onboard agent algorithms (see Section 8). Interaction
between Robot Core and Robot Extensions is facilitated by standard ROS messaging, using a
bidirectional ROS 1 to ROS 2 bridge3 when appropriate.

Note that in the architecture diagram (Figure 3), there are two variants of the agent software
listed—one representing the software running on a physical agent and the other representing a
simulated agent. The only differences between the two are the Docker images used and the ROS 1
sensor data sources. The simulation environment, which is the same Swarm Engine environment used
for commanding real platforms, generates sensor information in place of real sensors (see Section 9.1).
This distinct abstraction of sensor feeds works to facilitate simulation to hardware translation and
fulfill Requirement 10. All aspects of the agent software are contained within Docker containers for
easy deployment and simulation testing. We also make use of Ansible4 for fleet management and
deployment using this Docker based system (see Section 11.2.2).

4.2.1. ROS
ROS5 is a key component of the rise architecture. Everything was developed with ROS in mind
for ease of integration and development. The agent software consists of a mixture of ROS and
ROS 2 nodes. Due to a lack of hardware driver support in ROS 2 at development time, the Robot
Core modules use ROS 2 and the Robot Extensions modules currently use ROS, although Robot
Extensions may be upgraded to ROS 2 at a later date when all required drivers are available in ROS
2. All inter- and intra-agent messages are transmitted using either native ROS 1/2 messages using
standard ROS networking middleware or ROS 2 messages using a custom ZeroMQ middleware (see
Section 4.3). All communication between components of Swarm Engine and varying instances of
the Unity environment uses ROS messaging. The simulation environment broadcasts ROS sensor
messages to integrate with the agent software for development and testing. ROS messaging is how
all algorithms and primitives communicate, and is used at every level of the system, from tactic
tasking down to agent-level actuation. ROS’s MAVLink/MAVROS package handles all sensor and
actuator interaction on each agent. During the course of development for rise, several releases of
ROS and ROS 2 were utilized, but the program currently uses ROS Melodic and ROS 2 Eloquent.

4.3. Swarm Networking
This section describes the network used to enable communication amongst agents and between
agents and the operators. We start by providing a summary of early prototypes and challenges and
then describe the final topology and protocols.

4.3.1. Initial Prototypes
In the early stages of rise development, extremely simple off-the-shelf mechanisms were used for
swarm networking. Due to availability of components, rise initially used standard 802.11 Wi-Fi
with all agents connected to centralized access points. However, field experiments (see Section 11)
quickly exposed the downsides of this approach. Operators needed to pre-position the communication
infrastructure before mission execution could begin. This was a difficult process requiring careful site
surveys to ensure maximum coverage and establishment of a power supply and network backhaul link
at the chosen access point location. Obviously, such preparatory work was deemed impractical for
real-world tactical exercises. Additionally, even with site surveys and careful access point placement,
the dense concrete urban environment used for field experiments (see Section 11) yielded large “dead
zones” in which agents were unable to communicate with the pre-installed access points.

3 https://index.ros.org/p/ros1_bridge/
4 https://www.ansible.com/
5 https://ros.org/
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To alleviate these issues, and with the addition of further funding, we conducted an evaluation of
commercial off-the-shelf networking solutions and purchased equipment for a mobile ad hoc network
(MANET) from Rajant Corporation. See Section 4.3.2 for more information on the benefits of this
approach.

However, after switching to a MANET architecture, we encountered further problems. While
initially we had been using the default ROS 2 messaging mechanism for interagent communications,
we found that this did not scale well to more than a few tens of agents when using a MANET.
ROS 2 messaging is based on the Data Distribution Service (DDS). Thanks to the MANET’s shared
medium (2.4 GHz and 5 GHz radio frequency bands), large numbers of radios attempting to transmit
simultaneously caused significant data loss and retransmission, rendering the network practically
unusable. We worked extensively with our DDS vendor’s engineers to resolve this problem, but were
still unable to operate hundreds of agents simultaneously. At that point, we began implementation
of our own protocol solution for inter-agent communications. See Section 4.3.4 for more information.

4.3.2. Mobile Ad Hoc Network
One of the critical challenges in fielding a multi-agent robotic system is in the design of a robust
communication network. While several architectures were initially considered, we employed a mobile
ad hoc network (MANET), commonly referred to as a mesh network, in order to facilitate all
communication between agents and all nonemergency communication with C2 operators.

We selected the MANET architecture for a variety of reasons, which we list below.

• Urban environments typically comprise structures of varying materials and geometric complex-
ity that obstruct radio communications, preventing access-point-based networks from effectively
communicating with agents inside of buildings or agents in-between structures. We found this
to be especially true in the environments used for our field testing (see Section 11). A MANET
alleviates this problem by allowing other agents in the vicinity to act as network relays, a
capability that rise’s tactics exploit. For example, see the building clearing capability developed
by SoarTech in Section 10.3.

• By using a MANET, we make optional the prepositioning of network equipment inside the
operational area, a task that is required when using networks designed around central access-
points.

• A MANET architecture eliminates any single-points-of-failure in the system, allowing agents to
continue operation even if one or more of the ground radios fail. The agents may communicate
directly with any other devices in the network without routing messages through any centralized
infrastructure.

• The MANET architecture allows for easy swarm deployment, a critical capability when
operating large-scale swarm systems. Agents do not need to be reconfigured for different
deployment strategies, and the ground infrastructure can be changed on-the-fly without any
network reconfiguration.

For these reasons, we chose a commercial off-the-shelf MANET solution from Rajant Corporation,
utilizing a number of different radios from their product line in our system. Air vehicles are equipped
with Rajant DX2 or DX4-series radios, while ground vehicles are equipped with the ES1. The ME4
and Peregrine-series radios are used for ground/base communications, connecting the operators’
Ethernet network to the MANET. The mounting of these radios are shown in Figure 4. All radios
operate on the 2.4 GHz band. Except for the DX2s, all radios also utilize a second channel on the 5
GHz band. Rajant software manages the use of these bands to allow for efficient transmission with
many radios in close vicinity.

4.3.3. Network Overview
While the MANET described above is critical for agent communication, it cannot handle the high
volumes of data necessary for LVC sensor simulation (see Section 9). For this reason, we add a
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Figure 4. (Left) Rajant ES1 radios are seen mounted to ground vehicles. Aerial vehicles have Rajant DX2 radios
mounted underneath. (Right) Mesh radios are shown communicating between IFO platforms during a small-scale
field test, as highlighted by Rajant’s network management software.

Figure 5. Above, a deployment diagram of the overall RISE network. Items suffixed by “1,…, n” may be of
arbitrary quantity. Below, a subnet diagram of the RISE network. In both diagrams, “Government” refers to the
government experimentation infrastructure (see Section 11).

1000BASE-T Ethernet network, connected to the MANET via a switch. This Ethernet network
serves multiple LVC simulation machines, plus various C2 computers, and facilitates connections
with 3rd-party ground systems (see Section 10). The overall network is shown in Figure 5.

4.3.4. Network and Transport Protocols
Initially, we attempted to use ROS 2’s built-in network stack, which is based on the Data Distribution
Service (DDS). However, we quickly found that DDS was not suitable for our large-scale MANET
due to DDS’s discovery phase overhead (Object Management Group, 2015). We instead implemented
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a custom solution using ZeroMQ (ZeroMQ, 2021) as a socket library to allow for reliable multicast
communication between all networked systems.

We use the Internet Protocol (IP) (Internet Protocol, 1981) as the basis of our swarm network.
Every agent has an IP address and is joined to one or more IP multicast groups using the Internet
Group Management Protocol (IGMP). In multicast, a device must only transmit one message, which
is addressed to a group and will be received by all members of the group (Deering, 1989). This is
advantageous in our architecture, since it reduces the amount of air time that a vehicle’s radio must
use for message transmission. Transmitting a unicast message once for every agent that must receive
it (often 200+) requires a significantly larger amount of airtime than transmitting a single multicast
message. In a swarm with potentially hundreds of radios in proximity, this is a critical consideration.
We take advantage of Rajant’s “Tactical Multicast” feature to prevent multicast messages from
“echoing” around the network. This feature allows multicast messages to reach all vehicles with
minimal retransmission throughout the MANET (Acker, Hellhake, Jordan, & Parks, 2016).

We divide our messages into two transport classes: reliable and unreliable. Both use the IP
network protocol, but have different transport protocols. For unreliable messages, standard User
Datagram Protocol (UDP) datagrams are employed to transport messages. This protocol ensures
message correctness, but does not guarantee delivery or reception order (User Datagram Protocol,
1980). Such a protocol is ideal in a dense transmitter environment, since it minimizes transmissions
and does not waste air time by attempting to retransmit unimportant data.

For messages that require delivery guarantees, we use the Pragmatic General Multicast (PGM)
protocol. PGM uses negative acknowledgments to enable retransmission of lost or corrupted
messages. That is, each device maintains a sequence number, which is periodically transmitted
in a heartbeat message (SPM packet) to other devices. This allows receiving devices to recognize
message loss and request retransmission of those messages using a negative acknowledgment (NAK)
(Speakman et al., 2001). We changed several PGM parameters from their default values to allow
for more efficient use of our limited network resources. Information on these parameter changes is
included in Appendix B.

4.3.5. Application Protocols
As all agents in the system use ROS 2 for their high-level logic and control, integration of the
network stack with ROS 2 was a crucial requirement. We created a “Communication Handler” ROS
2 node and package for this purpose. The node accepts a user-specified list of ROS 2 topics (see
Section 4.2.1) to be transmitted to or received from the network.

The application protocol was designed to be straightforward and easy to implement. We first
encode the topic name as a 32-bit value using the DJB2 hash algorithm (Bernstein, 1991). Then,
we use the MessagePack library to encode each field of the message using MessagePack’s efficient
encoding scheme (Furuhashi, 2021). Each field of the ROS 2 message is automatically decoded and
then encoded as a MessagePack field, and the whole message is packed into a structure described
by Figure 6. The message is then transmitted using the ZeroMQ library over one of the transport
mechanisms described above.

To receive a message, the reverse occurs. The message is received by ZeroMQ, the topic hash
compared against a dictionary of known topics (and the message dropped if unknown), and then
each field is decoded by MessagePack and re-encoded as a ROS 2 message. The ROS 2 message is
then published using the standard ROS 2 publishing mechanism.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32-bit topic name hash
}

Header

MessagePack-encoded payload

· · ·

}
Payload

Figure 6. The network application protocol.
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ROS 2 publications, subscriptions, services, and service clients are supported with automatic
message translation in both directions. See Section 4.4 for more information on topics used in the
swarm. The ROS 2 project originally investigated the use of ZeroMQ, but chose DDS for ease of
development at the cost of messaging customization (Woodall, 2014). We have implemented ROS
2 messaging over ZeroMQ and have realized many of those performance and customization gains.
While we have lost some of ROS 2/DDS’s flexibility (such as automated topic discovery), these
changes allow the system to function under the heavy constraints imposed by our 200+ vehicle
mesh network.

4.3.6. Emergency Control Channel
We also maintain an emergency out-of-band control channel in the 2.4 GHz range. The Swarm
Operator may command UAV emergency stop via this channel, which will immediately cause all
UAVs to land and disarm.

4.4. Swarm API
As mentioned in Section 4.2.1, ROS is utilized throughout rise and is the common API interface.
As with any ROS-based system, the interfaces between nodes are well defined by ROS messages,
publishers, and subscribers. Agents in the swarm primarily interact through three ROS 2 messages
which we define: the Heartbeat, Cmd, and Job messages. Figure 7 shows the contents of these
three primary messages utilized by swarm agents and Swarm Engine. Individual agents of the
swarm must populate the elements of the Heartbeat message and send that information repeatedly
on the /a2c/heartbeat topic. As agents receive tasking or other factors occur, they must update
the respective fields in the message. All Swarm Engine entities listen to that message topic to
automatically discover swarm agents and add them to their agent table. Likewise, Swarm Engine
instances will broadcast the same Heartbeat message information on a /heartbeat topic so that
swarm agents are aware of all the Swarm Engine instances that are online and other Swarm Engine
instances are also aware of each other.

The Job and Cmd message are used as part of the bidding process that makes up the swarm
task allocation. Figure 8 demonstrates how tasks are generated from tactic execution and are used
to prompt swarm agents to bid via the Job message and bidding topics. After task evaluation has
been completed based on bid responses, a command message is sent out to the swarm, instructing
agents to complete the requested tactic. This interaction is facilitated by the Cmd message, with
agents subscribing to the /command topic to determine if they have had a task assigned to them.
If an agent has been tasked, logic flows into the agent primitive part of the architecture. Otherwise,

Figure 7. RQT Message view showing some of the primary API messages. Heartbeat, Cmd, and Job.
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Figure 8. Bidding command flow.

agents continue to respond to task requests on the /bidding topic as additional tactics are executed
over the course of the mission. A sequence diagram showing the swarm in operation is available in
Figure 9.

4.4.1. Command API
Agent task assignment within rise is handled via a centralized bidding system. While research on
decentralized task allocation is quite common (L. Johnson, Ponda, Choi, & How, 2010) and rise
has even been integrated with third parties that have implemented decentralized task allocation (see
Section 10.1), we found centralized tasking to be the ideal solution for rise’s needs. First, centralized
task allocation provides a much higher level of control of the swarm. It is abundantly clear when
agents will take tasking and who the anticipated agents will be in a centralized system. Another
primary reason for the centralized tasking is network load. With the numbers of agents in our use
case, we need to limit network traffic wherever possible, and a centralized system allows for this.

The bidding system works through the use of the job and command messages described in
Section 4.4. As a swarm operator provides tactic input, a series of tasks or “jobs” are created
within our system. These jobs are then sent out via the /bidding topic and agents respond with a
heuristic-based bid. The agent heuristic looks at the job being requested, the location of the job
relative to itself, battery life, vehicle health, and a few other factors, before it responds with a bid.
PyC2 then evaluates all job responses received and eventually assigns tasking for all the jobs in
a respective tactic. This final tasking is sent out via the /command topic and message. Figure 8
showcases the standard interaction over time for this overall process. Multiple tactics and jobs can
be simultaneously bid out.

4.4.2. Intelligence API
All agents in the swarm are constantly searching for intel, regardless of the task they are performing.
This intelligence is primarily gathered through the various platforms’ RGB cameras. While YOLO
or some other variation of object detection has been utilized during rise, intel in DARPA OFFSET
field experiments was primarily represented by AprilTags6 (See Section 11.3.1). Agents utilize an
AprilTag detection algorithm to report to the swarm what they saw via a common detection message
which contains information such as who saw the artifact, what does it represent in its current
context, where was the artifact, and so forth. All agents and Swarm Engine instances listen for all
reported detections from each other. As detections are reported, agents record the events in another
subcomponent of Robot Core called the central data store. This information is stored and queried by
certain primitives as any prior or dynamic intel is required for that primitive execution. Section 5.5.1
discuses how Swarm Engine visually represents reported intelligence from swarm agents.

6 https://github.com/AprilRobotics/AprilTag
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Figure 9. Sequence diagram showing messages sent over the network during swarm operation.
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Figure 10. Mission plan sketch drawn by the swarm operator during the fourth DARPA OFFSET field experiment
at Joint Base Lewis-McChord.

5. RISE: User Interface
We built our C2 user interface to balance the needs of swarm commanders, operators, and health
engineers. Swarm commanders are primarily concerned with situation awareness (SA), one aspect
of which is “the perception of elements within a volume of time and space” (Endsley, 1995).
Elements of interest include blue and red force positions, terrain layout, and mission plan data.
Although operators must similarly maintain SA, they are also responsible for swarm command—the
issuance of tactics that effectuate the commander’s plan. Given that robotic swarms interact
with the environment, tactics are inherently grounded in a temporal and spatial context. The
nature of SA and tactic invocation therefore implies that both the commander and operator
primarily communicate with the swarm through the environment. On the other hand, swarm health
engineers, as do researchers, practitioners, and developers, require access to detailed information
that commanders and operators do not necessarily require. Agent task status, logs, component-level
health information, and trajectory information are example data that engineers use to diagnosis
issues occurring during a mission. Although, health engineers utilize SA and may aid swarm
command, being able to quickly locate and interact with specific agents is critical to their success.
Figure 10 illustrates how we balance these requirements.

The proposed cross-platform compatible interface was refined through an iterative design ap-
proach spanning four years. Our experiences participating in five large-scale field experiments across
five Combined Arms Collective Training Facilities (CACTFs), along with periodic field integration
testing and regular development, helped inform our design. As shown, the interface is divided
into an interactive panel (left) and scene view (right). Given that the environment is our primary
communication channel for SA and swarm command, we appropriate significant screen real estate to
the scene view. Bandwidth is further maximized by abandoning traditional WIMP (windows, icons,
menus, and pointers) design patterns. Instead, we implement a context-sensitive gesture-based user
interface, whereby users interact with C2 via sketch commands. This decision also serves our desire
for cross-platform capability, as we are able to preserve limited mobile device screen space. In the
remainder of this section, we expand on these ideas and describe our interface in detail.

5.1. Cross Platform Compatibility
We designed a cross-platform compatible C2 by implementing techniques that utilize only 2D input,
which we regard as the least common denominator among all input devices. Mouse, stylus, and
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touch input are inherently 2D. Three-dimensional controller and hand pose data can be made 2D
via planar projections. For this reason, baseline C2 techniques learned on one system transfer to all
supported systems. To date, we have ported our software to Windows, Linux, Android, HoloLens
2, and HTC Vive. It is important to note, however, that although we implement a common cross-
platform interface, we are still able to exploit affordances offered by more capable systems. Additional
information on alternative HMI interfaces supported by rise can be found in (Williamson, Taranta
II, Moolenaar, & Laviola Jr., 2023).

5.2. Gesture Interface
Human motion that intentionally conveys information is a gesture. In the context of this work,
gestures are motion patterns captured by an input device that map to software commands—when
we recognize a known pattern, we invoke the associated function. To recognize input patterns, we
employ Jackknife (Taranta et al., 2017), a device-agnostic custom gesture recognizer.

Being device-agnostic means we are able to recognize mouse, touch, stylus, hand, and 3D
controller gesture input, among other modalities using the same recognizer, which enables rapid
integration of new input modalities. Being customizable means the recognizer learns from a small
set of example input patterns. Jackknife specifically achieves high accuracy (> 90%) with only
one training sample loaded and improves with more training data.7 Since we only require minimal
training data, users can customize the interface according to their preference, which has potential
to increase learnability and memorability (Nacenta, Kamber, Qiang, & Kristensson, 2013). Further,
because Jackknife uses a nearest neighbor pattern matching strategy, we can train the recognizer
online in real time, enabling us to define new gesture classes on demand. When rise implements a
new feature, but the associated invocation gesture is unknown, our interface prompts the user for
training data, after which the recognizer is retrained and the new feature is immediate accessible.
This enables PyC2 to employ new tactic and sketch parameter types without direct C2 support.

All interface functions are accessed via gesture commands, including system commands to start
and stop missions, agent commands to access logs and video feeds, and tactic and tactic parameters
commands. Besides preserving screen space, an additional advantage in using gestures over WIMP
design patterns is that C2 and PyC2 developers can add new functionality without having to
reorganize menu hierarchies or toolbars, thereby accelerating development time. More importantly,
however, gestures reduce mode switching and allow the user to interleave commands, potentially
increasing command throughput.

To aid swarm operators learn the user interface, we developed an interactive training module that
walks users through the basic agent, command and control, and navigation interactions. Separately,
all available gesture commands can be found through an online help system shows the user how to
draw each symbol and informs them on their usage.

5.3. Agent Interface
More so than commanders or operators, swarm health engineers are concerned with individual
agents. We therefore provide access to essential agent interactions through the left panel shown
(Figure 11). In this panel, we generate a list of all known agents—those for whom we have received
one or more heartbeat messages. Each list entry communicates the agent’s name, payload, status,
and tactic icon.8 The agent name’s color encodes its status, which may be idle (green), killed
(orange), manually disabled (red), tasked (blue), or unknown (orange). This later state indicates
that C2 has lost communication9 with the agent.

7 On 2D gestures specifically, Jackknife achieves 95% accuracy in a writer-independent recognition scenario with two
templates loaded.
8 Although agents execute primitives, we are able to trace its work back to the tactic that generated it.
9 Communication is lost when C2 has not received a heartbeat in seven seconds
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Figure 11. User interface elements illustrating the agent list (left), video stream, component health panel, and
agent icons within a map view simulation.

A user may access agent-specific data by gesturing on the agent’s button, where one’s initial
contact point selects the agent. A right-swipe causes C2 to position the camera over the agent
in the scene view. An h gesture opens the agent’s health information window wherein all relevant
hardware components are listed with color coded status, those being nominal (green), missing (gray),
intermediate (yellow), or critical (red). Color and depth camera streams from the agent can be viewed
by h and ), respectively. Finally, L displays the agent’s logs. Although we are able to provide access
to additional features, these were found to be most relevant for initial agent SA and diagnosis. A
health swarm engineer will have access to additional information via SSH remote terminal access.

We present each agent as an icon within the scene view using a platform-specific symbol. Its color
reflects the agent’s status using the same scheme described above. Within the agent icon, we render
a tactic symbol that reflects ongoing or previously completed work in which the agent is or was
engaged. In an early user interface iteration, we instead rendered agents as 3D models. However,
other than being more aesthetically satisfying, they provided no clear advantage, which we opted
for a less resource intensive variant.

5.4. Command and Control (C2)
The heart of swarm command in rise comes down to specifying tactic commands, their inputs, and
their execution order. These three elements are brought together through our sketch-based interface,
as described next.

5.4.1. Tactic Invocation
To invoke a specific tactic, an operator must draw its associated gesture into the environment. When
the gesture is recognized, C2 inserts an interactive tactic icon at the stroke’s centroid. The operator
may then click on the tactic to open its associated pop-up window. This window comprises an input
parameter list and two interaction buttons, one that immediately issues the tactic to PyC2 for
further processing, and another that simply closes the window to enable mission planning. Table 1
shows five example tactics—their invocation gesture and required input parameters. The “Context”
parameter specifies which sketch input parameter type a tactic will act upon.
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Table 1. Subset of PyC2 tactics an operator may invoke to fulfill mission objectives. The operator draws a
tactic’s gesture into the environment to access the command. Each tactic requires zero or more parameters,
where context is the sketch input type on which the tactic will execute. The operator can modify remaining
parameters through a pop-up window before submitting the command to PyC2. Note, this LATEX table was
generated with PyC2’s automated documentation system.
Tactic Name Gesture Parameter Type Description

Examine Object Context POI Use UAV to scan an object of interest.
Radius float Radius of sphere around object.

Follow Route

Context Path Request an agent to traverse the nearest path.
Altitude float Height in meters that UAV will assume.
Distance float Distance between points. Zero to force

simplification.
Use Chaining bool Issue one point at a time, for testing only.

Hold Position

Context Path Move a set of agents to points along the
perimeter and hold.

Altitude float Height in meters that UAV will assume.
Duration float How long to hold.
Agent Count int Number of agents to place along perimeter.

Overhead Scan
Context Explore Fly UAVs over area to find artifacts.
Altitude float Height in meters that UAV will assume.
Cell Size float Minimum linear distance between waypoints in

meters.
Agent Count int Number of agents used to scan area.

Safe Land Context None For a given air vehicle, find nearby safe location
to land.

The location of a tactic icon within the environment is relevant in that tactics optionally use
position information to infer operator intention. To illustrate, our scan building tactic infers an
operator wishes to scan that building which is closest to the icon. Tactics make similar inferences
on sketch parameter input. Our overhead scan tactic, for example, operates on the closest explore
area sketch (an input parameter type discussed below). For this reason, an operator may drag their
tactic icons through the environment in order to precisely assign position.

Once invoked, tactic status is encoded into the icon’s color, being one of the following: pending
(black), in progress (blue), failed (red), or successfully completed (green). We also add a tactic button
to the left panel in order to provide a quick enumeration of ongoing work as well as provide access
to additional developer and swarm heath engineer data. This includes access to children tactic and
primitive data and agent waypoint lists when applicable. As the list grow long, it becomes difficult
to correlate specific tactic buttons with ongoing field work. However, utilizing spatial memory, one
may also return to the tactic icon within the scene view at any time in order to access the same
information via a pop window. To cancel a tactic as well as its children tactics and primitives, one
may simply scribble-erase the icon.

5.4.2. Tactic Chaining
An operator rarely performs only a single tactic. Rather, he or she deploys multiple tactics in
a specific order to advance particular mission objectives. The coordination of multiple tactics is
therefore an important feature that we support via tactic chaining. As illustrated in Figure 12, an
operator is able to link two tactic icons together via a sketch gesture. The combination of multiple
links forms a directed acyclic graph. When an operator issues the root node tactic, C2 submits the
entire graph structure to PyC2 for further processing. By default, children tactics execute only after
their parent tactics successfully complete. In other words, parent node status propagates to children
nodes, and if any parent tactic fails, the child tactic similarly fails. However, this propagation
behavior can be modified via the use of logic gate tactic nodes.
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Gesture Legend

Conjunction Create agents Disjunction Negation
Overhead scan Scan building Timer

Figure 12. Tactic chaining. (Left) Operator drawing a link between two nodes to form a tactic chain link.
(Right) Example tactic chain including logic gate-like nodes. Tactic icons and links are color coded where blue
indicates the tactic is in progress, black means pending, green denotes successful completion, and red signifies
failures.

Logic gate tactic nodes are identical to standard tactics in implementation. One difference is that
they override the default propagation behavior (see Section 6). PyC2 presently implements negation,
conjunction, and disjunction. The negation gate inverts the status of its parent tactic, which can be
useful for planning contingencies. Disjunction gates output a success response if any parent tactic
is successful, whereas conjunction gates requires that all parent tactics are successful. Logic gate
tactic nodes enable an operator to express sophisticated mission plans in sketch input form.

5.4.3. Tactic Parameters
Tactics require input data that specify their precise behavior on invocation, e.g., a persistent
surveillance loitering altitude or safe building standoff distance. Most parameters are typically
determined empirically or resolved through automation, though during development or in special
cases, an operator may need to specify alternative values. For this reason, certain input data can be
modified by an operator through the pop-up window interface. Data types we found to be suitable
for the pop-up window include numeric, text, and boolean input. However, other data types are
more easily described via sketch-based interactions. Throughout the course of the DARPA OFFSET
program in which we developed and integrated numerous primitives and tactics, we encountered a
consistent demand for only three sketch interaction types: selection groups, points, and polylines.

• Selection Groups. It is sometimes necessary, especially for developers and swarm health
engineers, to be able to select individual agents or a group of agents upon which subsequent
commands are assigned. To support this operation, we implement a lasso selection technique,
whereby the operator may draw a stroke around those objects he or she wishes to group.
The operator may continuously lasso select objects until satisfied. Those objects within each
new stroke are combined with previous groups using disjunctive union logic, thereby allowing
deselection. Any tactic issued by the operator will then be restricted to just those agents in
the final selection group. Should the specified tactic generate children tactics, those tactics too
will adhere to the same restriction.
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• Points. Points are geospatial location markers that specify a certain position within the
environment, e.g., points of interest, rendezvous points, and breach points. Points are mapped
to gestures such that when drawn, the associated point appears at the gesture’s centroid within
the scene view. The point can then be drag around to a precise location in three-dimensional
space, though through customization, axes can be locked to reduce error. For instance, it is
common practice to lock points to the ground plane.

• Polylines. A polyline is a curve specified by an ordered sequence of geospatial locations that
may be open, or closed to form a loop. Sketch strokes serve as the mechanism an operator
uses to input polyline data, as strokes are a natural and fluid form of communication. One can
therefore use polylines to specify trajectories including preferred routes and boundaries (no-go
zones, explore areas, and deployment zones). An operator enters a gesture into the scene view
to select a polyline type. The operator then inputs a stroke that defines the initial polyline,
after which he or she can modify by sketching directly onto the polyline. The modification
stroke acts as a magnetic tool that pulls the polyline in the direction of the cursor. When the
polyline type is a closed loop, self loops and intersections are removed. Example routes and
boundaries are shown in Figure 10.

To aid with perception and comprehension, tactic developers may customize point and poly-
line types with unique gesture invocation and rendering properties. See Section 6 for additional
information.

5.5. Situation Awareness
C2 provides several tools to aid in the perception and comprehension of swarm intelligence. Swarm
commanders can use this information to estimate future status and decide next steps.

5.5.1. Artifacts
We define an artifact as an object of interest. C2 visualizes relevant artifacts detected by the swarm
using military iconography as shown in Figure 13. We use standardized iconography to aid with
comprehension because of their widespread use and ability to communicate essential information.
Two DCRI levels (Self, Miller, & Dixon, 2005) are supported, where C2 renders recognized artifacts
using general class icons and identified artifacts using specific icons, e.g., person versus noncombat,
medic, or hostile. To gather more information, an operator may view an agent’s video stream or
command the swarm to surveil the artifact. We further render a red sphere around artifacts that
pose a threat. Once neutralized, we remove the sphere.

Figure 13. Example iconography used to communicate artifact information during the DARPA OFFSET Joint
Base Lewis-McChord field experiment.
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Figure 14. Buildings are color coded in accordance with swarm gathered intelligence information. We render
buildings in a checkerboard pattern when the building is known to exist via a priori knowledge, which translations
to solid color when discovered by the swarm. A building known to contain threats inside is represented by a red
shade, and buildings known to contain intelligence information as blue.

5.5.2. Intelligence Information
As an alternative to the tactic and agent list view, a commander may opt to use our intelligence
messages view. In this mode, swarm intelligence messages are listed in the left information panel.
Unread messages are organized by priority level and require commander feedback to ensure they
have been read. Messages referencing scene view data include hyperlinks that move the camera to
the associated location. For example, “HVT reported in building 10” embeds a clickable link that
moves the camera over the building.

5.5.3. Building Visualizations
C2 visualizes swarm intelligence gathered on building state information as shown in Figure 14.
Specifically, we render a priori known building geometry in a checkerboard pattern. This indicates
that the swarm expects to find a building, although its status is unconfirmed. Once the swarm verifies
its state, we render the building solid. Additionally, buildings that house threats or intelligence are
shaded with an oscillating red or blue tint, respectfully, and a quick glance of the scene view quickly
reveals areas where additional attention may be required.

5.5.4. Grid Data Visualization
Swarms may track data that is well represented as a grid overlay. For this reason, we provide
a mechanism by which swarm entities (any networked components including agents or third-party
programs) may communicate custom grid data to C2. Figure 15 illustrates two examples born out of
our collaborations with Michigan Tech Research Institute. The left grid visualization is a probability
threat distribution where denser probabilities (brighter red) correlate with larger threats. Initially,
initial uniform distribution evolves into a multimodal distribution as the swarm gathers intelligence
and red forces are isolated. The right grid visualization illustrates an acoustic map. This is the
area where deceptive firefight sounds would be heard if projected from under the operator’s cursor.
One can see how grid data visualizations may be useful in several contexts; for example, instead of
visualizing acoustic zone data, the swarm could report on network communication ranges, among
other data.

5.5.5. Temporal Coverage
In order to visualize coverage over time, rise C2 tracks agents as they move through the environment.
Specifically, for each agent, across each frame, we cast rays from each camera into the virtual
environment. The resulting collection of hit points yield a coverage estimate for the given frame.
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Figure 15. Example grid data visualizations. (Left) Threat distribution map. (Right) Acoustic zone map
correlated with the opreator’s cursor position.

Figure 16. Temporal coverage visualization as time progresses from left to right. Unexamined areas initially
render in a dark sepia tone. As agents navigation through the environment, explored scene geometry comes into
full color. Finally, as time progresses and we lose situation awareness in particular areas, color fades to magenta.

All hit points are then cached in a GPU-based voxel hash table representation of the environment
that a custom temporal coverage shader uses to render the environment. Each entry stores a voxel
ID and timestamp. When the said shader renders a fragment, it queries the hash table to determine
when the voxel was last seen by an agent. As shown in Figure 16, if the associated voxel is absent
from the hash table, we assume the voxel has never been observed, and so we render the fragment
in a dark sepia tone. Otherwise, the fragment is colored based on a linear interpolation between full
color to magenta, based on the time passed since the voxel was observed.10

This visualization has several practical applications. Practitioners, for example, can use temporal
coverage data to quickly validate reconnaissance and persistent surveillance tactics work according
to expectation. Swarm operators can maintain situation awareness to verify where within the mission
area knowledge is absent or outdated. Figure 17 shows the temporal coverage visualization in use
at the DARPA OFFSET sixth field experiment during a Northrop Grumman and BBN joint run
scenario. The swarm commander was able to quickly measure progress against mission objectives
and modify the mission plan accordingly to increase coverage.

5.6. Supported Environments
C2 supports three environment types of varying complexity. The simplest environment we support
is an image based top-down map view that C2 loads from a public repository based on given
GPS coordinates. This environment is useful for ad hoc testing that may occur during travel or
when 3D models are unavailable. Second, C2 can load geojson encoded data, which can be useful
for randomized as well as custom scenario testing. However, when more complexity is required,
developers can export custom Unity scenes that C2 can load. Finally, a number of custom scenes

10 We fade to full magenta after twenty minutes.
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Figure 17. Temporal coverage visualization captured in the course of a joint Northrop Grumman and BBN
exercise during the DARPA OFFSET sixth field experiment at Fort Campbell. Dark areas have not yet been
examined. Full color areas have current situation awareness. Magenta-colored areas have been previously examined,
but the situation data is now stale.

are also built into rise, namely, the Joint Base Lewis-McChord, Camp Shelby, and Fort Campbell
CACTF sites.

6. Tactics Development Interface
PyC2 provides a straightforward interface for rapid tactic development. To implement a new tactic,
one derives a new class from the PyC2 Tactic base class and specifies a tactic definition as shown in
Listing 2. All information required by C2 to invoke the tactic is included in this definition, including
the command gesture, required input parameters, as well as human-readable descriptions of the
tactic and its parameters. When PyC2 discovers a new C2 device via its heartbeat, we transmit
all tactic definitions over the network. When C2 receives a new tactic definition, it will retrain the
gesture recognizer (collecting new samples if required) so that an operator can immediately invoke
the tactics. The associated tactic pop-up window (see Section 5.4.1) is automatically populated with
numeric, boolean, and text parameter data entries. This design enables one to focus on core tactic
logic without having to concern oneself with user interface integration, e.g., GUI layout design,
arrangement, and embeddings within hierarchical menus.

When C2 invokes a tactic, PyC2 receives a network message with all nonsketch parameter data
encoded into it. PyC2 parses the message, verifies data validity, checks for errors, and resolves
context. That is, since one can write a tactic that works under different contexts, PyC2 will
additionally examine all available context options and select that which is closest to the gesture’s
position. For example, our overhead scan tactic operates over either an explore area or sector. If the
closest explore area polyline point is less than that of the closest sector point, Pyc2 will select the
explore area. Errors are reported back to C2, otherwise, all parameter data including lasso-selected
agents are copied into a task object. PyC2 then instantiates the associated tactic class, passing in
the task object as its only parameter. In this way, all boilerplate processing is handled automatically,
and again one can focus primarily on tactic logic.

Any tactics may invoke other tactics or robot primitives, each of which are handled as individual
children tasks. Therefore each child task encodes a tactic or primitive name, along with its required
input parameter values. PyC2 implements a wrapper task class for each primitive that contains
parameter data selection, manipulation, and transformation routines specific to the primitive. In
most cases, specialized logic is not required because the encoded primitive is a direct copy of
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1 # SketchInputTypes . PointOfInterest
2 {
3 ‘basic_type ’ : PARAM_CUSTOM_POINT ,
4 ‘type_id ’ : int( SketchInputTypes . PointOfInterest ),
5 ‘gname ’ : ’lowercase_p ’,
6 ‘parameters ’ :
7 json. dumps (
8 PointProperties (
9 display_name = ’Point of Interest ’,

10 sphere_color = [0.0 , 1.0 , 0.0 , 1.0] ,
11 beacon_color = [0.0 , 1.0 , 0.0 , 0.1] ,
12 radius_m = 1.0 ,
13 lock_axes = 2). __dict__ )
14 },

Listing 1. Dictionary entry for a point of interest type in PyC2. The type, id, gesture command name, and
rendering properties of this custom point type are automatically encoded and transmitted over the network
whenever PyC2 recieves new C2 heartbeat.

1 class OverheadScan ( Tactic ):
2

3 # Tactic description data that is sent to C2 during registration .
4 TacticDefinition = TacticDefinition (
5 ‘Overhead Scan ’,
6 ‘Fly agents over an area to find artifacts .’,
7 ‘circle ’,
8 context = [
9 SketchInputTypes . ExploreArea ,

10 SketchInputTypes . Sector ],
11 parameters = [
12 TacticParameter (
13 ‘Altitude ’,
14 ‘Height in meters that UAV will assume . Use -1 for automatic selection .’,
15 float ,
16 -1),
17 TacticParameter (
18 ‘Cell Size ’,
19 ‘Minimum linear distance between waypoints in meters .’,
20 float ,
21 10) ,
22 TacticParameter (
23 ‘Agent Count ’,
24 ‘Number of agents used to scan area.’,
25 int ,
26 5) ])

Listing 2. Tactic definition for Overhead Scan, which subdivides a given area into a number of smaller regions
based on the input parameters and generates one primitive move-to command for each region. A tactic definition
comprises a tactic name, short human-readable description, gesture, context (which can be an explore area or a
sector in this example), and parameter list where each entry specifies a human-readable name, description, data
type, and default value. Each tactic definition is encoded and broadcast over the network whenever PyC2 receives
a new C2 heartbeat.

key-value (parameter-value) pairs. However, in more complex cases, primitive encoding may be
situation-dependent. Each child task is queued via the tactic base class’s queuing mechanism, and
PyC2’s task management system handles task bidding, assignment, and invocation as described in
Section 4.4.1. Appendix A presents a complete tactic example. In the remainder of this section, we
discuss how tactic behaviors can be customized and what tools PyC2 provides to enable efficient
tactic development.
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6.1. Tactic Execution Customization
The simplest tactics are those that generate children tasks and nothing more. Our tactic base class
provides default behaviors for all task processing stages and error handling. However, there are often
situations where one must override default tactic behaviors in order to extend its capabilities. A
tactic may wish to issue several primitives to a particular agent over time, such as to move to a
particular location and then secure a threat. In another case, a tactic may encode certain parameters
based on which agent won a bid. Or a tactic may provide custom error handling logic, and so forth.
For this reason, one may override the default bid completion, bidding failure, task completion, task
cancelled, task failure, and tactic completion callback handlers.

One may also override a tactic’s prerequisite check. As described in Section 5.4.1, an operator
may chain commands together using gate-like tactic nodes. By default, we only invoke a child tactic
after all parent tactics on which the child depends have completed successfully. Otherwise, we fail
the child tactic. When this behavior is inappropriate, one can employ a custom prerequisite check,
as we have done with the conjunction, disjunction, and negation tactics.

6.1.1. Sketch Input Customization
As illustrated in Listing 1, one may generate new custom sketch input types based on C2’s generic
point and polyline classes. In defining a new type, one specifies its underlying type name, unique
identifier, command gesture, and render properties. Once defined, custom parameter types can be
used as context that PyC2 resolves when a tactic is invoked. Two benefits arise from this approach.
First, by having unique parameters types, users can more easily distinguish their presence and
purpose in C2. Second, it helps resolve ambiguity when a gesture is close to multiple different sketch
types—there are fewer chances for operator error.

Custom parameters are also quick to implement and put into practice. For example, during our fi-
nal field experiment at Fort Campbell, we decided that agents should return to a recovery point to fa-
cilitate field operations. Our safe land tactic previously landed agents at unobstructed locations when
their battery level fell below a certain threshold. Thus we created a new input parameter type and
updated our tactic such that if a recovery point was specified somewhere within the scene, we would
instead command agents to a location near the recovery point. This tactic was implemented and
validated in simulation within two hours and fielded the same day using more than seventy air agents.

6.2. The Tactic Development Toolkit
PyC2 comes equipped with a variety of features and utilities that enable intelligent tactic design.
The most relevant tools follow.

• Scene Geometry. C2 transmits a priori scene geometry to PyC2 during initialization. This
information includes geojson encoded building label, boundary, wall, and height data. Tactics
can use this information to inform reconnaissance, surveillance, and other maneuvers that
interact with buildings. Tactics can also use building data as context, e.g., to select which
building an operator intends to scan.

• Artifact Support. PyC2 tracks artifacts with which the swarm may interact, along with basic
state information such as whether the artifact has been recognized or detected, and whether
the artifact is a threat or has been neutralized. Like sketch input and buildings, tactics may
use artifacts as context. Secure artifact is one example tactic where the operator may manually
command the swarm to neutralize a threat. In this case, the tactic chooses that artifact which
is closest to the operator’s secure tactic gesture.

• Path Planner. We include a jump point search (JPS) (Harabor & Grastien, 2011) based
path planner implemented as a multilevel grid. The underlying grid structure encodes known
obstacles, including buildings and no-go zone sketches. A tactic can use the JPS planner
to recommend optimal paths through the environment for air and ground agents. An agent
who receives this path information as a primitive input parameter may optionally follow the
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prescribed path to a specified destination using its own local path planner to avoid dynamic
obstacles while coordinating airspace maneuvers with other agents.

• Sketch Input. All operator sketch parameters are transmitted over the network when they
are created and as they are modified. PyC2 stores each parameter in a local database
with which tactics may interact. Utilities for querying sketches based on type and distance,
analyzing geometric properties such as length and winding, and transforming sketches by spatial
resampling and line simplification are included. These tools enable developers to efficiently
analyze context and generate work based on free form sketch-based user input.

• Sketch Generation. We also provide mechanism that enable developers to generate and
publish new sketch data. In advance of the DARPA OFFSET sixth field experiment, the Naval
Information Warfare Center Pacific (NIWC) provided curb, wall, and power line footprint data.
We encoded this information as custom sketch data that PyC2 treated as no-go zones. As such,
our path planner was able to route around these obstacles.

7. Primitives Development Interface
All tactics are made up of primitives, just as all words are made up of letters. Taken as a group,
primitives can spell out a vastly more complex action. In rise, we define primitives as basic actions,
individual to a specific agent. They are combined into tactics, which encompass the entire swarm
(see Section 6). A single tactic may involve running multiple primitives on the same agent, or even
running different primitives on separate agents simultaneously.

Primitives combine high-level individual agent logic with low-level robotic sensing and control
algorithms to effect desired behaviors.

We provide a highly modular system for integrating new primitives by making use of the flexbe
behavior engine. flexbe11 is a ROS package providing state machine creation and execution capa-
bilities, with simple ROS integration and an easy-to-use visual programming interface (Schillinger,
Kohlbrecher, & von Stryk, 2016). See Figure 18 for an example of primitive creation using the flexbe
state machine editor. These flexbe state machines are tightly interwoven with the basic operation
of each agent, providing many core functionalities. This is important, since it allows primitives
to make use of existing agent behaviors using flexbe’s state machine nesting and concurrency
features. Rather than rewriting code to, for example, move the agent to a waypoint, the existing
waypoint movement primitive may be nested in the new primitive. In this way, we are able to quickly
integrate new primitives with the agent codebase and unlock new behaviors. Each agent’s unique
set of primitives are contained within platform specific flexbe State Libraries.

While the agent primitive system is designed to allow for easy integration of third-party primitives,
we provide a number of primitives with rise. These include basic movement, mission interaction,
building breach and entry, building interior exploration, and more.

8. Algorithms Development Interface
Low-level robotic algorithms form the basis of agent capabilities. We implement many of these from
the ROS ecosystem, but a number are our own creations for rise. The majority of these algorithms
are implemented as ROS nodes on each agent’s main compute board, although some reside on vehicle
flight control units (FCUs), which are based on the Pixhawk standard.

8.1. Sensing
Each agent in the swarm collects data about its local environment. Depending on the class of
agent, different sensors might be available. For example, IFO vehicles have a forward-facing stereo
camera, downward-facing camera, downward-facing single-point LIDAR, Global Positioning System

11 http://philserver.bplaced.net/fbe/index.php
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Figure 18. Images of the FLEXBE APP utilized to create agent primitives. At bottom, a high-level mission logic
primitive handles interaction with artifacts found in the environment.

(GPS) receiver, magnetometer, altimeter, and accelerometer. ATX ground vehicles do not have
downward-facing sensors, but instead have a 360◦ circular LIDAR.

We implement drivers to translate raw sensor data into useable ROS messages, which are
made available to other ROS nodes running on the agent.Processing of magnetometer, altimeter,
accelerometer, and GPS data occurs on the vehicles’ FCUs, using both the PX4 and Ardupilot
systems depending on the platform. However, processing of camera and LIDAR data occurs on the
main compute board of the vehicle and is implemented in ROS nodes. We use a simple speckle filter
to remove strands of grass and other nonobstacles from the LIDAR data. For stereo cameras, the
driver calculates a disparity image, which it makes available to other ROS nodes for perception.

8.2. Perception
To implement visual obstacle detection on ground vehicles, we take advantage of our stereo cameras
to perform binocular disparity-based detection. Our implementation is based on the work of
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Oleynikova, Honegger, and Pollefeys (2015) and is highly effective at detecting obstacles while
ignoring environmental artifacts such as stems of grass which do not pose a collision risk to the
vehicle.

For aerial vehicles, we implement the PX4 Avoidance system, which detects and then avoids
obstacles using the forward-facing depth camera (see Section 8.3 below) (Baumann, 2018).

In addition to local data, our agents may also use the telemetry information of other vehicles
to avoid collisions. Telemetry information is shared between all vehicles using the MANET. Future
work may extend this feature to include prediction and make it more useful.

8.3. Motion Planning and Control
We use data described in the Sensing and Perception sections above to form two costmaps for each
ground agent. A two-dimensional local costmap stores detailed information about obstacles close
to the agent. This costmap features a decay function such that obstacles not seen for a certain
period of time will be removed from the costmap. This allows for accurate tracking of dynamic
obstacles. We also maintain a second, global costmap which is used to store obstacle information for
the entire mission area. This costmap has no decay function, meaning that obstacles will remain in
the costmap until updated by new local sensor data. This two-dimensional global costmap is used
for global path planning.

Ground vehicle movement planning is performed by ROS’s move_base system. This involves a
global planner for long-distance goals and a local planner which is reactive to obstacles blocking
the global path. The move_base system also handles high-level actuator control, issuing velocity
commands to the FCU.

For IFO vehicles, PX4 Avoidance controls all obstacle avoidance using its own internal costmap.
This involves direct control of vehicle velocity and heading. We have not made significant modifica-
tions to the publicly-available PX4 Avoidance library, other than to allow the avoidance function to
be switched off temporarily. This allows agent primitives to control the vehicle heading for in-place
rotation, something impossible with standard PX4 Avoidance.

8.4. Agent Logic
To enable agent primitives that further mission objectives, we provide algorithms for high-level agent
logic. These include automatic detection and recognition of AprilTags using the ROS AprilTag
library (J. Wang & Olson, 2016), interaction with the environment and mission scenario using
Bluetooth Low-Energy beacons, and more. See Section 11 for more information on how we enable
agents to interact with the environment.

9. Live, Virtual, and Constructive
We treat agents as logical entities whose underlying components may be centralized or distributed,
as well as physical or virtual. This is possible because ROS implements a publishsubscribe messaging
pattern over network-based named buses for inter-process communication (see Section 4.3). As such,
ROS packages and libraries that use ROS are self-contained in a way that enables robotics modules
to run as independent processes. By exploiting this feature, it is possible for one module to publish
sensor data while another module analyzes the data and generates locomotion commands that a
third module actuates; and although all processes belong to the same logical entity, they may in
fact be distributed across disparate systems. We therefore think of a logical entity as being the set
of all namespace topics that effectuate a robot instance.

As OFFSET progressed, it became apparent we would need to design a method to allow for vary-
ing levels of fidelity within our simulation environment. Typical robotic simulation environments,
such as Gazebo (Aguero et al., 2015), provide a robust development environment, but typically
only for single agent use. While we initially attempted to utilize Gazebo for swarm development, it
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became clear that the system would be computationally constrained at around ten platforms. We
observed similar issues across other various high level fidelity simulation environments. This pushed
us to develop the concept that we call in our system Fluid Fidelity (Section 9.3).

Another implementation choice that we determined to be critical was the ability to have virtual
agents working with physical ones. From a logistical perspective alone, it often becomes unfeasible
to transport hundreds of platforms to various real world environments for intermittent testing. So
while we wanted to test out a new swarm tactic on physical platforms, we needed a way to have
a few physical agents work alongside virtual agents to quickly evaluate new capabilities without
bringing the whole swarm with us. Due to the utilization of a singular application for simulation
and command and control (Section 4.2) as well as our ROS interfacing (Section 4.2.1), we were able
to integrate this capability.

9.1. High Fidelity Simulation
For our high fidelity simulation environment, we took inspiration from many industry standard
simulations, such as Gazebo and AirSim (Shah, Dey, Lovett, & Kapoor, 2017). Still, our high fidelity
simulation does have several characteristics that cause it to vary from many common simulations.
Two of the key differentiators is that there is no active physics in the high fidelity simulation
and agent bodies consist of simple relative sized cube objects. In place of a physics environment,
each platform type has a geometry based PID controller to actuate motion. Agents send actuation
commands via ROS Twist messages or setpoint position commands just like on the real platforms.
Comparable to other simulators, individual agents receive sensory information from ROS messages.
All ROS messages pertaining to sensor sources that would typically be received from a physical
sensor are instead generated from the Unity Game Environment. The ROS nodes simulated are TF
information, MAVROS data, LIDAR, RGB, and depth, among others. Each of the sensor streams
per agent are organized through ROS namespaces. All data are generated as ROS 2 messages, but
since the agent codebases expect this information as ROS messaging, we utilized the ROS 2 bridge to
translate between them. This ROS 2 translation and a centralized ROS master is handled through
an application we call the ROS Simulation Server. The ROS Simulation Server allows us to run
multiple high fidelity agents on a single system and has pairing with the simulation system to allow
for Fluid Fidelity (Section 9.3). Although Unity now has official support for ROS integration,12

we needed ROS support before this system existed, and we instead implemented our own method
utilizing our ZMQ message system (see Section 4.3).

With the data streams being facilitated, actual agent primitives and algorithms are tested through
the simulated Docker containers. The underlying codebase is exactly identical to that which the real
swarm agents are running when utilizing high fidelity simulation. There are only a few ROS nodes
that need minor adjustments, which is determined via a runtime ROS parameter to make networking
configuration changes. ROS nodes that interact directly with the hardware sensors are disabled, as
they are no longer needed given the data is being published from Unity. Each individual agent
has a corresponding Docker instance, differentiated only by the hostname of the container and the
mounted file directory codebase. Figure 19 showcases both a high fidelity simulated IFO and ATX
utilizing this system and rendering their sensor streams in RViz as their navigation stacks run.

9.2. Low Fidelity Simulation
Our Low Fidelity simulation capability is vastly different from standard robotic simulators. There
are no robotic algorithms running in this configuration, and the whole concept revolves around
mimicry. We found when using our high fidelity simulator that around a maximum of ten agents
was all that could be achieved on a single machine. While distributing the computational load

12 https://github.com/Unity-Technologies/ROS-TCP-Connector
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Figure 19. (Left) UAV navigating around a street lamp in simulation and its associated sensor feed as visualized
in RViz. (Right) UGV navigating a simulation environment and its associated depth camera sensor feed, also as
it appears in RViz.

across multiple systems is possible with our high fidelity simulation, we found it to be not feasible
to achieve the scale we were looking for, especially since we lacked cloud compute resources. Tactic
development is also sometimes performed rapidly in the field, where additional compute resources
or an internet connection are not always guaranteed. These limitations led to the creation of our
low fidelity simulator. In this setup, there are no simulated agent Docker containers running, and
the configuration consists solely of the Unity Base and PyC2 application (see Figure 3). Unity is
rendering the individual game objects for the simulated agents, similar to the high fidelity simulator,
but it is not generating any simulated sensor sources except for positional information. In place of
generating the raw sensor information, there are components within our Unity environment that
are performing rough estimations for things such as agent attrition or agent detection, essentially
mimicking the response of the full sensor pipeline in the high fidelity simulation. Another aspect is
PyC2 mimicking agent primitives. Since there are no actual agent primitives or algorithms running,
PyC2 is in charge of running agent instances that run mock algorithms that simulate the relative
agent responses for certain tactic executions. These mock algorithms still send commands via
the setpoint position or twist API just like the high fidelity simulation environment. It would be
unmaintainable to have PyC2 have mock duplicates of every single agent primitive, so it’s important
to note that only the most common primitives have direct low fidelity mappings. To handle the rest,
that is where the concept of Fluid Fidelity comes in (see Section 9.3).

Figure 20 showcases 100+ low fidelity agents running on a single machine. It is worth noting that
regardless of fidelity level or whether the agent is real or simulated, the interface to the end user
is always the same. This low fidelity simulation is not particularly useful when doing agent specific
development, but is very powerful when performing tactic development (see Section 6). Without
the creation of low fidelity, not nearly as many tactics would exist. This lower fidelity also allows
for further concepts such as faster than real-time performance, which allows for fast tactic analysis
and opens the door to concepts such as optimal course of action generation.

9.3. Fluid Fidelity
As low fidelity simulated agents are unable to simulate some primitives required by certain tactics, we
need high fidelity simulated agents to be able to step in and execute those primitives. As described in
Section 9.2, low fidelity agents merely have mock algorithms that mimic actual agent primitives, but
the collection is not complete. This is where the concept of fluid fidelity comes in. As an operator is
running a mission, there may arise situations where tactics are called that low fidelity agents cannot
perform. We needed a way to perform a seamless transition to convert a low fidelity agent to a high
fidelity agent, so that tactic could still be executed without restarting the runtime environment.
The heartbeat message, as described in Section 4.4, contains two properties called “fidelity level”
and “config hash.” Both of these fields are utilized by our simulation environment to realize what
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Figure 20. Low fidelity simulation running over 100 agents in the Camp Shelby, MS environment, using a single
machine.

kind of agent should be spawned, and the agent’s onboard sensors. By adjusting the values in these
fields from both the low level simulation and the high level simulation, we are able to make on the
fly changes as to what level of agent is running.

9.4. Cross Simulation Support
Over the course of our development, we realized that there are unique situations in which our
simulation was missing a required feature we needed. Most of the time, this arises during the
creation of very specific robotic algorithms. Whether we needed a detailed physics model, higher
quality visuals, or a unique platform with accurate model description, these are gaps within our
simulation. Thankfully, there are many other simulation environments that specialize in these areas.
Due to the nature of our minimum API required for agent integration Section 4.4, we are able to
run Swarm Engine, simulated Docker instance(s), and a separate simulation at the same time. In
this configuration, Swarm Engine interprets the simulated agent as a physical platform instead
and does not generate any simulated sensor sources. Instead, the separate simulation instance is
in charge of generating the simulated sensor sources via ROS messaging. The simulated Docker
instance is expecting to receive ROS information, so as long as the simulator is configured with
correct topic names and namespacing, we are able to perform this swap. Both Swarm Engine and
the separate simulation environment must be able to localize within the same environment, however,
most simulators have the ability to configure GPS information. We utilized this configuration to
quickly spin up our recently integrated VTOL platforms, the AVTs. Figure 21 showcases an example
where we had two simulated AVTs being tasked by Swarm Engine but utilizing the ArduPilot
simulation for sensory information. This allowed us to quickly develop and verify the AVT primitives
and algorithms that we used on the real platforms without the need of supporting an additional
vehicle type in our simulation environment. This type of simulated environment setup was also
utilized with Gazebo during integration with the Hive (see Section 10.4).

10. RISE Extensibility: Third Party Integration
In this section, we highlight various third party capabilities that were integrated into the rise system
as part of the DARPA OFFSET program. These third parties, known as “sprinters,” comprise small
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Figure 21. Swarm Engine running alongside the Ardupilot simulator with two simulated AVTs.

business and university research groups that proposed capabilities for specific thrust areas that were
developed and integrated during a “sprint.” DARPA scheduled five sprints during the program’s life
that aligned with potential showcases of sprinter capabilities at the regular Field Experiments, or
“FX” (see Section 11).

10.1. Heron Distributed Task Assignment System
Heron Systems focused on developing an autonomous task assignment framework via decentralized
asynchronous auctioneers to handle the distributed task assignment problem. This would function in
place of the existing bidding task allocation system and provide an alternative that offered additional
features and capabilities. We closely collaborated with Heron to integrate their capabilities into rise
and leveraged the ROS-based design to handle data passed between Heron’s core modules and rise.
Heron’s task assignment framework was fully integrated and was demonstrated at a field experiment
in Ft. Benning, GA. This capability performed in place of the prior existing bidding system and
allowed for a decentralized solution that allowed agents to take on tasks, even if they were not
directly in communication with rise C2 but were communicating with other agents. This provided
the ability for tasking assurance and mission persistence, utilizing indirect communication between
the intended swarm agent and C2. The modularity in the rise design and its foundation in ROS
allowed for a critical component in the overall swarm operation to be replaced with ease.

10.2. MTRI-SoarTech Synthetic Scan and Dismount Detection
Michigan Tech Research Institute (MTRI) participated in a number of sprints on the DARPA
OFFSET program and were seasoned in integrating with rise. In Sprint 4, MTRI focused on
the virtual testbed thrust area to utilize a synthetic technology that may not exist in the real
world but could be simulated in a virtual environment. MTRI, in collaboration with SoarTech,
aimed to develop the Structure Situation Awareness for Swarms (SSAS) capability, which provided
synthetic through-wall floor plan generation and dismount detection via software that was integrated
with rise. We worked with both MTRI and SoarTech to fully integrate SSAS and showcased this
capability using physical platforms at the field experiment at Joint Base Lewis-McChord, WA. Using
the rise Swarm Engine C2, we were able to task UAVs to perform flight tactics around buildings
and physically perform scanning operations. The physical scans employed the SSAS behaviors to
perform a data collection on simulated info of those real physical buildings to then generate the
through wall floor plan of that building and also detect simulated dismounted soldiers. The data
product they produced included uncertainty information that would closely resemble real life data
collects if this technology existed in reality. From the physical flight and the generated data product,
MTRI was able to produce a visualization of that data product and show the generated floor plan
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and dismount detections performed. By integrating with rise, a virtual synthetic technology and
application was demonstrated using actual physical platforms. rise was able to support the entire
workflow without requiring MTRI and SoarTech to develop the whole end-to-end pipeline, allowing
them to focus on developing out their specific capabilities while also being able to apply those
capabilities in a larger robotics system.

10.3. SoarTech Interior Building Clearing
SoarTech is a seasoned Sprinter that has participated in numerous sprints and has worked closely
with us on integrating various capabilities into rise. During Sprint 3, SoarTech’s proposed capability
was focused on the indoor environment and the aspect of searching and clearing an interior of a
building. Their proposed approach would provide an increase in effectiveness and efficiency for
clearing a building floor’s interior by implementing a continuous and simultaneous search approach
that leverages the multi-agent feature of the swarm. SoarTech developed this capability and wrapped
it into a flexbe state that was integrated into our existing building exploration tactic. As their
focus was solely indoors, they leveraged rise’s existing outdoor navigation capabilities to initially
maneuver to the buildings. SoarTech ran their own execution environment as a standalone servlet
within the rise agent Docker containers to perform their capability when it was executed in the
flexbe behavior. SoarTech utilized rise’s network to share generated building maps between agents.
They maintained communication in large buildings by use of dynamically assigned “relay” agents
automatically placed at strategic locations to ensure that data could be routed using rise’s MANET
(see Section 4.3.2) out of the building and to the rest of the swarm. Through extensive collaborative
development and iterative testing, we were able to conduct a full integration of their capability with
rise and our ground vehicles. We demonstrated the execution of their capabilities during FX-3 at
Camp Shelby, MS.

10.4. HIVE
For the hardware thrust area of Sprint 5, Sentien Robotics proposed an automated UAV ground
management system that provided storage, charging capabilities, and launch/recovery logistics for
a larger fleet of agents than their previously developed systems. This system is called Hive, and
they developed two variations: HiveXL and HiveISO, which were essentially the same but were
just aesthetically disparate due to their different manufacturing processes. Their system was fully
housed in a trailer that contained storage bays for a large capacity of drones with a retrieval
system that can transport an integrated UAV to and from its charging bay to one of two rooftop
launch/landing pads. The system also consisted of maneuvering gantry arms for each launch/landing
pad to manipulate the UAV to be in the necessary position for take off and landing retrieval. rise
and the Sentien team worked closely with each other to fully integrate a UAV operation workflow
in which rise C2 could task agents in the Hive, and the Hive would retrieve those agents from their
charging bays and bring them to the rooftop launch pad for takeoff. Upon completing their flight
operations, the Hive UAVs would return to the Hive and perform a precision landing onto one of
the two bays (see Figure 22). Once landed, the Hive would reposition the UAV to the appropriate
orientation and then place the UAV onto a charging tray through a bay door. The orientation is
important as there is a charging mechanism that connects the drone to the tray for charging in
its bay that does require a specific orientation for proper interfacing. Once the vehicle is on the
tray, the interior retrieval system will return the vehicle to a charging bay, thus completing a full
flight operations cycle. rise and Sentien were able to demonstrate this full flight operations cycle
at the final field experiment at Ft. Campbell, TN. The Hive does provide a significant logistical
solution for transportation, charging, deployment, and retrieval of swarm agents but does encounter
some limitations in supporting simultaneous launch of numerous platforms. It is better suited for
persistent operations of lower numbers of UAV or more consecutive launches, as it would start to
encounter congestion of the launch and landing pads. The Hive integration with rise demonstrates
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Figure 22. RISE UAV agent landing onto HiveISO at Field Experiment 6.

the ability of rise to incorporate other technologies aside from robotic platforms that support swarm
operations, in this case a logistical technology.

10.5. Integration Summary
The integrations of capabilities from Heron, MTRI, SoarTech, and Sentien Robotics serve as case
studies representing diverse examples of some sprinter integration efforts from the DARPA OFFSET
program. The various sprints with their different focus areas attracted a large range of capabilities.
We were able to work with various sprinters to establish integration paths for their capabilities into
rise and provide a swarming robotics framework to realize the sprinters’ capabilities, which ranged
from swarm autonomy, swarm tactics, robotics hardware, human-machine interfaces, AI, and more.

11. Field Experimentation
As part of the DARPA OFFSET program, field experiments were conducted to test and demonstrate
the program’s technological progress. These were conducted approximately every six months and
were orchestrated by an experimentation team from Naval Information Warfare Center Pacific
(NIWC). In total, rise was tested iteratively at five urban training ranges over four years. Table 2
summarizes all OFFSET field experiments, and the locations are shown in Figure 23. Whereas
FX-0 was an indoor only event, the remaining field experiments took place outside. FX-1—FX-3
gave us the opportunity to test our system in a representative environment, and lessons learned
from these experiments informed the design of our architecture as well as our user interface. FX-3
gave us additional insights into scalability issues stemming from our original network solution (see
section Section 4.3.1), allowing us to achieve greater scale and operational capabilities in subsequent
experiments. Upon reaching FX-4 and FX-6, we had gained the relevant experience and information
to consistently field large scale swarm deployments based on mission level objectives.

In the remainder of this section, we discuss the penultimate field experiment, FX-6. This
experiment enables us to answer the question: can a multi-robot ecosystem designed for rapid

Field Robotics, March, 2023 · 3:460–515



From warfighting needs to robot actuation: A complete rapid integration swarming solution · 499

Table 2. RISE has been tested at one indoor and five outdoor field experiments over the last four years. Note,
FX-5 was cancelled due to COVID-19.
Experiment Date Location RISE Objectives
FX-0 March 2018 FDNY, NYC Test of robotics codebase and architecture.

Also, rehearsal for field robotics.
FX-1 October 2018 Camp Roberts, CA Implementation of multi-agent framework and

command and control interface
FX-2 June 2019 Ft. Benning, GA Swarming operations for primitive

environmental Intelligence, Surveillance, and
Reconnaissance (ISR) using next C2
iteration, mobile commanding with tablet C2
modality, and a Virtual Reality (VR) interface

FX-3 December 2019 Camp Shelby, MS Large scale swarm networking and operations
with the next-generation gesture-based
iteration of the C2

FX-4 June 2020 Joint Base Lewis-McChord,
WA

Enhanced swarm tactic execution and improved
C2 with Augmented Reality (AR) modality

FX-5 Cancelled N/A N/A
FX-6 November 2021 Ft. Campbell, TN Full scale swarm testing with latest evolution of

C2 to include Live, Virtual and Constructive
feature and improved AR interface to include
commanding

Figure 23. The six field experiment locations corresponding with Table 2. (Top) FX-0–FX-3. (Bottom) FX-4
and FX-6.

integration and one-to-many control can be fielded, where a single operator commands 150+
autonomous vehicles in tactical maneuvers?

11.1. Participants
The Northrop Grumman rise team filled all primary roles including that of one swarm commander,
one swarm operator, one health engineer, and one field operations officer. These individuals were all
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Figure 24. Rooftop view of Cassidy CACTF in Ft. Campbell, TN.

rise experts with advanced knowledge of the C2 interface and platforms used in the experiment.
Further, all except for the health engineer had participated in prior field experiments. The core team
was supported by 8–9 field support personnel who assisted with logistics, deployment, and safety.
Finally, a Rajant field engineer participating as an auxiliary team member assisted with network
infrastructure.

11.2. Facilities and Equipment
11.2.1. Environment
FX-6 was conducted at Fort Campbell in Tennessee on the Cassidy CACTF, see Figure 24. Cassidy
is approximately 305 m in diameter and comprises an urban road network connecting approximately
forty-five buildings, including a church, embassy, town homes, and mosque, among others. In addition
to being densely packed, power lines, curbs, trees, and other obstacles permeate the CACTF.

NIWC augmented the CACTF to support experimentation by distributing scenario-based arti-
facts throughout the environment. These artifacts are AprilTags (J. Wang & Olson, 2016) (a type
of fiducial marker) that represent complex objects. For example, AprilTags are used to represent
high value targets, hostiles, improvised explosive devices (IEDs), medics, benign objects, building
labels, and priority intelligence information, among others. Certain AprilTags are coupled with
field nodes that house a Raspberry Pi and Bluetooth Low Energy (BLE) device that enable
interactions between robots and artifacts, e.g., an IED can disable a robot via a Bluetooth
interaction when the robot comes within range of the IED. The specific AprilTag family used
for this experimentation was 48h12. This tag family was used for its nested tag capabilities.
The outer tag could be detected by agents from a further distance and typically only contained
generalized information such as person or object. Only the inner tag revealed the true nature
of a particular fiducial, revealing whether it was benign, hostile, or friendly. Within rise, most
of the inner versus outer tag interaction was handled autonomously by onboard agent logic (see
Section 7). In total, over 8000 m of Ethernet cables, 300 m of optical fiber, 1901 unique AprilTags
(26 dynamic), 136 Raspberry Pi nodes, and 46 network switches were employed to generate the test
scenario.

11.2.2. RISE Swarm
The mission scenario and the venue selected aimed at necessitating a larger swarm from one field
experiment to the next. Therefore, by FX-6, we not only required a large swarm capable of sustaining
a 3.5 hour mission, but one with diverse capabilities to meet varying mission objectives. With this
in mind, we brought a large heterogeneous swarm of 274 platforms as shown in Figure 25. This
composition enabled us to support three operational levels: ground level with ATX platforms, low
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Figure 25. The 274 robotics platforms utilized in FX-6 from left to right: 158 Uvify IFO-S (IFO), 97 Aion R1
(ATX), and 19 Aion (AVT) vertical take-off and landing (VTOL) platforms.

to mid-altitude air with IFO platforms, and high altitude overhead with AVT platforms. Additional
information about each platform type follows.

• Ground. Ground vehicles provide long mission endurance and are more power-efficient than
their aerial counterparts. They can support more payloads and additional hardware without
major impacts to their overall performance. They provide a ground-level operational advantage
with decreased risk of damage during operations. They can better withstand collisions and/or
harsher operations in comparison with aerial platforms. These platforms also have an additional
sensor which is an omnidirectional range scanning lidar (RPLidar A2) which was used for
mapping and localization. The lidar along with wheel encoders allow these platforms to also
perform in GPS denied or restricted environments unlike the other platforms. However, they
have limited traverse-ability and must avoid more obstacles than aerial vehicles, which increases
the time it takes for them to reach their destination. We initially used Kobuki Turtlebots and
custom-built skid-steer rovers. However, to support larger operations, we integrated the AION
R1 rover with our system, where it became the primary ground asset. The R1 rovers use Jetson
TX2 companion boards and are referred to as “ATX” (see Figure 25).

• Quadcopter. Quadcopters provide more targeted control of aerial vehicles and do not require
lateral movement to maintain flight. They are highly maneuverable and can hover as needed,
allowing them to operate in lower altitudes where there are more obstacles. Quadcopters are
capable of traversing the environment in three dimensions, with an ability to go over as well as
under various obstacles, and can navigate to goal positions faster than ground vehicles. However,
there are limitations to the platform, such as the importance of its power:weight ratio to achieve
and sustain lift. Flight time and efficiency are influenced by vehicle weight and payload. There
is also an increased risk of damage, especially when flying in dense environments. We previously
integrated custom-built platforms, as well as the Intel Aero. To support the OFFSET program
and its scope, we integrated and heavily utilized the Uvify IFO-S platform, referred to as the
“IFO” (see Figure 25).

• Fixed Wing. Additionally, we integrated the AION VTOL Tailsitter (AVT) shown in Fig-
ure 25. While this vehicle is more energy-efficient than quadcopters and thus may remain
airborne for longer periods, it must also maintain a minimum airspeed. VTOL type fixed wing
aircraft remove the need for launching mechanisms as well as long take-off runways, and offer the
hovering capability of a quadcopter, but are more susceptible to wind. Utilization of non-VTOL
fixed wing platforms with swarming has led to constraints on the number of platforms one can
launch simultaneously (Chung et al., 2016). However, while VTOL platforms have limited
rotational agility, requiring large open areas to turn, this is countered by their increased flight
time as opposed to quadcopters. Therefore VTOLs are well suited for high altitude operations
such as overhead surveillance.

Every platform further carried a Bluetooth emitter that was used to simulate a payload. Potential
payloads were electronic warfare (EW), antipersonnel (AP), acoustic spoofing (AS), and covering fire
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(CF). These payload types affected agent capabilities, what field node artifacts they could interact
with, and impacted how they were deployed in a mission.

Given the mission duration, maintaining and updating a large swarm is an intensive effort. Aside
from the logistics of maintaining the hardware and performance aspect of the agents, it also requires
the ability to update all agents to the latest software before execution of their missions. rise’s
architectural design allows for the utilization of Ansible to effectively and efficiently deploy software
updates to the swarm. A variety of playbooks were developed for deployments based on update
requirements. These updates can be as discrete as deploying an updated Docker container, robot
extensions codebase, or other components of the platform codebase.

11.2.3. Command and Control
The swarm operator ran rise C2 software on an Alienware laptop comprising a 2.20 GHz
IntelCore™i7-8750H CPU with 32 GB of 2667 MHz DDR4 memory and an NVIDIA® GeFore®

RTX 2080 mobile graphics processor. A mouse was used for all swarm command and control, while
keyboard arrow keys were used to toggle between visualization modes. The swarm health engineer
and swarm commander used a similar system, though the commander only used C2 for situational
awareness. The commander, operator, and engineer operated from the roof of building 3b, shown
at the south side (bottom) of Figure 26.

Figure 26. Fort Campbell Cassidy CACTF augmented with a priori site intelligence provided by NIWC, including
curb (red), wall (green), and powerline (purple) obstacle data as well as sector boundary information. Buildings
were modeled prior to FX-6 from floor plan data site visit information, whereas obstacle data was loaded at the
start of each mission run. The map is oriented so that north is up.
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11.3. Protocol
11.3.1. Scenario
Throughout the OFFSET program, NIWC developed mission scenarios focused on swarm operations
in an urban environment that iteratively evolved since the first field experiment. The mission story
typically centers around an oppositional force (OPFOR) having established a hold on an urban
environment, with primary and secondary High Value Targets (HVTs) spread throughout and
protected by various defensive measures. The objective is then for the blue force swarm (BLUFOR)
to enter the environment, overcome the defensive measures, and secure the HVTs. For FX-6, the
mission statement given in a scenario and experiment guide distributed by NIWC states:

DARPA HQ has received intelligence pointing to the development of a weaponized contagion
that is located in the buildings within the Fort Campbell Cassidy CACTF compound. Blue
forces have established a foothold on the south end (Sector 1) of the CACTF. The primary
assault will take place starting from the south end (Sector 1).

Further, the mission is divided into four phases as follows.

• Phase 0: Swarm Deployment and Intelligence, Surveillance and Reconnaissance (ISR).
• Phase 1: Combat Action and Isolation of Primary Target Objectives.
• Phase 2: Conduct an Urban Raid.
• Phase 3: Seize Key Urban Terrain.

The objective of phase 0 is to deploy the swarm, gather intelligence information about the
environment, maintain surveillance in the area of operation, and maintain situational awareness.
Localization and sensor errors prohibited our ground vehicles from autonomously moving with the
precision necessary to enter buildings, and for this reason, we primarily participated only in phase
0, as later phases required breaching capabilities.

11.3.2. Mission Preparation
The BLUFOR team was given approximately one hour to prepare for each mission run. During this
time, the field operations personnel situated the swarm in their initial deployment zones according
to mission requirements. Since assaults came from sector one per the established scenario, IFO and
ATX platforms were distributed along the south road, using all available space. For safety, AVT fixed
wing platforms were set in an open area east of building 3b, away from most personnel. During this
time, the swarm commander worked with the swarm operator to develop a course of action based on
mission requirements and platform limitations. Once the plan was finalized and platforms placed,
systems were powered on for a communications check. Network issues, when they occurred, were
resolved and the swarm was powered off. Thereafter, the swarm commander briefed the experiment
team, event organizers, and VIP guests on the mission plan and expected outcomes while the swarm
operator separately input the final initial course of action in preparation for the start of the mission.

11.3.3. Mission Execution
After the mission briefing, field operations personnel returned to the deployment zone or took safety
spotting positions throughout the CACTF. Those robots required to execute the initial COA were
powered on, and once a sufficient percentage of the swarm was operational, the swarm commander
began the assault. Throughout a mission run, the swarm commander would monitor the situation,
react to intelligence information, and decide on subsequent courses of action, which the swarm
operator effectuated through C2. The mission continued until the swarm commander called mission
end or the allotted 3.5 hours were exhausted.

11.4. Results
With the field experiments scenario infrastructure in place, rise was able to field its capabilities
and technological innovations in a manner that provided insight into robotic swarm operations.
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Figure 27. Example starting course of action used at FX-6 with obstacles (curbs, walls, and powerlines) removed
for clarity. Details are discussed in Section 11.4.

11.4.1. Command and Control
Figure 27 illustrates one example course of action used at FX-6 used to start a mission run. Since the
Cassidy CACTF possessed trees not included in our virtual environment representation, the swarm
operator manually setup no-go zones to ensure PyC2’s path planner routed around these obstacles.
The swarm operator further used a tactic chain to sequence three events. First, a timer (far left hour
glass symbol) with zero delay initiates a VTOL scan using three AVTs over the orange sketch area.
Next, after a one-minute delay, a second timer initiates three overhead scans, one per blue explore
area, which utilizes the IFO quadcopter assets. Finally, after another minute passes, the third timer
initiates two deploy tactics intended to move ATX ground agents into the northern yellow deploy
zones. Since each deploy zone is connected to a route (white south-to-north sketch lines), agents will
traverse the specified path rather than use a possibly shorter path through the CACTF. A recovery
point (orange point with beacon near building 11) was also set, identifying where IFO agents should
fly to and land when their batteries are low. With this approach, the operator was able to deploy all
available assets and achieve high coverage using only 14 tactic sketch parameters (tactical control
measures) and 9 tactics.

As the mission progressed, the swarm operator was typically directed by the commander to
continue scan operations, including overhead and building scans depending on the situation.
Attempts were made to engage hostiles and breach buildings with ground agents, though localization
and sensor errors often prohibited these advancements.
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In total, 13 unique tactics were used throughout the entire event, two of which employed virtual
hardware sensors. These tactics being operationalized with sketch-based tactic parameters provided
enough flexibility to serve our needs given our platforms’ autonomy limitations. With greater
autonomy in obstacle avoidance and navigation, more tactics would have been required as we would
have put the swarm to other uses, especially in coordinating assaults and securing buildings.

11.4.2. Operational Sustainment
At FX-6, rise was able to maintain operations throughout the allotted 3.5 hours per trial run, with
the ability to extend beyond that. Given the nature of field experimentation with low-cost robotics
in a dense urban environment, attrition such as sensor and system malfunctions, abrupt degradation
in flight conditions, prolonged platform life cycle, and other physical inhibitors is to be expected. Yet
because of operational prudence and our approach to tactics design, the swarm of 274 assets brought
to FX-6 were appropriately provisioned for the two-week event, and despite occasional vehicle colli-
sions with the environment, onsite repairs and revivals of assets allowed for not only swarm sustain-
ment but growth. With each exercise shift, rise provisioned a greater percentage of its assets toward
the mission run such that by the end of the event, rise was able to utilize 174 assets simultaneously
with additional assets on standby to ensure mission sustainment. A key question of the program
was if a single operator could control 150+ drones, and this final result proved that it is possible.

11.4.3. Mission Coverage
Figure 28 shows the detections for approximately the first hour and a half of a run using 100 agents.
Within approximately the first 20 minutes, the swarm was able to detect 600 artifacts and as the
mission went on, even more were detected. Figure 29 shows the mission area coverage over the course
of one run, where the top image illustrates the flight paths of a subset of ten swarm agents and the
bottom image visualizes swarm activity across the environment. These results highlight not only
the full area coverage provided by the swarm, but also that the swarm activities coincide with the

Figure 28. Unique artifact detection events recorded by NIWC’s orchestration software over the first part of
100 agent run at FX-6.
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Figure 29. Agent trajectories (top) and coverage (bottom) recorded by NIWC’s orchestration software over the
course of run at Fort Campbell during FX-6.
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building density of the CACTF. Though these charts and images are only a snapshot of a single run
of the rise swarm during FX-6, they are representative of the consistent ability of rise to deploy
its swarm to cover the entire operational area and perform its mission.

12. Discussion, Lessons Learned, and Future Work
With rise we aimed to demonstrate that a system designed for rapid integration of new technologies
and ideas can be used by a single operator to control a large heterogeneous swarm of autonomous
agents. To this end, we designed an ecosystem informed by our experiences as an integrator who
worked with third parties focused on key features rather than holistic systems. Distilled down to
the set of requirements defined in Section 4.1, these experiences combined with OFFSET program
requirements led us to develop a solution that separates concerns into four core modules—those
pertaining to the user interface, tactics, behaviors, and algorithms. In particular, the separation
of tactics into a module that facilities coordination between agents at a level of abstraction above
the agent, in combination with a sketch-based interface where operations are described in a sketch
language were key in enabling rapid integration and one-to-many swarm control. With PyC2, tactics
development time dropped from weeks down to hours. PyC2 also enabled tactics developers to
focus on how an operator will operationalize a tactic through the user interface (without being a
UI developer), which can then be put into relation with how individual robots are coordinated to
serve a specific tactical objective. Once all modules were in place, we were able to quickly write
tactics that enabled an operator to input a single command that invoked numerous agents, and
the operator did not need to concern their self with individual robot operations, owing in part to
behavior level autonomy. As such, rise successfully enabled a single operator to simultaneously
control 174 platforms in the real world. This may effectively increase a Soldier’s span of control in
the future to 1 Soldier to 150+ platforms, in contrast to the current paradigm today of 1:1. Swarm
control for operators is enabled through our C2 interface and tactics development tools.

In contrast to most prior work in swarming, rise has been operated on hardware in real
environments since the very beginning. We have fielded and tested at 5 military ranges, with more
field work planned in the future. Field robotics at the scale of swarming brings many challenges,
but swarm logistics is also a ripe area for new research.

In this discussion, we highlight the topics of Swarm Engine C2, tactics development, and field
robotics, offering lessons learned and future work for each topic.

12.1. Swarm C2
We designed Swarm Engine C2 so that a single operator would be able to command a large
scale swarm. We demonstrated through field experimentation that it was possible for an operator
to sustain continuous operations over an extended period of time, while maintaining sufficient
situation awareness. Difficulties that arose during testing were primarily due to hardware errors
and insufficient automation. In these situations, the operator was unable to generate new swarm
level work and agents were left idle. These circumstances were due to the nature of the program and
experimentation, as they do not reflect normal operations as they would occur in practice. Robot
swarm hardware improvements (rather than our rise platform) in combination with new tactics
already under development will overcome these issues, thereby allowing the operator to work as
intended. Once these tactics are available, a full simulation-based user study will be warranted.

Our user interface was designed to be customizable so that operators could select memorable
gestures based on their personal experiences and associations. We found, however, that our team used
those gestures that were defined by the engineer who implemented the associated feature. Because
it is known that individually defined developer gestures are less favorable than those proposed
by large groups (Morris, Wobbrock, & Wilson, 2010), there were sometimes memorability issues.
That is, as expected, individuals are able to learn our interface commands, but the gesture set was
not optimal. And although customization enables rapid prototype in the short term, over a longer
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period of time, as swarm tactics mature and become standardized, we anticipate a need for periodic
elicitation studies and agreement analysis (Vatavu & Wobbrock, 2015). As a result, swarm sketch
grammars will become codified in the same way that mathematical, circuit diagram, and military
iconography have all been standardized.

12.2. Tactics Development Through PyC2
PyC2 was a late development that came about during the second phase of the OFFSET program.
Prior to PyC2, tactics were written partly in C2 and partly in robotics code, which proved to be
cumbersome, time-consuming, and limiting. Thus PyC2 was born out of a need to accelerate tactics
integration and enable nonroboticists with the ability to develop new tactics (see Requirement 4).
Once in place, our team rapidly developed and iterated numerous tactics, including those that led to
a substantial performance improvement between the third and fourth field experiments. Being able
to write new tactics without having to modify C2 and with the aid of sketches and context proved
to be a valuable tool. Tactics development only slowed down due to platform limitation issues and
the need for our team to turn its attention toward other priorities. With PyC2, we also saw an
increase in sprinter integrations, as outlined in Section 10.

One key issue we plan to address near term is that PyC2 is a fracture critical component. This
means that if PyC2 fails or is unable to communicate with an agent, we are unable to command
the swarm. Our solution is to enable PyC2 to run directly on robot platforms with an improved
bidding protocol that better enables collaborative tasking. In this way, PyC2 tactics, integration,
and development are unaffected, yet PyC2 becomes a distributed system.

12.3. Field Robotics
rise is developed with a bottom-up approach, so all overall tactic performance depends upon agent
abilities to reliably complete tasks. When agents are unable to perform tasks reliably, this leads
to a cascade problem of additional agents having to step in to take the tasks that failed or forces
the swarm commander to re-think their approach to a mission. Most task failures were caused by
individual agents’ inability to accurately localize and navigate through the environment. Navigation
and localization is an ongoing research area of robotics, especially in urban environments. Pushing
forward in these areas will further increase the swarm’s effectiveness and allow for even more complex
agent behavior in the future.

With the scale of the rise swarm, logistics and overall platform maintenance (both hardware
and software) is a large problem. For example, over time, damage occurs to agents’ sensors or
motors and requires troubleshooting and/or repair. From a software perspective, every platform is
running a unique release of its given codebase as well as particular firmware for its flight controller.
Both of these systems needed to be up-to-date on all platforms in use to ensure consistent swarm
operations between platforms. Also, the platform’s FCU (e.g., the Pixhawk) requires calibration, and
though this is not necessarily an intensive process, it becomes a high level of effort when it comes
to calibrating the numerous platforms in the swarm. Additionally, even though on paper all the
platforms subgroups were identical, we noted a lack of consistency from platform to platform, which
added complications to platform development. By utilizing Ansible and Docker, we were able to
create manageable platform update procedures for agent codebases and could deploy to 50 assets
in 5–15 min, depending on the amount of update required. Firmware updates and calibration
were still an ongoing pain-point over the course of the program. Future work would potentially
involve either more direct involvement in firmware codebases, removing our dependency on these
subcomponents or working more closely with manufacturers to help manage these aspects.

By leveraging flexbe, we established a strong foundation given our system’s bottom-up approach
to tactic development. The reusability of state development and simple drag and drop primitive
creation based on underlying algorithms or states allowed for rapid creation of new agent behaviors.
In the end, however, it seems as though there has been a large push beyond hierarchical state
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machines and into behavior trees. While flexbe could theoretically support this capability, it does
not currently exist within the system. As our system and architecture has evolved over the last
4 years, we discovered that flexbe and PyC2 have potential to be duplicative in the future. For
example, it is still an open question as to whether certain logic flow should exist within the agent
codebases in primitives or at the tactic level within PyC2.

Utilizing ROS was an absolute necessity when designing rise, and it would be our team’s choice
again. We do however wish that the ROS 2 transition occurred earlier. We were often a little too
early to adopt each new ROS 2 feature. We believe that as ROS 2 matures, the future decentralized
concept of no ROS master will be a powerful tool in future swarm algorithm development and swarm
development in general.

13. Conclusion
Our Rapid Integration Swarming Ecosystem (rise) provides a platform for future multi-agent
research and deployment. Using both physical and simulated swarms, we demonstrated rise’s rapid
integration of third-party swarm tactics and behaviors. Our physical testbed, composed of more
than 250 networked heterogeneous agents, has been extensively tested in mock warfare scenarios
at five CACTF sites. With our live, virtual, constructive (LVC) simulation capabilities, rise allows
the use of both virtual and physical agents simultaneously. Other simulation advances such as our
“fluid fidelity” concept and super real-time simulation enable rapid swarm tactic prototyping. Our
gesture-based interface enables an operator ratio greater than 1:150, making rise a massive force
multiplier. Together, these feature allow rise to translate mission needs to robot actuation and
swarm operation with unprecedented ease and flexibility.
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(Eds.), Swarm robotics (pp. 103–115). Berlin, Heidelberg: Springer Berlin Heidelberg.

Clark, S., Usbeck, K., Diller, D., & Schantz, R. E. (2021, March). CCAST: A Framework and
Practical Deployment of Heterogeneous Unmanned System Swarms. GetMobile: Mobile Computing
and Communications, 24 (4), 17–26. doi: 10.1145/3457356.3457362

Crandall, J. W., Goodrich, M. A., Olsen, D. R., & Nielsen, C. W. (2005). Validating human-robot interac-
tion schemes in multitasking environments. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 35 (4), 438–449.

Cummings, M. L., Nehme, C. E., Crandall, J., & Mitchell, P. (2007). Predicting operator capacity for
supervisory control of multiple uavs. In Innovations in intelligent machines-1 (pp. 11–37). Springer.

DARPA. (2017, February 15). Broad agency announcement, offensive swarm enabled tactics (offset) (No.
HR001117S0011).

Dasgupta, P., Baca, J., Guruprasad, K. R., Muñoz-Melendez, A., & Jumadinova, J. (2015). The
COMRADE System for Multirobot Autonomous Landmine Detection in Postconflict Regions. Journal
of Robotics, 2015 . doi: 10.1155/2015/921370

Davis, D. T., Chung, T. H., Clement, M. R., & Day, M. A. (2018). Multi-swarm Infrastructure for
Swarm Versus Swarm Experimentation. In R. Groß et al. (Eds.), Distributed Autonomous Robotic
Systems (Vol. 6, pp. 649–663). Cham: Springer International Publishing. doi: 10.1007/978-3-319
-73008-0_45

Deering, D. S. E. (1989, August). Host extensions for IP multicasting (No. 1112). RFC 1112. RFC
Editor. Retrieved from https://www.rfc-editor.org/info/rfc1112 doi: 10.17487/RFC1112

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., … Vaussard, F. (2013,
December). Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic Swarms. IEEE
Robotics & Automation Magazine, 20 (4), 60–71. doi: 10.1109/MRA.2013.2252996

Dorigo, M., Theraulaz, G., & Trianni, V. (2021, July). Swarm Robotics: Past, Present, and Future [Point
of View]. Proceedings of the IEEE , 109 (7), 1152–1165. doi: 10.1109/JPROC.2021.3072740

Drew, D. S. (2021). Multi-agent systems for search and rescue applications. Current Robotics Reports,
2 (2), 189–200.

Edwards, S. J. (2000). Swarming on the battlefield: past, present, and future. RAND NATIONAL
DEFENSE RESEARCH INST SANTA MONICA CA.

Edwards, S. J. A. (2005). Swarming and the future of warfare (PhD Dissertation). Pardee RAND
Graduate School, Santa Monica, CA.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human factors,
37 (1), 32–64.

Engebråten, S., Nummedal, O. R., Gilbreath, D., Yakimenko, O., & Glette, K. (2019). Uav swarm with
mesh radios: Development update (Tech. Rep.). EasyChair. Retrieved from https://easychair.org/
publications/preprint/XxRx

Field Robotics, March, 2023 · 3:460–515

http://www.cse.yorku.ca/~oz/hash.html
https://www.rfc-editor.org/info/rfc1112
https://easychair.org/publications/preprint/XxRx
https://easychair.org/publications/preprint/XxRx


From warfighting needs to robot actuation: A complete rapid integration swarming solution · 511

Fernandes, A., Couceiro, M. S., Portugal, D., Machado Santos, J., & Rocha, R. P. (2015). Ad
hoc communication in teams of mobile robots using zigbee technology. Computer Applications in
Engineering Education, 23 (5), 733-745. Retrieved from https://onlinelibrary.wiley.com/doi/
abs/10.1002/cae.21646 doi: https://doi.org/10.1002/cae.21646

Furuhashi, S. (2021). Messagepack. https://msgpack.org/. (Last accessed 26 January 2022)
Giles, K., & Giammarco, K. (2017). Mission-based architecture for swarm composability (masc). Procedia

Computer Science, 114 , 57–64.
Hamer, M., & Ortega-Sanchez, C. (2010). Simulation platform for the evaluation of robotic swarm

algorithms. In Tencon 2010-2010 ieee region 10 conference (pp. 1583–1588).
Hammond, T. A., Logsdon, D., Paulson, B., Johnston, J., Peschel, J., Wolin, A., & Taele, P. (2010). A

sketch recognition system for recognizing free-hand course of action diagrams. In Twenty-second iaai
conference.

Harabor, D., & Grastien, A. (2011). Online graph pruning for pathfinding on grid maps. In Proceedings
of the aaai conference on artificial intelligence (Vol. 25).

Hocraffer, A., & Nam, C. S. (2017). A meta-analysis of human-system interfaces in unmanned aerial
vehicle (uav) swarm management. Applied ergonomics, 58 , 66–80.

Hoebeke, J., Moerman, I., Dhoedt, B., & Demeester, P. (2004). An overview of mobile ad hoc networks:
applications and challenges. Journal-Communications Network, 3 (3), 60–66.

How, J. P., Behihke, B., Frank, A., Dale, D., & Vian, J. (2008, April). Real-time indoor autonomous vehicle
test environment. IEEE Control Systems Magazine, 28 (2), 51–64. doi: 10.1109/MCS.2007.914691

Internet Protocol (No. 791). (1981, September). RFC 791. RFC Editor. Retrieved from https://
www.rfc-editor.org/info/rfc791 doi: 10.17487/RFC0791
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Appendix A. Full Tactic Example
Listing 3 presents the full Hold Position tactic. An operator uses this tactic to move a number of
agents onto a sketched path surrounding an object or structure of interest, with all agents facing
inward. Detailed comments are provided for comprehension.

1 c l a s s HoldPos i t ion ( Tact ic ) :
2
3 # Tact ic d e s c r i p t i o n data that i s sent to C2 during r e g i s t r a t i o n .
4 T a c t i c D e f i n i t i o n = T a c t i c D e f i n i t i o n (
5 ’ Hold P o s i t i o n ’ ,
6 ’Move a s e t o f agents to p o i n t s along the p e r i m i t e r and hold . ’ ,
7 ’ square ’ ,
8 context = SketchInputTypes . Path ,
9 parameters = [

10 TacticParameter (
11 ’ A l t i t u d e ’ ,
12 ’ Height in meters that agent w i l l assume . ’ ,
13 f l o a t ,
14 6) ,
15 TacticParameter (
16 ’ Duration ’ ,
17 ’How long to hold in seconds . ’ ,
18 f l o a t ,
19 10000) ,
20 TacticParameter (
21 ’ Agent Count ’ ,
22 ’Number o f agents to p l a c e along per imeter . ’ ,
23 int ,
24 8) ] ,
25 r e q u i r e s =[MoveTo ] )
26
27 de f __init__ ( s e l f , task ) :
28 ””” ”””
29 super ( ) . __init__ ( task )
30
31 # P r o j e c t onto XZ ground plane
32 p o l y l i n e = task . parameters . context . pts [ : , ( 0 , 2 ) ]
33 count = task . parameters . agent_count
34 p o s i t i o n s = resample ( p o l y l i n e , i n t ( count + 1) )
35
36 # Throw out l a s t po int because i t d u p l i c a t e s f i r s t
37 p o s i t i o n s = p o s i t i o n s [ : − 1 ]
38
39 # Get inward heading at each point based
40 # on winding o f path
41 vecs = get_inward_vectors ( p o s i t i o n s )
42 headings_deg = vecs_to_headings_deg ( vecs )
43
44 # Create a task f o r each hold p o s i t i o n
45 f o r pt , heading_deg in z i p ( p o s i t i o n s , headings_deg ) :
46 pt = [ pt [ 0 ] , task . parameters . a l t i t u d e , pt [ 1 ] ]
47
48 # Use robot MoveTo p r i m i t i v e to command agent .
49 c h i l d = MoveTo(
50 parent = s e l f ,
51 poses_xyz = [ pt ] ,
52 headings_deg = [ heading_deg ] ,
53 durat ions_s = [ task . parameters . durat ion ] ,
54 s e l e c t e d _ a g e n t s = task . s e l e c t e d _ a g e n t s )
55
56 s e l f . t a s k s += [ c h i l d ]
57
58 # Send a l l c h i l d r e n t a s k s to the task manager
59 s e l f . execute ( )

Listing 3. Full tactic implemented in PyC2.

Appendix B. Network Parameters
We changed several PGM parameters from their default values to allow for more efficient use of our
limited network resources. First, we reduced the ambient SPM rate to 1

30 Hz, and only transmit
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a single end-of-transmission “heartbeat” SPM 30 seconds after the last data transmission. Most
importantly, we increased the NAK back-off interval to two seconds, the NAK repeat interval to 10
seconds, and reduced the allowed NAK retry attempts to 3. We further increased the NAK repair
data interval to 800 ms and set a maximum repair data rate of 1 KB/s. Together, these adjustments
prevent flooding and network breakdown in the case of serious communications disturbances, while
still allowing for an acceptable measure of reliability.
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