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Abstract: Due to the harsh environment and heavy use that modern marine vessels are subjected
to, they are required to undergo periodic inspections to determine their current condition. The
use of autonomous remote inspection systems can alleviate some of the dangers and shortcomings
associated with manual inspection. While there has been research on the use of robotic platforms,
none of the works in the literature evaluates the current state of the art with respect to the
specifications of the classification societies, who are the most important stakeholders among the
end users. The aim of this paper is to provide an overview of the existing literature and evaluate the
works individually in collaboration with classification societies. The papers included in this review
are either directly developed for, or have properties potentially transferable to, the marine vessel
inspection process. To structure the review, an expertise-engineering separation is proposed based
on the contributions of the individual paper. This separation shows which part of the inspection
process has received the most attention, as well as where the shortcomings of each approach lay. The
findings in this review indicate that while there are promising approaches, according to our metrics
there is still a gap between the classification societies’ requirements and the state of the art. Our
results indicate that, even though there is a lot of quality work in the literature, there is a lack of
integrated development activities that achieve a level of completeness sufficient for the classification
societies to confidently use them.

Keywords: marine vessel inspection, remote inspection technique, classification society, deep learn-
ing, autonomous robots

1. Introduction
One of the most efficient ways of transportation is by sea, which, according to the United Nations
Conference on Trade and Development (2019), constitutes over 80% of merchandise trade by volume.
It is critical for the environment that marine vessels—especially the large vessels that transport
cargo—are safe to operate to minimize the risk of contamination, e.g., oil spills or more abrupt
catastrophes such as explosions.
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Figure 1. Example of a drone flying in a ballast tank. If equipped with the right sensory equipment accompanied
by a high level of autonomy, the drone can replace human surveyors in the hazardous environments present in
the ballast tanks of modern marine vessels.

The International Maritime Organization (IMO) is a specialized agency of the UN and the
authority in setting standards for safe shipping. Its main contribution is a universally adopted
regulatory framework ensuring that ship owners cannot sacrifice safety for increased market advan-
tages. The level playing field set by the IMO covers all aspects of shipping, including construction
and maintenance of marine vessels (International Maritime Organization, 2015).

The regulations dictate that cargo vessels have to undergo periodic inspections where, among
other tasks, the condition of the vessel is assessed. The main goal of these inspections is to find
any defects present on the vessel that may reduce its structural integrity and thus pose a risk of
failure during operation. Examples of the most important areas that undergo inspections are shown
in Figure 3. The actual inspection is carried out via a collaboration between the vessel owner and a
classification society or a class-certified surveyor that enforces the regulations set by IMO. It is up to
the individual classification society how they ensure that the regulations set by the IMO are adhered
to, and it is thus up to them what technologies and assisting tools they deem suitable for use in the
assessment. For this reason, 12 classification societies have formed the nongovernmental International
Association of Classification Societies (IACS) (International Association of Classification Societies,
2016), which provides technical support and guidance on the unified regulations set by the IMO.
Additionally, they provide support when amendments and changes to the existing regulations occur
or new regulations are added.

One of the emerging technologies that classification societies are adopting at an increasing rate
is the use of drones (an example of a drone flying in a ballast tank is shown in Figure 1). They serve
the purpose of removing human surveyors from the hazardous and unfriendly environments present
on a vessel during inspections while still allowing the acquisition of sensory information used in the
assessment.

With the recent increased availability of viable drone solutions and the advances in image
processing and recognition, the works in the literature trying to automate the inspection process
have also increased. The existing literature tends to either focus on detecting defects (Zheng et al.,
2002; Ji et al., 2012; Bonnin-Pascual and Ortiz, 2014; Liu et al., 2019), or to provide drones capable
of reaching the areas that are difficult to access while balancing the tradeoffs of equipment payload,
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(a) (b)

Figure 2. Examples of marine vessels (a) during operation and (b) during maintenance in a dock.

(a) (b) (c)

Figure 3. Examples of areas on a modern marine vessel that have to be inspected: (a) cargo hold, (b) ballast
tank (specifically top-side tank), and (c) the outside hull of a vessel.

drone size, operation time, etc. (Ozog and Eustice, 2016; Hover et al., 2012). The IACS has defined
some recommendations for how these Remote Inspection Technique Systems (RITS) should operate;
however, the general interpretation of it is that any RITS has to be able to represent the same quality
of information that a surveyor being physically present would be able to acquire (International
Association of Classification Societies, 2016). Thus there are no clear definitions or requirements for
the drone, as long as the assessment does not suffer in quality. Thus, a complete/perfect RITS should
be capable of delivering the same level of quality inspection as a human surveyor, with all the added
benefits of task automation such as easier standardization, repeatability, increased precision, etc.
Specifically, the repeatability is of great importance since a vessel (shown in Figure 2) can contain
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more than 600 000 m2 of steel, which has to be visually inspected within a 1–2 m observation
distance. It is nearly impossible for a human surveyor to maintain focus for the time required to
inspect such an amount of steel, resulting in varying and subjective inspections (Ortiz et al., 2016b).

Though it is clear that some progress has been made, it is unclear how close to a complete RITS
any single work or collection of works has come, since there exists a general lack of evaluation
concerning the regulations as a whole. Thereby, it is hard to quantify how close the community has
come to a realistic solution that the classification societies can use.

A previous survey (Bonnin-Pascual and Ortiz, 2019) evaluated the technological advances,
particularly within marine vessel inspection. They present defect detection as the detection of cracks
and corrosion and robotic platforms suitable for marine vessel inspection. While they provide a
comprehensive list of the state of the art, they do not address all of the criteria for a solution to
be viable for the classification societies, such as being able to quantify the defects or detecting the
type of corrosion.

This paper strives to fill this gap and, in collaboration with a classification society (Lloyd’s
Register, 2018), evaluate the current status of how close the state of the art is to a fully functioning
RITS. This is done by separately investigating a) the expertise and b) the engineering challenges
present when capturing information to apply that expertise. Specifically, this paper is interested
in identifying the existing works in the literature that encapsulate both the expertise and the
engineering as shown in Figure 4. For this paper, expertise is defined as the knowledge and
the associated processing ability to assess the condition of a vessel given a selection of sensory
information. The engineering aspect concerns the acquisition of the information while raising
the autonomy level higher than that of a fully teleoperated drone solution. Thus, engineering
encapsulates the physical hardware and control software needed not only to autonomously navigate
the relevant inspection areas of the marine vessel but to additionally ensure that the requirements
for applying the expertise can be fulfilled with sufficient sensory information.

Works of
interest

Expertise

Detection
Evaluation

Experience
Assessment
Quantification
Classification
Resolution
Calibration

Repairability
Consistency

Inspection knowledge

Engineering

Obstacle avoidance
Equipment/tools

Drone stability
Measurement

Localization
Navigation

Positioning
Control

Figure 4. The role of the expert surveyors is to supply their vessel inspection knowledge. However, this knowledge
has to be based on sensory information that binds said knowledge to a specific physical context. Thus, any solution
attempting to automate a process will have to both capture expertise and gather information. In the context of
marine vessel inspection, the knowledge relates to defect detection, classification, and repairability. Engineering
relates to supplying the necessary information and navigating the vessel. Thus, in the current work, the literary
works of interest are those that tackle the overlap between these two concepts.
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In Section 2, the approach employed to evaluate the progress of the state of the art is presented.
The metrics defined in Section 2 will be used to score the existing literature within what has been
defined as expertise in Section 3 and engineering in Section 4.

2. Metrics definition
The assessment parameters of the marine vessels are derived from the type of materials used for their
construction, and they are defined by the classification societies. An example is that the condition
of the paint (coating) is assessed to be either good, fair, or poor if there is less than 3%, between 3%
and 20%, or more than 20% corrosion, respectively. Similarly, cracks are quantified by their location
and physical sizes, such as length and width.

The main job of a surveyor is to document the type of defect, its location, and severity—which in
this paper are collectively referred to as expertise since it encapsulates the knowledge and training
of the surveyor. Similarly, the engineering aspect is the technology needed to support the expertise.
Analogously, for a manual inspection process, this could be the modular scaffolding or the mobile
lights required to inspect all areas of the vessel. The following section is a description of how
the existing literature is evaluated. The goal of this work is to quantify the development by the
community so that it is possible to identify solutions that solve the engineering challenges related
to using autonomous drones in confined spaces and/or that try to capture the expertise of human
surveyors by evaluating sensory information to assess the condition of marine vessels.

2.1. Expertise
Though there exist defined criteria with regard to the condition of a vessel, few papers in the
literature compare against them and, instead, tend to use standard image processing metrics such
as confusion matrices and intersection over union. Even though such an approach evaluates the
performance of the detection algorithm—and is thus important—it does not reveal whether any
progress is being made towards the actual goal of assessing the condition of the vessel in relation to
the unified requirements. In this paper, the existing literature is evaluated on six different parameters
that represent either parts of the survey used to document the vessel condition or the level of
autonomy that the literature is trying to introduce into the assessment process.

Seen from the point of view of the surveyor, some of the tasks related to vessel inspection can
be more critical than others. For instance, to the surveyor it may be more important that the
autonomous evaluation can detect the type of defect, rather than just being able to determine its
location. For this reason, the importance of each evaluation metric is weighted by a classification
society (Lloyds Register). The weight ranges from 1 to 4, with 4 being most important and 1 being
least important.

The final score of the existing literature will then be given by the following formula:

Score = wi · vi∑
i wi

(1)

where wi denotes the weight given by the classification society, and vi is the score given for the
metric i. The purpose of this evaluation is to quantify the minimum level of expertise captured by
any method before it can realistically be considered by the classification societies. The weights given
by the classification societies are normalized to be within the same interval as the scoring of the
metrics used. For instance, if there is a metric that the classification societies consider essential, but
none of the methods score high on this metric, the overall score of the method should be lowered
since the presented method would not be of interest to the classification societies. The metrics used
are the following, and a definition of the metrics can be found in the related section:

1. Defect detection (Section 2.1.1)
2. Defect location (Section 2.1.3)
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Table 1. Examples of how a score is assigned.
Example Score

Defect type
A work that performs binary classification (i.e., it only concerns the presence of defects/corrosion or
otherwise abnormalities).

0.1

A work that actively includes one of the corrosion types stated by the classification society. 0.5
A work that actively includes all of the corrosion types stated by the classification society. 1.0

Defect location
A work that classifies on a whole image basis without respecting spatial location in any form. 0.0
A work that provides bounding boxes or otherwise proposes some weak form of localization (e.g.,
through recursive detection) and is strictly bounded to the image plane.

0.5

A work that provides low-level positioning of the defect with respect to some extrinsic reference frame. 1.0
Defect quantification

A work that does not quantify any detection. 0.0
A work that is able to quantify the detected defects. 0.5
A work that is able to quantify the detected defects such that they can be compared against the
existing metrics used by the classification society.

1.0

Autonomous evaluation
A work that relies heavily on manual operation to function, e.g., a surveyor has to traverse the area
with some equipment or remove samples from the vessel to analyze off-site.

0.0

A work that functions to partially automate the evaluation process but still relies on some human
interaction, e.g., for result interpretation.

0.5

A work that is able to carry out the entire evaluation process without any prior existing system
knowledge.

1.0

Flexibility
A work that is dedicated to inspecting a single specific element of the marine vessel. 0.0
A work that is dedicated to inspecting parts of a single area of the marine vessel (e.g., parts of the
hull).

0.5

A work that is able to be deployed in one, or more, areas of the marine vessel that requires inspection. 1.0

3. Defect quantification (Section 2.1.4)
4. Autonomous evaluation (Section 2.1.5)
5. Flexibility (Section 2.1.6)

To increase reproducibility, Table 1 shows some general examples of what each scoring means.

2.1.1. Defect detection
The ability to detect defects based on sensory inputs is a prerequisite to the works evaluated in
this paper. The necessity of this parameter is to sort out approaches that only process or otherwise
transform sensory information before any real assessment or evaluation is done. Since this metric is
a prerequisite to be considered at all in this evaluation, it has been left out of the final scoring as it
only adds a constant bias to all the works evaluated.

2.1.2. Defect type
To identify the severity, the type of defect is important since the maintenance process changes
depending on how the vessels’ structural integrity is affected. In the standards set by IACS
(International Association of Classification Societies, 2016), there are 4 main defect types: cracking,
deformation, coating breakdown, and corrosion. It is these types of defects that a surveyor inspecting
the structural integrity of a vessel is expected to document and base a final vessel classification on.
The underlying relevance of the defect type is determining the likelihood of failure and propagation
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(e.g., a growing crack), which vary among the four types. Thus, it is fundamental that in order to
achieve a complete, or close to complete, autonomous inspection process, any solution or algorithm
has to be able to identify the type of defect such that it can be documented in a vessel condition
report. Since there are multiple types of defects to be detected, the score has to reflect how many
of the necessary defects can be identified. The classification society weighted this as 4, with the
reasoning that the type of defect is important to estimate the severity of the defect and thereby the
extent of necessary repairs.

2.1.3. Defect location
To efficiently plan any work for maintenance, the location of any defect is required. In this paper,
the location of the defect is not necessarily with respect to the vessel itself, but rather just to a fixed
frame. The fixed frame can either be the physical location in relation to the vessel or with respect
to some other frame such as a sensor frame. Depending on the area of the vessel being inspected,
the location can be of higher or lower importance. Generally, the primary structures (e.g., traverse
bulkhead, longitudinal bulkhead) are of more importance than secondary structures (e.g., stiffeners,
sides, deck, bottom). The surveyor documentation requires that the defects are located with respect
to the vessel structure, rather than an arbitrary relative frame (e.g., a camera sensor). This has
to be reflected in a score. The weight given to this metric by the classification society is 3, as the
location of the defect is important but not critical, since larger areas could be scanned in smaller
increments and thereby still reduce the total area requiring subsequent manual inspection.

2.1.4. Defect quantification
A critical part of documenting the condition of the vessel under assessment is to quantify the defects.
In some cases, like cracks, this requires physical measurements in terms of length and width, but for
other cases the quantification is more ambiguous. One such case is corrosion, which is measured in
the percentage of the area under consideration (Lloyd’s Register, 2018). For visual sensory inputs
like imagery, a scale readout is required. If this is not provided, the physical size of the defects is
subject to perspective distortions. Similarly, imagery data must be accompanied by some form of
image quality indicator along with a calibration procedure that ensures the quality of the sensory
information. Similar to defect type, there are multiple ways of quantifying defects, and thus the score
has to reflect how many ways any solution or algorithm can quantify defects. With similar reasoning
to that for defect location, the metric is given a weight equal to 2. Specifically, the quantification of
the defects can in some scenarios be done manually without losing the advantages of an otherwise
autonomous solution.

2.1.5. Autonomous evaluation
Some of the proposed solutions in the literature may attempt to only assist the existing manual
inspection process. This can, for instance, be achieved by evaluating gathered data offline or by
representing it intuitively but still relying on manual inspection. The autonomous evaluation score
is thus an encapsulation of how many manual processes are required to be performed for the
autonomous inspection. The classification society weighted this metric with a value of 1 since the
goal of using autonomous solutions is to remove the human surveyor from hazardous environments.
Thus, if the human surveyor is required to be present in the evaluation process, the benefits of
performing autonomous evaluations diminish.

2.1.6. Flexibility
Marine vessels contain diverse types of areas that require inspection for defects, ranging from large
open spaces such as cargo holds, to small confined spaces like ballast tanks. The need for this metric
is to identify the works in the literature that focus on specific areas and those that can perform
inspections in multiple areas of the vessel. An example of this distinction is a solution that only
works in water on the outside hull of the vessel, and a solution that can be used in cargo holds,
vessel hulls, and ballast tanks. Flexibility was given a weight equal to 4 by the classification society
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with the reasoning that a significant motivation for using a RITS is the ability to reach otherwise
hard-to-access areas. Such areas are present all over the vessel, and being able to use the same
solution for multiple areas of the vessel is of great importance.

2.2. Engineering
The engineering aspect of performing inspections is the process of acquiring the information required
to utilize or apply the expertise. If the inspection is performed on the vessel hull while in water, the
engineering aspect is to create a solution that can navigate in water. Since expertise and engineering
are separate, this category will also include all those solutions that utilize different forms of drones in
a teleoperation setting and still rely on human surveyor expertise for the actual assessment. A pure
teleoperated solution still solves many of the challenges present in the current way of performing in-
spection, such as removing the human surveyor from the hostile environment present in ballast tanks.
However, a significant part of the engineering challenge is to be able to traverse the vessel, and since
this has to include some form of autonomy, the engineering score used to evaluate the existing litera-
ture is derived by the Society of Automotive Engineers (SAE) (SAE International, 2021). This adap-
tion consists of six steps with increasingly higher requirements for the level of automation. Note that
this is a sequential score, i.e., it is not possible to attain level 3 without having attained level 2, etc.:

1. No Automation (Section 2.2.1)
2. Assistance Automation (Section 2.2.2)
3. Partial Automation (Section 2.2.3)
4. Conditional Automation (Section 2.2.4)
5. High Automation (Section 2.2.5)
6. Full Automation (Section 2.2.6)

2.2.1. No Automation
Any drone that is fully controlled by the operator at any given time with only very basic
functionalities is considered a nonautonomous drone. Either the operator of the drone must be
physically present in the same area the drone is flying in, or a live video feed from the drone has to
be transmitted to them. It is at this level of automation that most consumer drones reside.

2.2.2. Assistance Automation
Assisted drones can traverse simple environments controlled by the operator while providing a pose
estimate for the operator. A complete description of the environment is available to the drone, and
any actions the drone has to perform are executed by the operator. Similarly, it is up to the operator
to decide which actions/tasks must be performed. Thus the most significant advancement of the
works at this autonomy level is that the drone is capable of estimating its position.

2.2.3. Partial Automation
A partially automated drone maintains its ability to return pose estimates within the environment
and gains the skill to map the environment while moving around. The operator still has to manually
move the drone to the inspection area, but the drone can generate and follow a local inspection
trajectory under the supervision of the operator.

2.2.4. Conditional Automation
At this automation level, the drone possesses the ability to observe and adapt trajectories as it
traverses the environment. The interference of an operator is limited to specifying the type of
environment, and it only interrupts in rare situations. The main milestone is the capability to plan
local actions such as trajectories to solve a task, and the drone being capable of adapting to a
changing and somewhat dynamic environment. In theory, therefore, it is no longer required for
the operator to maintain focus on a single drone, as the automation level is high enough for both
traversing the environment and adapting to changes in the environment.
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2.2.5. High Automation
Employing highly automated drones, the role of the operator is shifted from using the drone as
a tool to managing the information gained from the task the drone is solving. Thus, the drone
no longer requires monitoring, and it can initiate new tasks required by the operator. The drone
itself will determine when, where, and what has to be done. At this level, the drone is capable
of giving a consistent stream of information related to inspections of the vessel from which a
continuous estimation of the condition can be made. It is up to the drone to ensure that the dynamic
environment is explored, and, based on sensory information, that it can solve the task it was given
at launch. At this level, it is still required for the operator to initiate the drone to begin execution.

2.2.6. Full Automation
In the full automation category, the drone learns from past experiences to improve the execution
efficiency of the task. The drone is able to perform under any conditions in which an operator would
normally operate.

3. Assessment of the Literature with regard to Expertise
The premise of being able to apply expert knowledge is the presence of information that can be
interpreted. This information can come from a wide variety of sources, such as visual images,
nonvisual images, ultrasonic measurements, or even statistical methods used to describe areas at risk
as a function of vessel age, type, previous assessment, etc. The process of applying expertise to this
information can be manual, semiautomatic, or automatic. Applying the expertise manually involves
human surveyors assessing the sensory information and, based on their experience, classifying
the condition. Similarly, semiautomatic solutions can consist of tools that automate parts of the
inspection process, such as easing the documentation process or by only fulfilling some of the defect
metrics described in Section 3.

It is not only within marine vessel inspection that attempts have been made to automate the
inspection process by capturing the expertise in the form of sensory input followed by an artificial as-
sessment. Such examples can be found in railways (Hodge et al., 2015), bridge structures (Jahanshahi
et al., 2009), wind turbine blades (Eich and Vögele, 2011), and tunnels (Balaguer et al., 2014). Earlier
surveys on inspection also date far back in time (Newman, 1995). Thus, there exists a wide interest in
automating the inspection processes, and since the elements used in many large construction efforts
consist of roughly the same materials, e.g., steel and concrete, a solution not directly intended for
marine vessel inspection may include the same components required for this application, too.

For this paper, however, we are focused only on existing literature work directly related to marine
vessel inspection due to it being unfeasible to test all existing works on inspection processes on marine
vessels. As with many inspection processes, the inspection of marine vessels currently relies on visual
inputs from the human surveyor, and thus many attempts at automating the inspection process use
visual cameras. The following section reviews the attempts to assess the condition of marine vessels
by categorizing them into spatial-domain, wavelet, histogram, and deep learning methods. Finally,
for the sake of completeness, a subsection is reserved to present the works that attempt to evaluate
the corrosion using nonvisual methods.

3.1. Spatial-domain-based methods
Not only has corrosion been detected with image processing, but cracks and other types of defor-
mations have received attention as well. Zheng et al. (2002) used a camera to capture information
of a sample of metal, which is then analyzed using a combination of thresholding and morphology.
The parameters for the morphology process are learned through a genetic algorithm. The main
disadvantage of this method is the requirement to obtain a sample of the metal to be inspected.
This makes it infeasible for large-scale vessel inspection.

Segmentation of corrosion in images is a task that desirably gives an exact location of the corrosion
in the image. One of the ways to segment an image is to perform a watershed transform (Vincent
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et al., 1991). One of the great challenges when performing a watershed transform for corrosion
detection is segmentation, specifically when the image contains noise. Ji et al. (2012) presented
an improved watershed transform where the incorporation of the value and brightness of each
pixel together with the canny operator was proposed (Canny, 1986). The result was a more robust
segmentation and less sensitivity to noise in the image. Canny edge detection has also been used
directly for segmentation (Zaidan et al., 2010).

Saliency has been utilized on multiple occasions by Bonnin-Pascual and Ortiz (2014, 2016a,b,
2018, 2017). The saliency map consists of a topographic map where bright values represent areas
with defects and lower values represent areas with no defects. Bonnin-Pascual and Ortiz (2018)
used a saliency map as an input to two kinds of detectors: contrast-based and symmetry-based. The
two types of detectors are also combined to produce a single defect detector in three different ways
using the logical operators OR, AND, and a custom or operator that averages the contribution
of the contrast channels, intensity, color, and orientation as well as the symmetry map. One of the
main results of this work is that their final defect detector is able to produce an Area Under the
Curve [AUC, Fawcett (2006)] value of 0.8. Additionally, it was found that a contrast-based detector
performs better than a symmetry-based detector, suggesting that contrast is capable of capturing
more information used to discriminate between defective areas and nondefective areas.

Maglietta et al. (2018) explored an ensemble of different classifiers ranging from a support vector
machine and Fisher Discriminant Analysis to K-nearest neighbor. The features used for the classifiers
are all computed from the Hue, Saturation, and Value (HSV) color space. The main contribution
is a combination of all the classifiers trained individually on the training features. Then, the final
classifier, named PICARD, classifies inputs based on a majority vote of all six classifiers. Similarly,
Bonnin-Pascual and Ortiz (2011) used AdaBoost consisting of a linear combination of weak classifiers
implemented using 48 Law’s texture energy filters. 25 images were used to generate 39 746 patches,
of which 12 952 were labeled defective. 50% of the total amount of patches were used for training.
One of the main results is a false positive and false negative of 17.16% and 3.39%, respectively, with
the reasoning that it is more important to detect all defects than to have false positives. Eich et al.
(2014) obtained a global classifier by chaining two smaller classifiers together. The first classifier
relies on the fact that corroded areas in images have a rough texture measured by the energy of
the symmetric gray-level co-occurrence matrix. Based on the energy field, a threshold determines
candidates for corrosion. The second classifier uses the output of the first classifier and the fact that
corroded areas are bounded to the hue-saturation plane. Subsequently, a bidirectional histogram is
built, on which a filter is used to zero out entries that are 10% below the peak. After applying a
Gaussian filter, the remaining pixels are thresholded based on the filtered histogram.

Ortiz et al. (2016b,a) explored a combination of traditional image-processing techniques and
neural networks. Initially, they use a set of selected features in the image that is classified using
a three-layer neural network with the goal of segmenting any corrosion defects in the image.
The features are computed using a modified version of a hierarchical tree-structured color palette
(Orchard and Bouman, 1991), and the dominant colors of a small patch of the original image are
extracted and then fed into the neural network. A second experiment used k-means (Theodoridis and
Koutroumbas, 1999) initialized by K-means++ (Arthur and Vassilvitskii, 2007) to avoid clustering
the k-means in the same area in the color space. Lastly, Ojala et al. (1996) presented an experiment
where texture analysis is used to extract features and perform local binary patterns to weigh the
difference in pixel intensities in the image. One of the main downsides of the different feature
extractors used by Ortiz et al. (2016b,a) is the required time to compute the features since they all
operate on patches of the image, and the classification depends on the size and number of defects
present in the image.

3.2. Wavelet-based methods
Some of the early work on applying image processing tools on images of corrosion was performed by
Siegel et al. (1988) and Siegel and Gunatilake (1998), who used a discrete wavelet transform. Initially,
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a three-level wavelet decomposition on an image is applied, after which the image is divided into
patches with a stride equal to the patch size. A feature vector of each patch is extracted consisting of
the energy response of the wavelet transform at each frame. Finally, the classification of the feature
vectors was performed by a 3-layer feed-forward neural network trained in a supervised setting.
Though the application is corrosion on aircraft skin, it is included here for completeness since it
uses the wavelet transform for corrosion detection, thus making it directly related to the application
of marine vessel inspection considered in this paper.

Another example of the use of the wavelet transform was presented by Fernández-Isla et al.
(2013), where corrosion located on the vessel hull was detected. The decomposition used in their
work consists of applying all combinations of low- and high-pass filters and thereby obtaining four
subimages from the one original image on which the process was repeated recursively. The image with
two low-pass filters applied is also referred to as the image approximation, as it is just a smoothened
version of the original image. The main contribution of that work is that the decomposition level is
determined by computing the ratio between the Shannon entropy of the image approximation and
the sum of the entropy of the other subimages.

3.3. Histogram methods
Navarro et al. (2010, 2013) utilize a histogram of the image to determine the background based on
the principle that the majority of images will be without corrosion or other defects, and thus they
will be similar in color (due to the coating). The image is then thresholded based on the histogram
to segment the defects.

Digital images are usually represented in the RGB color space; however, multiple other color
representation models exist, some of which contain desirable properties for the classification of
objects that are characterized by specific color (Busin et al., 2009). Choi and Kim (2005) interpreted
images in the Hue, Saturation, and Intensity (HSI) color space from which they build histograms
of patches of the image with a size of 10 × 10 pixels. The histograms for each channel are treated
as random variables on which they apply principal component analysis and varimax. The output
of this process is features used for classification. Their work concludes that the mean H, median S,
skew of S, and skew of I together with some physical characteristics such as the area, perimeter,
length, and mean radius can be used to obtain a classification accuracy of approximately 85%.

Aijazi et al. (2016) used a more comprehensive approach where external RGBD scanners are
placed around the vessel when in drydock to create a 3D representation of the vessel including the
color. Defects are then classified by considering a small area of the vessel surface and generating a
histogram after the color channels have been converted to the HSV color space. Depending on the
size of the area that is corroded, segmentation happens based on either a histogram or a threshold.

3.4. Deep learning methods
3.4.1. Classification
Petricca et al. (2016) used pure deep learning classification for binary classification of corrosion on
a whole-image level. It can only be used to detect the presence of corrosion, not where it is located.
Though the training dataset size was very small, the method still managed to achieve an accuracy
of 89.1%.

3.4.2. Object detection
More recent deep learning architectures have also been used for defect detection. Some preliminary
results were presented by Ortiz et al. (2018), where the authors have used transfer learning on a
Single-Shot multibox Detector (SSD, Liu et al. (2016)) and a Faster R-CNN (Ren et al., 2017)
with a VGG network (Simonyan and Zisserman, 2014) as a backbone. Instead of using the common
intersection over union metric, an intersection of prediction was employed with the reasoning that
detecting the presence of defects is more valuable than generating a bounding box that tightly fits
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the ground truth. The findings indicate that Faster R-CNN is better suited for corrosion detection
than the single shot multibox detector.

Deep learning architectures have also been used by Liu et al. (2018c), and their work has continued
(Liu et al., 2018a,b). In the former, transfer learning was used to train a Faster R-CNN architecture
with a VGG19 backbone, and the system was able to detect three types of defects: surface-based
corrosion and coating breakdown, edge-based corrosion and coating breakdown, and noncoating
failure. In general, the work outlined by Liu et al. (2018c,a,b) presents a complete system including
a drone and user interface for image processing and evaluation as well as the option for generating
a report of the results. The main results of using Faster R-CNN with a VGG19 backbone is an
accuracy of 81.37% when separating corrosion on welds and edges, and 89.54% otherwise, which
indicates deep learning approaches may be suitable for vessel classification. The same authors have
tried to improve the accuracy of the system by introducing active human intervention (Liu et al.,
2019). The human intervention is a human surveyor manually assessing an image that has been
preprocessed by adjusting the brightness, gamma correction, and histogram equalization.

General-purpose deep learning architectures are not the only ones that have been explored to
detect corrosion. Bastian et al. (2019) proposed a custom deep neural network to classify the level
of corrosion on pipes as either None, Low, Medium, or High. To localize the corrosion within the
image, the authors proposed to recursively subsample the input image if it contains medium or high
levels of corrosion until the image size reaches a lower threshold. Consequently, this also means that
the number of inference calls on the classification network is high.

3.4.3. Segmentation
Some of the most popular deep neural networks have been investigated by Andersen et al. (2020)
to identify the best suitable pipeline to perform inspections on robotic platforms with limited
computational power. Specifically, two pipelines were proposed: The first one included a simple
network performing binary classification on the image level, and, if defects were detected, a larger
network performing pixel-wise localization was deployed. Based on the results from that network,
the image would be classified as good, fair, or poor. Similarly, the second approach was to simply
use a smaller network to categorize the image as good, fair, poor directly and only use a larger
image network for localization. Based on their findings, the best performing pipeline is the one that
performs binary classification and overall category conditioning with a large pixel-wise segmentation.
Additionally, among the investigated architectures, the Mask-RCNN performed the best, indicating
that larger networks may be a necessity for high-quality inspection results.

One of the biggest challenges when employing deep learning approaches is the large number of
annotated images required for creating a robust model. For this reason, there exist multiple ways to
annotate an image, some of which were explored by Yao et al. (2021). Specifically, a loss function
based on the centroid loss was proposed that seeks to minimize the effect of weak annotations on the
network architecture (Attention U-Net) (Oktay et al., 2018). They conclude that their approach to
employing weakly supervised training produces similar results at a reduced annotation burden when
compared to traditional full supervision in the task of corrosion detection in images from marine
vessels.

3.5. Nonvisual methods
In this section, methods that do not directly rely on imagery are presented. The purpose is to include
methods that use other sensory equipment than those naturally available to a human surveyor.
The methods include using the grid method, ultrasonic, and augmented reality. The former is
presented by Avril et al. (2004) and is an approach to detect cracks by applying a grid pattern
on the inspection surface, which in the specific experiments is a transparent sheet transferred to
the inspection specimen. By analyzing the phase modulation of the light caused by the crack with
Windowed Fast Fourier Transform, it is possible to separate the discontinuities in the phase with
a simple threshold. Cracks as small as 5 µm in width are successfully detected, and their location
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is determined with an accuracy of 1.2 mm. While the detection and localization accuracy are more
than sufficient for the inspection of marine vessels, it has to be noted that this method relies heavily
on a fully controlled environment.

Other methods utilize ultrasonic measurements to measure the thickness of the steel. The
advantage of this approach is an exact measurement of the integrity of the steel from which the
vessel is made. Akinfiev et al. (2008) presented a robotic solution fitted with an ultrasonic sensor.
Though the sensor was mounted on a robotic platform, the only expertise in relation to the condition
of the vessel was provided by a human surveyor.

The use of augmented reality has also been explored for inspection (Dini and Mura, 2015). Some
of the applications highlighted by Dini and Mura are related to inspection by indicating faults and
defects to the operator. The operator can also use augmented reality to point out faults and defects
manually, and then save the location of the defect automatically. Papachristos and Alexis (2016)
included augmented reality by utilizing a drone equipped with a live camera from which the operator
is then shown the live feed.

More statistical approaches exist that rely on the physical process of corrosion. Gardiner and
Melchers (2003) identify a set of parameters divided into operational and internal parameters.
One of the operational parameters is the ballast ratio—the ratio between how long the vessel is
loaded with cargo and the age of the vessel. Other parameters are trade route, coal corrosivity, and
frequency of cargo changes. Thus, the operational parameters consist of the external forces applied
to the vessel that influences its condition. On the contrary, the internal parameters describe the
internal design measures taken to prevent corrosion. These include corrosion protection systems
and structural member location and orientation. The conclusion of the work was a proposal to
monitor the aforementioned parameters to build a corrosion rate database that would enhance the
reliability of corrosion prediction models.

One of the most effective measures of preventing corrosion in marine vessels is by applying
paint on the steel surface, which prevents direct contact between the salt water and the steel.
The disadvantage of coatings is the difficulty in detecting corrosion underneath them. Therefore,
Qaddoumi et al. (1997) proposed the use of microwave sensors to detect corrosion under paint and
composite laminates. Their experimental setup included a painted steel plate on which they were
able to detect corrosion even with varying paint thickness.

3.6. Summary
Table 2 shows the main reported results for each evaluated paper. Note that these results are reported
directly from the papers without scrutiny. Thus, a comparison is meaningless without referencing
the underlying methods. It is included here for completeness as it gives an overview of what method
the different papers have used to evaluate their results and how they have performed.

The scoring based on the weighting from the classification society and the scoring of the metrics
for each work considered in this paper is listed in Table 3. It should be noted that while all of the
works have some relation to the marine vessel inspection process, some of the presented works also
include more general applications, such as crack detection on concrete structures and/or spalling.

From Table 3 it is clear that methods that rely on some form of deep neural network score better
on the metrics used in this paper. Specifically, they can distinguish between more types of defects,
alleviating the subjective assessment of the surveyor. Generally, all the methods investigated in this
paper score poorly in quantification, i.e., they do not incorporate a way of quantifying the defects.
Most of the methods use some form of in-image localization. This approach has the advantage of only
requiring a single image, however it limits the quantification to be strictly on the image plane. Since
the area affected by a defect will be perceived drastically differently depending on the perspective and
viewing angle, it is difficult to get a real-world quantification of the defects. One of the advantages
of using camera images is the high level of automation that can be achieved as well as the flexibility.
Cameras can be small in size so as to fit in even tighter places while only requiring a light source
when there is no natural light present, such as when inspecting a cargo hold or a vessel hull.
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Table 2. Reported results for each evaluated paper. Note that the results reported here are taken directly from
the respective papers. Thus a direct comparison between the results is of little value without also considering the
underlying methods and metrics.

Evaluation method Results
Siegel et al. (1988) Visual evaluation Demonstration
Qaddoumi et al. (1997) Visual evaluation Demonstration
Siegel and Gunatilake (1998) Visual evaluation Demonstration
Zheng et al. (2002) Hole and crack detection

Accuracy on dataset
holes 91%
cracks 86%

Gardiner and Melchers (2003) Parameters affecting corrosion Degradation hierarchy
Avril et al. (2004) Metric size of cracks smallest detection 5 µm
Choi and Kim (2005) Accuracy on dataset corrosion 85%
Akinfiev et al. (2008) Not stated Not stated
Zaidan et al. (2010) Visual evaluation Demonstration
Navarro et al. (2010) Classification rate 92.5%
Bonnin-Pascual and Ortiz (2011) Confusion matrix FP=20.47 rate,

FN=20.91 rate,
FP=17.16%,
FN=3.39%

Ji et al. (2012) Not stated Not stated
Jahanshahi et al. (2011) Metric size of cracks Maximum deviance

from ground truth <15 mm
Navarro et al. (2013) Accuracy on dataset 95%
Fernández-Isla et al. (2013) Confusion matrix FP=6.8 error,

FN=0.9 error
Eich et al. (2014) Confusion matrix Corrosion:

FP=9.8%,
FN=5.86%

Crack:
FP=0.72%,
FN=0.52%

Bonnin-Pascual and Ortiz (2014) AUC 0.9
Dini and Mura (2015) Not stated (augmented reality) Not stated
Papachristos and Alexis (2016) Not stated (teleoperation) Not stated
Bonnin-Pascual and Ortiz (2016b) AUC 0.8
Bonnin-Pascual and Ortiz (2016a) AUC 0.9
Ozog and Eustice (2016) Not stated Not stated
Petricca et al. (2016) Confusion matrix Accuracy=92%
Aijazi et al. (2016) F1 measure 0.90
Ortiz et al. (2016a) Success rate 0.87
Ortiz et al. (2016b) F1 measure 0.92
Ortiz et al. (2017) Visual evaluation Demonstration
Yang et al. (2018) F1 measure Accuracy=97.96

Precision=81.73
Recall=78.97
F1=79.95

Maglietta et al. (2018) Accuracy on dataset Corrosion 0.961
Ortiz et al. (2018) Intersection over Precision Visually inspected on graph
Bonnin-Pascual and Ortiz (2018) AUC Visually inspected on graph
Liu et al. (2018c) Confusion matrix Accuracy=81.37% on 5 classes
Liu et al. (2018a) Confusion matrix Accuracy=89.54% on 5 classes
Liu et al. (2018b) Confusion matrix Accuracy=89.54% on 5 classes
Bastian et al. (2019) Accuracy and F1 Accuracy=98.2, F1=96.73
Liu et al. (2019) Confusion matrix Accuracy=89.54% on 5 classes
Hoskere et al. (2020) Accuracy on dataset 91.7%
Andersen et al. (2020) Intersection over Union 0.156
Yao et al. (2021) Intersection over Union 0.7542
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Table 3. The score of all references. The metrics are used to compute the final expertise score according to
Eq. (1). The expertise scoring lies in the interval [0 − 1] with a higher value meaning a better fit between the
expectations of the classification societies and the actual level of expertise captured.

M
ethod

Type

Location

Quantification

Autonom
ous

evaluation

Flexibility

Expertise

score

Andersen et al. (2020) DL 1.0 0.9 0.3 0.5 0.9 0.814
Liu et al. (2018b) DL 0.9 0.8 0.3 1.0 0.9 0.800
Hoskere et al. (2020) 0.9 0.8 0.3 0.9 0.9 0.793
Liu et al. (2018a) DL 0.8 0.8 0.3 1.0 0.9 0.771
Liu et al. (2019) DL 0.8 0.8 0.3 1.0 0.9 0.771
Jahanshahi et al. (2011) 0.5 0.8 1.0 0.5 0.9 0.750
Bonnin-Pascual and Ortiz (2014) Spatial 0.8 0.5 0.1 0.9 0.9 0.671
Ortiz et al. (2017) 0.8 0.5 0.1 0.9 0.9 0.671
Liu et al. (2018c) DL 0.9 0.5 0.1 0.5 0.9 0.671
Yang et al. (2018) 0.5 0.5 0.5 0.9 0.9 0.643
Yao et al. (2021) 0.6 0.5 0.3 1.0 0.7 0.593
Fernández-Isla et al. (2013) Wavelet 0.5 0.5 0.1 0.9 0.9 0.586
Bonnin-Pascual and Ortiz (2016b) Spatial 0.6 0.3 0.1 1.0 0.9 0.579
Bonnin-Pascual and Ortiz (2016a) Spatial 0.6 0.3 0.1 1.0 0.9 0.579
Bonnin-Pascual and Ortiz (2018) Spatial 0.6 0.3 0.1 1.0 0.9 0.579
Bonnin-Pascual and Ortiz (2011) Spatial 0.5 0.5 0.0 0.9 0.9 0.571
Eich et al. (2014) 0.6 0.3 0.1 0.9 0.9 0.571
Ozog and Eustice (2016) 0.1 1.0 0.8 1.0 0.5 0.571
Bastian et al. (2019) 0.5 0.7 0.6 0.5 0.5 0.557
Ortiz et al. (2016a) Spatial 0.5 0.5 0.1 0.5 0.9 0.557
Ortiz et al. (2016b) Spatial 0.5 0.5 0.1 0.5 0.9 0.557
Akinfiev et al. (2008) 0.5 0.5 1.0 0.8 0.3 0.536
Ortiz et al. (2018) DL 0.5 0.3 0.1 0.5 0.9 0.514
Choi and Kim (2005) Histogram 0.5 0.1 0.1 0.9 0.9 0.500
Aijazi et al. (2016) Histogram 0.5 0.9 0.9 0.5 0.0 0.500
Navarro et al. (2010) Histogram 0.5 0.5 0.3 0.8 0.4 0.464
Navarro et al. (2013) Histogram 0.5 0.5 0.3 0.8 0.4 0.464
Petricca et al. (2016) DL 0.5 0.0 0.0 0.5 0.9 0.436
Avril et al. (2004) Nonvisual 0.5 0.5 1.0 0.1 0.0 0.400
Ji et al. (2012) Spatial 0.4 0.5 0.8 0.5 0.1 0.400
Zaidan et al. (2010) Spatial 0.5 0.3 0.0 0.5 0.5 0.386
Siegel et al. (1988) Wavelet 0.5 0.8 0.1 0.1 0.1 0.364
Siegel and Gunatilake (1998) Wavelet 0.6 0.5 0.1 0.5 0.1 0.357
Papachristos and Alexis (2016) Nonvisual 0.0 0.8 0.1 0.1 0.5 0.336
Dini and Mura (2015) Nonvisual 0.0 0.8 0.1 0.0 0.5 0.329
Maglietta et al. (2018) Spatial 0.5 0.5 0.3 0.5 0.0 0.329
Zheng et al. (2002) Spatial 0.5 0.5 0.0 0.1 0.0 0.257
Qaddoumi et al. (1997) Nonvisual 0.5 0.3 0.1 0.0 0.0 0.221
Gardiner and Melchers (2003) Nonvisual 0.5 0.0 0.5 0.0 0.0 0.214

Another conclusion from the table is that the differentiation between defect types has been
neglected. A common trend has been to find corrosion or cracks, with none of the investigated
methods addressing the need for also detecting deformations in the steel of the vessel. These types
of damage are not infrequent and can occur when the anchor hits the hull of the vessel or when
loading/unloading cargo. Some of the more severe deformations can occur when a vessel is sailing
in low depths or due to collisions—the latter accounting for 35% of marine vessel accidents (Lim
and Lee, 2018).
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Figure 5. The attention the marine vessel inspection process has received over the last 35 years from an
automation perspective has been increasing. This is an indication of the technological advancement that has been
made within image processing and computer vision, as that is by far the most popular approach to automating
marine vessel inspections.

The attention the marine vessel inspection process has received over the last 35 years—from
an automation perspective—has been increasing steadily, as indicated by Figure 5. The number of
publications shows an increasing interest in the topic, and with the recent advances in deep learning
and computer vision, the level of expertise that can be reproduced autonomously is steadily rising
according to the metrics defined in this paper.

To achieve a higher expertise score, it is clear there has to be a bigger focus on quantifying any
detected defect. Detecting different kinds of defects has been addressed in some cases with the use of
deep learning that is capable of distinguishing multiple types of defects, and in some cases providing
an in-image segmentation of the defect. While this provides some form of location, it is not directly
possible to transform a single image coordinate into a usable 3D coordinate that can be used by
repairmen to localize the defect. As technology advances, the range of sensors capable of capturing
3D information increases. A simple solution to the localization problem would simply be to use a
stereo camera setup that can provide a simple form of 3D localization (Brogaard et al., 2021a). The
disadvantage of stereo vision is possibly the difficulty in achieving high enough accuracy to also
perform quantification. Andersen et al. (2021a,b) showed how quantifying the amount of corrosion
can be done on a higher level; however, the severity of both deformations and cracks has to be
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quantified using physical distance units. This might require a higher level of detail than a stereo
vision camera setup can provide. Unless an orthophoto can be produced, a better approach might
be to use a laser range sensor that is capable of producing high-accuracy point clouds.

4. Evaluation with regard to the Engineering Aspect
Autonomous robotic platforms for vessel inspection are still in their early stages, and few systems
provide a high level of mobile autonomy. This section will cover the level of autonomy that is
currently available using a taxonomy inspired by the SAE taxonomy (SAE International, 2021) (see
Figure 6). The SAE taxonomy was originally intended for motor vehicles on the roadway system;
however, the same reasoning can be applied to any autonomous vehicle. Thus, the gradual removal
of the operator is similar for both grounded vehicles and aerial vehicles, ultimately progressing
to full autonomy without the influence of an operator (Lee et al., 2021). In the context of drone
applications in confined spaces, the specific adaptation used here is described in Section 2.2. For each
level of autonomy, the relevant literature will be reviewed and categorized by the relevant taxonomy
of automation. The levels do not implicitly describe the robustness of each system. Two systems
in the same category can perform differently with regards to—for example—accuracy, precision,
and how they handle disturbances. Likewise, the levels will not differentiate whether the drone is
airborne, subsea, or ground-based.

Drones/robotic platforms that are not aimed at vessel inspections, but can provide a comparably
high level of autonomy, will also be reviewed for the purpose of determining a future outlook on
what research could be applied to conduct autonomous vessel inspections.

4.1. SAE 0—No Automation
The first category, where the human is in control of all parts of the navigation during the vessel
inspection, primarily consists of legged and so-called crawler platforms operating above the sea
surface. Small 4-legged robots are presented by Bandyopadhyay et al. (2018), where magnets are
attached to each foot to ensure the capability of climbing vertical surfaces. Furthermore, the authors
enhanced its capability to climb on industrial beams with a thickness of less than 5 cm, and through

No
Automation
SAE 0

Assistance
SAE 1

Partial
Automation
SAE 2

Conditional
Automation
SAE 3

High
Automation
SAE 4

Full
Automation
SAE 5

Figure 6. The autonomy taxonomy used here is sequential, starting at no automation and progressively
decreasing the involvement of the operator to the point of a self-sustainable solution with full automation.
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narrow gaps of 23 cm. Other approaches use magnetic wheels (Caccia et al., 2010; Eich and Vögele,
2011; Eich et al., 2014) or chainlike tracks with inserted magnets in each link (Huang et al., 2017).
Alkalla et al. (2015b,a) have investigated the possibility of a rubber-wheeled robot with top-mounted
propellers to provide a thrust that increases the friction between the wheels and the surface. The
hybrid actuation approach adds the advantage of climbing over vertical walls made of nonmagnetic
materials, such as glass fiber, wood, and aluminum. Garcia-Fidalgo et al. (2015) used a manually
controlled Unmanned Aerial Vehicle (UAV) to collect image data of a wall from a cargo hull of a
container vessel. These images were then offloaded from the drone and used to build a mosaic of
the wall, with the benefit of an increased overview of the inspection area.

None of the aforementioned research efforts in this category can be used to aid in autonomously
inspecting the vessel.

4.2. SAE 1—Assistance
Within this level of autonomy, the operator enjoys some level of assistance in controlling the robotic
platform, which could be in the form of localization and/or a stabilization system. Examples
of localization systems are the relative pose estimations for subsea hull inspection presented by
Schattschneider et al. (2011) and Chung and Kim (2018). Chung and Kim (2018) and Negahdaripour
and Firoozfam (2006) use stereo vision to get a relative pose by matching image feature points
between the camera views and frames. Both systems are tested on a real vessel; Chung and Kim
(2018) tested their system on a 19×2 m hull section of a real marine vessel. The system was verified
by showcasing the reconstruction of the hull section using the pose and images along the inspection
path. Another approach by Ozog and Eustice (2016) uses the CAD model of the hull in combination
with a camera and a Doppler velocity log (DVL) to localize itself with respect to the coordinate
frame of the hull. By also adopting a bundle adjustment system, the authors built a mosaic map
overlayed on the CAD model of the hull.

Absolute localization systems for UAVs operating in the confined spaces of the vessel were recently
investigated (Brogaard et al., 2020, 2021b,c). A combination of Visual Inertial Odometry (VIO) and
detection of existing known structural 3D landmarks was used by Brogaard et al. (2020) to estimate
the absolute pose in a mockup model of a water ballast tank. This had the advantage of only requiring
a high-level map of the environment. Brogaard et al. (2021b,c) used deep neural networks to generate
accurate 3D feature descriptors within an existing point cloud map and for the current viewpoint
of the vehicle. The feature descriptors were then matched and used together with a visual-inertial
odometry estimate in an extended Kalman filter, resulting in an absolute pose estimate.

A magnetic track/belt robot was proposed by Milella et al. (2017), which uses computer vision to
localize the robot and create a mosaic map of the traveled trajectory. The system was tested in the
cargo hulls of a bulk carrier, and according to the experiments it was able to combine images and
create a 2D overview map of approximately 1×3 m of a section of the wall of the cargo hull. Similarly,
Menegaldo et al. (2008) developed a magnetic track/belt robot capable of performing thickness mea-
surements on the dry parts of a hull on a marine vessel. The robot was able to maintain an estimation
of its position using an extended Kalman filter to fuse wheel encoder readings and IMU data.

4.3. SAE 2—Partial Automation
Most subsea inspection systems are naturally focused on the outer hull of the vessel. Ozog et al.
(2017, 2016) and Kim and Eustice (2009) focus on hull mapping with simple path-planning systems
built into the commercially available ROV. This research involves pose graph optimization based
on pose estimation by fusing multiple sensors, namely cameras, sonars, and DVLs. The executed
trajectory near the hull structure is a simple zigzag pattern, also known as a meander pattern.
A noticeable addition is the ability to align previous and years-old inspection scans with recent
scans (Ozog et al., 2016). This alignment adds important value to the inspection data since the
rate and progress of any deterioration or biofouling of the hull can now be monitored, which in
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turn can be used to estimate required inspection intervals. Specific to this category is also the focus
of the added capability of path planning or execution. Hover et al. (2012) and Hollinger et al.
(2012) present a method for full coverage inspection of a hull through redundant roadmaps (Englot
and Hover, 2011). They also specifically address the challenging areas around the driveshaft and
propeller at the stern of the vessel, and they illustrate the possibility for full hull inspection with
a resolution on the order of 10 cm (Hover et al., 2012). The novelty within the planning aspect
specifically lies in the redundant roadmaps where previous subsea inspection methods have applied
a mostly uniform zigzag pattern. Above sea level, a magnetic wheeled robot—Sparrow—has been
developed by Abdulkader et al. (2020) to conduct contact-based ultrasonic thickness inspection.
The localization system was based on Marvel Mind beacons attached to the hull of the vessel,
and it required line of sight to the robot to provide stable position estimates. The Sparrow can
autonomously move in simple zigzag patterns during the inspection, using position estimates from
wheel odometry and the beacons. This capability was tested within a 0.7 × 0.7 m area. Airborne
solutions have in recent years been researched as viable solutions for the visual inspection of marine
vessels. Examples of this are the AscTec Firefly, the Hummingbird, and the Pelican platforms used
by Ortiz et al. (2016b), Bonnin-Pascual and Ortiz (2016a), and Ortiz et al. (2017). To navigate, the
system presented by Ortiz et al. (2016b) utilizes LIDARs, cameras, and IMU data from the onboard
AscTec flight controller. It makes use of a 2D Hokuyo UST-20LX LIDAR to estimate distances to the
surrounding walls, and a 1D LIDAR-Lite to estimate the height above the floor. Experiments were
carried out in the cargo hull and the top ballast tanks of a cargo vessel. 2D scan matching was used
to align the UAV with the surrounding walls, and, in combination with the LIDAR-lite for height
estimate, the system was able to maintain the position of the UAV inside the confined space. The
autonomous capabilities of the works of Bonnin-Pascual and Ortiz (2016a) and Ortiz et al. (2017)
are similar to that of Ortiz et al. (2016b) due to the employment of the same positioning system
to maintain the robot’s position next to the wall of the cargo or ballast tank. Ortiz et al. (2017)
added a multithreaded Binary descriptor-based Image MOSaicing (BIMOS) approach to create an
overview of the inspection surface, using ORB features and Keyframes.

4.4. SAE 3—Conditional Automation
The aerial system used by Bonnin-Pascual et al. (2012) includes self-localization, navigation, and
obstacle avoidance. The authors, furthermore, add a Safety Manager system that is built on top
of the obstacle avoidance capabilities, by (1) preventing the drone from flying too close to the
ceiling, (2) automatically landing the UAV when the battery voltage gets below a threshold or
(3) hovering the drone when the wireless connection to its base station is lost. The system is
designed for confined spaces within marine vessels, but the experiments are conducted in an office-like
environment of approximately 9 × 8 × 2.5 m. Obstacles were simulated using cardboard pillars, and
the UAV was successful in planning paths, in 2D, around the obstacles. The system was later updated
(Bonnin-Pascual et al., 2015) to make the platform as usable as possible for nonexperts. The level
of autonomy matches what was achieved previously (Bonnin-Pascual et al., 2012), but the focus
was on the human interaction with the UAV using the Supervised Autonomy approach presented
by Cheng and Zelinsky (2001). Bonnin-Pascual et al. (2012) add a human control interface to the
UAV, where the operator can overrule part of the automation layers, i.e., path execution. During
the human operation, however, the UAV will overrule the operator and perform evasive actions
in case obstacles are in the human-executed path. The authors tested the system in an office-like
environment, showing the obstacle avoidance capabilities, where the system prevents the operator
from flying into a wall. Fang et al. (2017) propose an aerial autonomous system for fire detection in
visually degraded confined spaces of marine vessels. In terms of localization, the authors employ an
absolute pose estimation method that fuses Visual Inertial Odometry estimates with 6-DOF pose
estimates based on point cloud data from an RGB-D camera with a known map of the environment.
Online motion planning is applied, which combines A* path planning with a receding horizon control
framework for obstacle avoidance. The majority of their tests were conducted in a corridor onboard
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a vessel, with outbreaks of fires along the corridor. The fires are automatically detected using a
FLIR infrared camera using a threshold for temperatures above 100 ◦C. The UAV was successfully
able to automatically navigate along the corridor and through the doorways of the test environment.

4.5. SAE 4—High Automation
The state of the current research has to our knowledge not yet reached [SAE level 4] autonomy
within marine vessels. However, research within similar environments could reasonably well be
applied to raise the autonomy level. The research mentioned in this section is, therefore, mostly
of a higher autonomy level than in the area of marine vessels.

Dang et al. (2019) presented a path planning framework for autonomously underground mine
exploration based on random trees while also accounting for the robots’ endurance limit. Their
approach is field-tested on a UAV in an underground mine. Dang et al. (2020a), furthermore,
improved the system for underground mine rescue using the same UAV. Their system is capable
of autonomously exploring the unknown mine environment and detecting and localizing objects of
interest, which in their case were humans in need of rescue. Dang et al. (2020b) further expanded
to include other vehicles, more specifically the legged robot ANYmal (Hutter et al., 2016) from
ANYbotics AG in Switzerland. ANYmal was also used to perform autonomous inspection inside
offshore platforms (Gehring et al., 2021). Here, it was shown that ANYmal could perform some of the
same simple inspection tasks as the human surveyors, such as using its manipulator to push buttons,
toggle switches and fuses, and turn valves. However, it still lagged behind the humans in simple tasks
such as opening and closing doors, which was required due to fire prevention onboard the platform.

4.6. SAE 5—Full Automation
Currently, there is no fully autonomous system, category [SAE level 5], which is relevant for vessel
inspections.

4.7. Other important aspects
Little research effort within automating inspections has focused on addressing the requirements for
surface preparation before an inspection can be performed. For visual and ultrasonic testing, this
is most often a thorough cleaning of the surface, which is currently most often done by humans.
Kostenko et al. (2019) designed an inspection and cleaning system for removing biofouling on the
hull of the vessel.

4.8. Summary
Though robotics platforms have been used in the inspection process of marine vessels, many of the
platforms do not achieve a high level of autonomy and still rely on human operators for a significant
part of the operation. Many of the platforms presented are based on general concepts such as a
flying drone or a submarine. This independence also means there is a high probability of being able
to transfer a platform from other applications where a higher level of autonomy has been achieved
to the marine vessel inspection process. Examples of this were shown to achieve an adopted SAE
level of 4—higher than any of the investigated works that specifically target marine vessels.

5. Overall assessment of the state of the art
A visual interpretation of the existing work is shown in Figure 7. From this figure, it is visualized
that there is a lack of systems that encapsulate both the engineering and expertise aspect that is
necessary to alleviate the human involvement in the inspection process.

It should be noted that some of the references in Figure 7 are not directly trying to solve the
challenge of autonomous marine vessel inspection, however they all show some form of potential.
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Figure 7. The existing works scored on their expertise and engineering aspect. The category NA captures all the
works that presented some form of expertise but have not presented a way of collecting the sensory information
necessary for a fully autonomous system.

While most of the literature included in this paper tries to solve either the expertise or engineering
aspect, some of the works are part of a larger project that collectively tries to solve the challenge of
automating the inspection process. Generally, it is these papers consisting of collections of previous
work that score high in both expertise and engineering.

Among the highest scoring works are a significant number using UAVs as a robotic platform to
reach otherwise inaccessible areas. One reason for this might be the ease of access to these kinds
of platforms in combination with the low requirement for specific external environments—i.e., they
do not rely on the presence of water and work in nonmetal structures. Though they are limited by
their heavy tradeoff between lifting capacity and battery life, they can quickly traverse large areas
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while carrying lightweight sensor equipment such as cameras. In return, the cameras can provide a
large amount of information about the environment where the drone is located and can be used to
detect defects. By using stereo vision, the drone can even achieve 3D vision that enables localization
of defects (Brogaard et al., 2021a). A general challenge when relying on cameras as the input for
detection is the reliability of external lighting. In some areas of a marine vessel, such as in the ballast
tanks, there is no natural light, thus the drone has to carry it onboard, further reducing the effective
flight time in the case of aerial drones.

Some of the works presented in this paper utilize multiple robotic platforms to perform different
parts of the inspection process. This means the platforms can be more specialized in solving one part
of the inspection process. It also means that the output of the technologies has to be merged before a
complete overview of the vessel condition can be given, thus demanding a higher level of cooperation.

Many of the works reviewed in this paper address capturing sensory information through the use
of cameras and drones while also presenting some level of image processing to evaluate the sensory
information. Only a few of them address the challenge of capturing image data in areas where
there are very poor lighting conditions. Since many areas of modern marine vessels have little to
no natural light, any drone has to carry any necessary light sources with it, which complicates the
detection. Additionally, none of the methods address the uncertainty associated with detection. That
is, the detection’s not influencing the behavior of the drone to optimize the ability to accurately do
defect quantification—a critical step towards an autonomous solution that provides the necessary
level of quantification for the classification society. Similarly, there is a clear trend to use object
detectors and segmentation models to provide a deterministic output. By doing so, they fail to
encapsulate the ambiguity that is inherently present in visual defect detection where information is
only partially observable due to the surface conditions where the defects are located. Instead of these
deterministic approaches, one future direction for marine vessel inspection that has to be addressed
is a distribution estimation over the detected faults and defects. If a classification society has to
rely on the detections without being present, they need access to some form of certainty metric
from which they can assess the overall vessel condition without risking a wrongly tuned confidence
threshold altering the vessel classification.

Though a wide range of detection models has been tried on defect detection, very little emphasis
is put on processing the detections in a human-readable manner, e.g., by converting the mapped
detections to the reference frame of the vessel by noting on which longitudinal or web frame the
defect is present. This kind of topological representation could also be used for navigational purposes.
The vessels are well structured and the layout of all areas to be inspected is usually known in
advance. This information is rarely used in combination with active defect detection to optimize the
information gathered during the traversal of the inspection areas. Using a topological navigation
planner would also alleviate the risk of drifts. If the drone is relying on a high-resolution map
representation of the environment, drifting increases the risk of collision with the environment. By
using a topological planner that relies only on high-level information such as longitudinal counts,
web frame counts, stringer level, etc., in combination with local information like VIO and 3D sensory
information, the need for high-resolution maps can be reduced. An instance where relying on internal
map representations can be insufficient is when navigating to an unexplored area through a narrow
passage. If the map representation is too low, the narrow passage is not visible, or difficult to
reliably sample paths during exploration. Simultaneously, a too high map resolution increases the
requirement for onboard processing.

6. Conclusion
In this paper, works on autonomous inspection were reviewed and evaluated with respect to a series
of metrics defined to indicate how far the state of the art has progressed when compared to the
needs of the classification societies. The metrics consist of two parts: expertise and engineering. The
purpose of this split was to separate the part of an autonomous system that performs condition
assessment of vessels and the part that enables the inspection to be physically carried out.
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The metrics defined for the expertise were intended to show how well a given method can assess
the types of defects that are typically found during a marine vessel inspection as well as quantify
them. Generally, most of the methods struggle to quantify the defects they are able to detect. While
the detection of defects is useful as a starting point, it is not sufficient as a replacement for manual
inspection.

The adapted SAE taxonomy was used as a metric to evaluate the robotic platforms related to
marine vessel inspection. This stepwise taxonomy describes the level of autonomy of each robotic
platform where a higher score means a lower level of manual operation involved in the inspection.
Some of the robotic platforms achieved a significant level of autonomy.

Though the purpose of this paper was not to perform an in-depth review of the machine learning
and locomotion methods used in the literature, we have observed a high correlation between using
deep learning techniques in a system and scoring high in our metrics—specifically the expertise one.
In combination with flexible robotic platforms, such as UAVs, deep learning has proven to be an
effective approach to the marine vessel inspection process.

Based on the analysis done in this paper, we have identified some crucial future research
directions within marine vessel inspection and classification: a higher level of quantification, human
interpretable defect localization, defect-aware navigation, and the notion of probabilistic inspection.
Remote inspection cannot be realistically implemented as an assistive tool for human surveyors
unless a higher level of quantification is achieved. By doing so, the expertise level of the solutions
would be increased significantly. Additionally, defect localization in a human interpretable manner
would be directly usable in the vessel condition documentation. This would help increase the
confidence of the surveyor and would reduce the amount of translation that has to be done between
users of the new autonomous system and the established classification process. As a further note,
there is a lack of navigation methods that incorporate faults and defect detections to increase
detection confidence and quantification accuracy, for documentation purposes, or otherwise better
coverage of an area under consideration. From the analysis, we also found a lack of works that address
the ambiguity of the classification process. Future research should help address this ambiguity by
relying less on single binary ground truths as these are both difficult to access and rely on due to
residue buildup in the ballast tanks.

We believe that these four areas of research would significantly increase not only the autonomy
of marine vessel inspection but also the confidence of the human surveyors that have to rely on the
system and ultimately are responsible for the vessel certification.
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