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Abstract: Understanding the terrain in the upcoming path of a ground robot is one of the most
challenging problems in field robotics. Terrain and traversability analysis is a multidisciplinary
field combining robotics with image and signal processing, feature extraction, machine learning,
three-dimensional (3D) mapping, and 3D geometry. Application scenarios range from autonomous
vehicles on urban networks to agriculture, defence, exploration, mining, and search and rescue.
Given the broad set of techniques available and the fast progress in this area, in this paper we
organize and survey the corresponding literature, define unambiguous key terms, and discuss links
among fundamental building blocks ranging from terrain classification to traversability regression.
The advantages and the drawbacks of the methods are critically discussed, providing a compre-
hensive coverage of key aspects, including open code, available datasets for experimentation and
comparisons, and important open research issues.
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1. Introduction
In recent years, the robotics community has seen a major increase in the number of outdoor
applications for autonomous vehicles. Undoubtedly the chief commercial push for outdoor robotics
has been that of autonomous cars on urban networks. However, there are numerous other fields
that can benefit from ground mobile robots. They include agriculture, search and rescue, mining,
defence, environmental monitoring, planetary exploration, and oil and gas, among others. All of
those examples share one common requirement: the ability to navigate on off-road terrain. In our
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(a) (b) (c)

Figure 1. Examples of “off-road” regions as used in this paper, with (a) grass, (b) sand, and (c) gravel surfaces.

discussion, we define off-road as any terrain that is not a part of a paved road network. Some
examples are shown in Figure 1, where various types of terrain (grass, gravel, sand) are illustrated.

In off-road navigation, in many cases the robot will also encounter variable terrain types (e.g.,
concrete, grass, mud, sand, puddles, pebbles) in its “mission,” adding the ability to adapt online to
the specifications.

Hence, the capability of automatically understanding terrain types and understanding the
upcoming path characteristics is a key functionality of intelligent outdoors uncrewed ground vehicles
(UGVs).

A number of processing steps are necessary to analyze the scene at different levels of abstraction,
ranging from interpreting the geometry to interpreting the appearance of the ground of interest,
in addition to proprioceptive sensing. An arguably crucial step consists in organizing range and
appearance information coherently, such that a meaningful representation of the terrain is generated.

Within an off-road environment, UGVs need to solve several common challenges, which include an
estimation of terrain traversability and determining suitable and efficient paths according to a given
criterion (e.g., distance, energy consumption, time) while respecting the kinematics and dynamics
limits of the physical platform. In short, identifying whether a region in the upcoming potential
path of the robot is traversable (dependent on the type of platform) remains one of the greatest
challenges in robotics. At a high level, the problem may combine image and signal processing,
feature extraction, machine learning, and three-dimensional (3D) geometry. Given the large number
of methods used in terrain understanding and the continuously evolving landscape, in this paper we
propose to organize and survey the corresponding literature. We define unambiguously key terms
that are often used interchangeably in the literature, and we discuss links among key building blocks
ranging from semantic classification to traversability for UGVs. The advantages and the drawbacks
of the methods are critically discussed, providing comprehensive coverage of the main aspects of
existing methods.

Excellent prior publications have reviewed the area of terrain traversability analysis in the
past (Papadakis, 2013; Sancho-Pradel and Gao, 2010), where the authors presented the literature
and suggested a taxonomy for the field (Papadakis, 2013). For planetary terrains, a compre-
hensive review of methods is provided in (Chhaniyara et al., 2012), which finds application in
dry and rocky surfaces on which planetary rovers operate. Advancements focused on learning
methods for perception and navigation in unstructured environments have also been recently
compiled (Guastella and Muscato, 2021), with urban “counterparts” presented in the surveys
in (Grigorescu et al., 2020) and (Ni et al., 2020), which focus on deep-learning for autonomous cars
in road networks. A survey on sensor fusion methods for obstacle detection that finds application
in off-road navigation has also been published (Hu et al., 2020). Specifically, the work in (Guastella
and Muscato, 2021) is divided between regression/classification and end-to-end methods that
directly map environmental perception into control actions, which is an important and more recent
paradigm.

Complementing the studies mentioned above, in this paper we link many of the recent advance-
ments presented in the literature, particularly in machine learning and semantics, with classical
statistical methods presented previously. Although partial overlap with previous surveys inevitably
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exists, we bring different sensor modalities and fusion options from structured or semistructured
environments, and we highlight their relevance for nonurban navigation and traversability. Apart
from (Papadakis, 2013), which is broader, many of the previous review papers touch on specific
scenarios or elements (e.g., planetary, urban, learning) and have a more focused discussion on
definitions for the field. We have added a more complete section on definitions and taxonomy
that includes many elements that have not been unified in a single discussion and are all relevant
for modern terrain analysis in robotics (which is often a point of confusion in our experience). We
also draw attention to, and characterize major challenges (from vegetation to the presence of dust,
mud, fog, and negative obstacles) frequently seen, in off-road navigation. We review a number of
recent datasets and open code (including some that are urban-focused and can be useful for off-road)
that can be beneficial for researchers working in the domain of traversability analysis for ground
robots. Throughout the paper, we sometimes use the terms “robot” and “vehicle” interchangeably,
with the choice of words depending on the context of the original publication. The reader will
notice that some of the methods presented are described as off-line or below real time in their
original publications. Despite this limitation, they are included as we believe there is merit in the
concept raised by some of those algorithms, and it brings completeness to this paper. We have seen
examples of elegant methods that were not real-time a decade ago that today can work in real time,
thanks to increased processing power or better implementations (as opposed to “research code,” for
example).

Arguably the two main exteroceptive sensing modalities that have been most extensively used for
terrain analysis are visual camera and LIDAR (Light Detection and Ranging) sensors. Obviously,
LIDAR and vision (including stereo) have their unique properties. LIDAR can provide relatively
reliable, consistent, and precise range measurements compared to stereo vision, but it still has
limitations regarding sparse point density, active nature, and (generally) higher cost. Stereo vision
is cheaper and provides information-rich structured data (i.e., images). On the other hand, vision is
sensitive to lighting conditions and calibration, especially for stereo pairs. Due to the aforementioned
sensor-dependent characteristics, it is recommended to carefully select the most suitable sensor or
fusion approach depending on applications. A number of off-the-shelf sensors are available, and
cheaper and better performing sensors (e.g., less noise, better range) are being constantly released
in the market.

Hybrid sensors (e.g., RGB-D) are also one of the promising and emerging sensing technologies,
and they may be able to moderate LIDAR and stereo vision sensors’ downsides, but they often
suffer in outdoor operations due to natural light interference in the active vision.

In many cases, data from those two modalities have been fused for improved performance. Anal-
ogously, detection and classification of terrain has used model-based and learning-based approaches.
Based on these circumstances, the remainder of the paper is organized according to the structure
shown in Figure 2. In this figure, the Roman numerals indicate the section number of each topic. In
Section 2 we pinpoint the key components of terrain classification methods and suggest a top-down
view of the field through a high-level taxonomy. In Section 3 we review vision-based methods,
followed by LIDAR-based methods in Section 4. Section 5 is dedicated to other exteroceptive sensors,
while the use of proprioceptive sensing is discussed in Section 6. Sensor-fusion-based methods are
discussed in Section 7. In Section 8 we examine major practical challenges that can still limit the
application of some of the methods available in the literature. Section 9 reviews available datasets
and open software related to terrain analysis. Finally, in Section 10, we provide relevant conclusions
and new research directions.

2. Definitions and Taxonomy
In this section, we define common terminology used in a number of aspects of terrain analysis for
UGVs. The goal is to provide a consistent set of definitions for terms that are sometimes ambiguously
employed in the literature. This discussion should assist the reader in the understanding of this
paper, and hopefully serve as a future reference.
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Figure 2. Organizational structure of this paper around the topic of terrain traversability analysis.

Figure 3. Typical components of a robotic system, with different configurations considered. This paper discusses
methods to interpret sensor data, often accumulated in a common spatial representation (map), for the purpose
of planning, ensuring safe navigation. Three main strategies are typically used: 1) obstacle detection, 2) terrain
classification, or 3) terrain traversability estimation. Among the many different elements that form a robot, in this
paper we mostly focus on terrain classification and terrain traversability, as highlighted by the “dashed” pink box.

2.1. Robot Navigation
In the context of mobile robotics, terrain classification sits side-by-side with obstacle detection, which
we can combine into the topic of traversability analysis if robot characteristics (e.g., kinematic and
dynamic models) are considered. At a very high level, the functionality flow for a robot typically
follows the order: (i) localization, (ii-a) obstacle detection, (ii-b) terrain classification, (iii) path
planning, and (iv) vehicle control.

Technology has advanced tremendously for wheeled and tracked UGVs for most of those functions
(particularly localization and control), but effective terrain traversability analysis still remains partly
unsolved for very challenging environments.

Figure 3 illustrates a typical example of architecture used for off-road robot navigation. Sensor
data (left) are gathered and combined as needed in a common spatial representation. An example
is the generation of digital elevation or terrain maps (DEM/DTM) (Goldberg et al., 2002).

One of three different types of operation is then usually conducted. 1) obstacle detection: given
the map and the type of vehicle (e.g., its spatial dimensions), it produces a binary obstacle map, or
occupancy map, which is used by a planner for simple obstacle avoidance. 2) Terrain classification
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produces segments associated with particular classes of terrain, often arbitrarily predefined, e.g.,
rock, grass, water. 3) Terrain traversability takes into account the map content and the capabilities
of the robot to produce a cost/difficulty map, representing how difficult it may be for the robot to
traverse particular areas of the terrain. This cost map is then passed on to the planner to determine
the best compromise between its objectives and the associated costs.

More specifically, we use the following definitions for the key terms in the context of navigation:

1. Obstacle detection: the task of identifying the presence (or otherwise absence) of an obstacle
in a map. An obstacle is a location or area in the environment that is considered impossible
or unsafe for a robot to traverse through. This is a perception-focused task. A special class of
obstacles, referred to as negative obstacles in the literature, represents holes and depressions in
the environment (Matthies and Rankin, 2003). This term was introduced to distinguish those
obstacles from most common obstacles that are “positive,” in the sense that they typically lie
above the ground level (e.g., large rocks or trees).

2. Obstacle avoidance: the task of, once an obstacle has been detected, determining a feasible
path around the obstacle, if any. The task combines perception and local path planning.

3. Terrain classification: the task of determining which type of terrain (e.g., grass, asphalt, rocks,
water) is present in the environment, generally in a semantic sense. The task usually combines
perception and machine learning.

4. Traversability analysis: this task usually interprets the terrain at a more refined level than
obstacle detection, contrasting its characteristics against the dynamics and kinematics capabil-
ities of the robot, and generating a “difficulty” or cost map of the environment. Such a cost map
is usually a 2D representation that indicates a cost value for each location (x, y) (optionally
with an orientation). The analysis can include various elements, such as terrain geometry,
rugosity, expected friction/traction, and kinematics of the vehicle. A simple traversability
map with only two cost/difficulty values possible (traversable, not traversable) is essentially
an obstacle map.

Figure 4 graphically illustrates the concepts above for a robot traveling from Point A to Point
B in scenarios I–V. The leftmost column containing A-B shows a side view of the environment,
showing free space, a generic obstacle, tall grass, a tall tree, and a deep pond, for scenarios I–V,
respectively.

Figure 4. Illustration of the different paths planned (in red) for different robots, different environments, and
different tasks (i.e., obstacle detection vs obstacle avoidance, vs. terrain analysis, vs. path planning). Rows III
and V show how the same detected area in a map can potentially be traversed by some platforms and not by
others; therefore, the planned path will be different for different robots.
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The illustration inside the rectangles represent the corresponding abstract top-view occupancy
maps, where the blue components represent the obstacles, and the different shades of blue represent
how they are interpreted in different modules. For example, light blue means “easy to traverse”
while dark blue means “very hard to traverse.” On top of the figure, we illustrate two different types
of vehicles: the larger black robot1 has amphibious capability and has a high clearance that allows
it to go over challenging terrain, including tall grass. The small yellow robot2 is a small standard
exploration robot with low clearance. For all the hypothetical cases described, the achieved paths are
shown in red in the top-view plots for the different tasks (obstacle detection vs. obstacle avoidance
vs. terrain analysis) and robots (large amphibious robot vs. small regular robot). We can see that
the success in planning a path is different depending on the platform and the environment. We can
also see the obstacle detection and traversability analysis task focus on understanding the terrain,
but not on planning the path. Although it is purely abstract, the goal of this figure is to present an
illustrated exercise that assists us in coherently defining the terminology.

2.2. Terrain Analysis, Classification, and Traversability
Before traversability can be discussed, the observed terrain needs to be interpreted. This can involve
one or more of the following tasks, depending on the focus of the research/application:

1. Detection refers to finding an occurrence of something, which can be of different levels
of abstraction or specificity. As an example, “obstacle detection” is generic, while “water
detection” is more specific.

2. Segmentation separates and clusters different components of a scene into their section or class,
without specifying what type of class.

3. Classification labels detection or segmentation outputs into one or more potential classes.
Binary classification only determines which segments belong to a single class or not.

When performing any of the tasks mentioned above (e.g., classification, detection) there exist
some common strategies regarding the design and architecture of the system. In this work, we use
the following definitions, but note that terminology is not uniform across fields; for example, the
word “model” can mean either something that is at least partially learnt in robotic learning research
or a non-learning-based method in other fields:

1. Model-based method: an approach that is based on a hand-crafted, and usually explicit, model.
Examples include (i) a model of the appearance of water in an image based on the laws of
physics, (ii) a “yellow” appearance characterization for sand, or (iii) an explicit and arbitrary
criterion that a robot cannot drive over a slope of more than 20 degrees of inclination. Note
that specific aspects (e.g., parameters) of the model are often learned from experimental data.

2. Data-driven or learning method: an approach that is learning directly from data. Although
such an approach would often be using an underlying model as well, this model is learned from
data.

3. Deep learning vs. traditional learning: in this paper we distinguish traditional learning (e.g.,
Support Vector Machines) from more recent deep learning methods that exploit deep neural
networks.

4. Supervised (learning) method: a data-driven method that learns from provided examples, i.e.,
using training data that include ground truth labels, usually provided by experts, prior to
training.

5. Semisupervised (learning) method: an approach that combines a limited amount of labeled
data with a large amount of unlabeled data during the training phase. This method is useful
in applications where labeling is complex and time-intensive.

1 Figure and vehicle characteristics extracted from https://argoatv.com.au/
2 Figure and vehicle characteristics extracted from https://clearpathrobotics.com/
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6. Weakly supervised (learning) method: an approach in which a model is trained on noisy,
partially annotated data at a coarse level. This method is useful when there are multiple
sources of weak supervision often generated using simple heuristic rules or relying on a more
reliable modality to create pseudolabels.

7. Unsupervised (learning) method: an approach in which the learning model is given a dataset
without specific instructions on what the output should be. The method then aims at
automatically extracting patterns or structure in the data by finding meaningful features.

8. Self-supervised (learning) method: a more recent paradigm, where a model is trained on
unlabeled data by defining a pretext task to learn robust representations and then fine-tune
the model to perform specific tasks such as classification, segmentation, or object detection.

The above definitions apply across a number of domains, but they are frequently found in the terrain
analysis literature.

2.3. Sensors
Two main categories of sensing are typically used for terrain analysis: exteroceptive and propriocep-
tive. Although in this paper we focus mostly on the use of exteroceptive sensing to predict what type
of terrain the robot is going to face ahead, we also consider the important, and often complementary,
role that proprioception has played in the literature.

As most robotic perception research work is based on exteroception, most terrain traversability
analysis approaches are based on the interpretation of data from visual cameras and/or LIDARs,
as reflected in Sections 3 and 4. Therefore, in this paper, we refer to other sensors as alternative
sensors, as defined in (Peynot et al., 2015) (see Section 5). In the context of this survey, this concerns
mostly sensors such as RADARs, infrared (IR), or hyperspectral cameras.

In terrain analysis, proprioception is mainly used in two ways. The first is to characterize the
terrain found under the robot’s body at the present moment, for example identifying slippery terrain
based on wheel odometry observations, or rugged terrain based on the vibration signature observed
with an inertial measurement unit (IMU). The second is to teach a system to predict the behavior of
the robot when it will be over a certain patch of terrain observed with exteroception. This concept
is sometimes referred to as near-to-far learning (Stella et al., 2021; Howard et al., 2006; Krebs et al.,
2010).

2.4. Traversability Metrics
A variety of metrics have been used in the literature to define the traversability of an area of terrain,
which is the cost of traveling over that area. In general, traversability for a mobile robot is a function
of the terrain shape and the terramechanic characteristics (e.g., soil properties and their interaction
with the robot wheels/tracks) (Ishigami et al., 2007; Ishigami et al., 2006). It can also include the
state of the robot (Martin, 2018) since the robot’s speed (and orientation) can also play a role.

The terrain shape can be simplified by the slope and roughness of the terrain, as identified by
early research on terrain analysis that extracted basic terrain statistics (e.g., variance and slope of
patches in front of the robot) to determine a cost (Langer et al., 1994; Gennery, 1999; Hamner et al.,
2008). Roughness is defined as a measure of the small-scale variations in the height of a surface. It
is well understood to be related to traversability (Bekker, 1969). Mathematically (and considering
3D or depth data), roughness is related to how scattered or linear/planar is the distribution of
the points in the area of interest. This can be done using a number of statistical methods, such
as least-squares plane fitting computing the residuals (Krüsi et al., 2017; Gennery, 1999), Gaussian
mixture models, and principal component analysis over the terrain points (Lalonde et al., 2006).
Figure 5 illustrates the concept for 2D LIDAR returns for a vehicle-sized patch (in this example,
we used a Baraja LIDAR3 for the scan). On the top image, the terrain is considered “smoother”

3 https://www.baraja.com/
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Figure 5. Illustration of the side view of LIDAR returns from a Baraja LIDAR for two different terrains. Please
note that on the scans on the right, the points projected to the side 2D view are not from a sliced plane, but
rather from a very narrow volume, hence some points appear behind others (which would not be possible for the
LIDAR to sense if all points were on exactly the same plane). d corresponds to the distance from the sensor, and
h is the height of the points with respect to the sensor frame. Here, d and h are not to scale and serve only as an
abstract representation. The top scan shows a “smoother” terrain, with little roughness (small residuals for the
red line fitting) on flat ground, corresponding to the grassy image on the top left. The bottom scan represents a
rougher terrain (larger residuals for the red line fitting) with more inclination, corresponding to the rocky image
on the bottom left. Arguably the terrain in the top image is easier to traverse than that in the bottom image.

than in the bottom image, based on the residuals and slope of the LIDAR returns. Arguably the
distribution of points in the top figure represents a more easily traversable terrain than the points
in the bottom figure. Regarding slope, the concept should obviously consider both pitch and roll, as
both can interfere with traversability. A vehicle’s roll and pitch is a function of the slope of both the
local environment and the configuration of the robot’s suspension, with some robots able to actively
articulate their suspension to accommodate terrain slopes.

An interesting study in (Molino et al., 2007) further refines costs into cost of coverability and
cost of crossability. The coverability cost of some region is a measure of how difficult it is for a robot
to explore all sections of that region. Crossability of some region is related to the cost of going
from Point A to Point B in that region. This is equivalent to our definition of traversability (and
consistent with most of the literature), as discussed in Figure 4.

It is always important to distinguish between traversability metrics that are just dependent on
the terrain (like the slope and roughness above) and those that are platform-dependent/specific,
such as the kinematics of the rover chassis when placed on the terrain location [e.g., (Bonnafous
et al., 2001)]. The traversability can also be represented probabilistically, where sensor uncertainty
and multiple risk factors (e.g., tip-over, collision, and nearby steps and objects) are fused into a final
metric (Fan et al., 2021).

2.5. Performance Evaluation
Although the metrics described in Section 2.4 provide the general approach used in quantifying
terrain characteristics, in the literature the performance of terrain traversability/classification
studies is often reported using a variety of criteria and metrics that are rarely comparable.

Field Robotics, July, 2022 · 2:1567–1627



A survey on terrain traversability analysis for autonomous ground vehicles: Methods, sensors, and challenges · 1575

Terrain classification methods tend to report standard metrics of classification performance, such
as precision and recall, F1 scores, confusion matrices, or Intersection over Union (IoU) for image-
based applications (Jiang et al., 2020). Although these metrics and tools are standard and well
understood, any comparison between methods requires that the classes and their definition be
exactly the same, which is rarely the case in practice. Even the common use of semantic labels
such as “rock” or “vegetation” falls short of guaranteeing reliable and consistent definitions. The
characteristics of the hardware used in the experimental validation (e.g., sensor resolution) and the
experimental conditions can also introduce some discrepancy in the meaning of the results obtained.

Due to the variety of definitions of metrics (or cost functions) used for terrain traversabil-
ity (Molino et al., 2007), researchers are often not able to directly compare the performance
of different traversability estimation methods. In addition, although some metrics are directly
observable (e.g., terrain slope) or indirectly observable (e.g., rover configuration on the terrain),
others are simply unobservable. In the former case, the performance of corresponding methods can
be partly evaluated by measuring the performance of the predictions made by the approach (e.g.,
comparing the predicted difficulty or cost with the actual configuration of the robot when it traversed
a given terrain patch). However, in the latter case this is not possible; the evaluation may be limited
to common sense observations (e.g., clear obstacles on the map are given a very high difficulty or cost)
and to the subsequent behavior of the path planner when it uses the computed traversability map.

3. Vision-Based Approaches
Vision-based heuristic approaches for terrain classifications have been in use since the early 1970s. In
this paper, we have divided the vision-based literature into different subsections, which include non-
learning methods (using stereovision), traditional learning-based method, and deep learning-based
methods. Terrain classification using traditional learning-based methods relies on hand-designed
features classifying pixels of image patches. On the other hand, deep learning-based methods use a
set of possible models to automatically identify underlying features that are used in the classification.
Before addressing learning methods, we start this section discussing nonlearning stereo vision-based
methods in Section 3.1. In Sections 3.2 and 3.3, learning-based methods for terrain classification
are discussed.

3.1. Nonlearning Methods for Classification and Traversability using Stereovision
In an outdoor environment, terrain classification using vision-based approaches requires robust range
estimation for the traversability analysis. Outdoor natural environment terrain perception could
be achieved by constructing a dynamic representation of the scene in terms of occupancy grids or
digital elevation maps. In this section, we review nonlearning vision-based methods and technologies
that have been used to classify terrain in outdoor environments. The predominant approaches for
measuring terrain traversability are based on geometric processing. Indeed, the Mars Exploration
Rover (MER) vision and navigation system research contributed significantly in developing the
nonlearning stereo vision approaches over the years (Goldberg et al., 2002). Stereovision provides the
geometric aspects of the scene for perception in real time for robot navigation. Interested readers may
refer to (Matthies et al., 2007) to review the stereo vision approaches used in the MER program for
visual odometry and rover navigation. These methodologies are relevant to off-road robot navigation,
which does not assume a flat surface in front of a vehicle and positive obstacles with respect to the
ground plane. In addition, some of the more specific open challenges for off-road autonomy and
navigation are discussed in Section 8.

A terrain classification algorithm was developed in (Manduchi et al., 2005) using stereo range
measurements for safe off-road navigation in a highly vegetated environment. Terrain classes such
as soil, rock, green (photosynthetic) vegetation, and dry (nonphotosynthetic) vegetation were
considered in this work. Two approaches were presented to perceive the terrain; the first was based on
the surface reflectivity captured using a stereo color camera, and the second was based on analyzing
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the range data from LIDAR. A color calibration dataset was captured in an outdoor environment
to perform classification using maximum likelihood. The variability in each class due to color was
adequately predicted by the classifier to perceive the terrain classes of interest. Note that the color
shift and the illumination change due to weather conditions are the two major challenges in using
color-based classification approaches. These challenges could be overcome by having a large enough
dataset to minimize aleatoric and epistemic uncertainties. Therefore, it is of the utmost importance
to consider a probabilistic framework for terrain classification and traversability analysis for outdoor
unstructured environments.

Disparity maps have often been used to find the traversable areas in the grid map. The u-disparity
occupancy grid was used in (Kuthirummal et al., 2011) to map the stereo point cloud into the cells.
Then, the elevation histogram was computed from the point cloud that maps to the individual
cells. The elevation histogram of all the cells was used to remove the outliers in detecting obstacles
based on different heights within the cell. The compatibility function was used to determine the
adjacent traversable cells, which was then used to construct a graph. The connected components in
the graph are used to find the traversable, obstacle, and unknown cells of the map. The methodology
was tested on Black-I Landshark UGV, equipped with a LIDAR and two pairs of stereo cameras,
in a front-back arrangement, mounted on a pan-tilt unit. The experimental results were shown in
a static outdoor scenario, where the disparity maps were obtained at 15 Hz to find obstacles at 28
ms per frame. Note that the performance of this methodology is dependent on the accuracy of the
disparity maps obtained in the outdoor environment.

In (Dubbelman et al., 2007), an hysteresis threshold was used to detect positive and negative
obstacles during daytime and nighttime. A stereo camera was used together with infrared light to
detect obstacles during the night. First, a disparity image was estimated using the multiresolution
technique through the sum of absolute differences of multiple windows (Van Der Mark and Gavrila,
2006). The quality of the estimated disparity was validated using the normalized difference between
different matches and the signal-to-noise ratio of local regions in the intensity image. A fine-to-
coarse selection scheme was used in the stereo image pyramid for robust disparity estimate in
the night condition. Positive obstacles were estimated using the hysteresis threshold around the
patches of obstacle pixels and using the morphological operation. Negative obstacles were detected
using the ratio between expected and estimated depth of an image, and by applying the hysteresis
threshold. Test images were captured in an off-road scenario using a stereo camera during daytime
and nighttime. Positive obstacles were detected up to 25 m during the day and night. Negative
obstacles were detected up to 10 m in the daytime. The method was unable to detect negative
obstacles from a reasonable range at nighttime.

A terrain classification and traversability analysis was used for Legged Squad Support System
(LS3) quadruped vehicle foot placement in natural outdoor environments (Bajracharya et al.,
2013). A near-field terrain map, including classification of vegetation and negative obstacles, was
constructed with a resolution of 5 cm for path planning and controlling the robot. Stereo visual
odometry was used to accumulate voxel maps using dense stereo range data, which inherit the
terrain classification labels and the geometry statistics. Vehicle movement to approach natural
outdoor terrain was controlled using the resultant ground elevation map, which includes the statistics
and classification, for obstacle avoidance and navigation. During nighttime operations, a custom
NIR illumination system was used without modifying or adjusting the parameters of the proposed
algorithm. Over 245 distinct experiments were conducted in different weather conditions and natural
outdoor environments. Negative obstacles were detected during the nighttime in most of the terrain
condition using a custom NIR illumination system.

In outdoor environments, it is not always possible to obtain the disparity maps with sharp
boundaries and without any flattening effects. Predefined camera uncertainty models may not
be sufficient to accurately detect obstacles when using geometric methods. In particular, negative
obstacle detection during day and night can pose a challenge using heuristic methods and passive
measurements only. In contrast, the nonlearning methods are predictable in terms of computation
performances and results. Their dependence on weather conditions could affect the performance in
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Table 1. Traditional learning-based terrain classification methods.
Reference Architecture Terrain Type Data
(Angelova et al., 2007) Color, texture + Decision

tree/Nearest neighbor
Sand, soil, grass, gravel,

asphalt, woodchip
RGB

(Bajracharya et al., 2008) Color + SVM Traversable, nontraversable RGB, Stereo
(Moghadam and Wijesoma,

2009)
Color, texture + SVM/ARTMAP Traversable, nontraversable RGB, Stereo

(Zou et al., 2014) Color, texture, SURF, SIFT +
SVM/ELM/Nearest neighbor

Gravel, hard soil, pothole,
grass

RGB

(Hang et al., 2017) Codebook + SVM Asphalt, dirt, grass, gravel,
rock, sand

RGB

(Filitchkin and Byl, 2012) SURF + SVM Asphalt, grass, gravel, mud,
soil, woodchips

RGB

(Lee and Kwak, 2011) SURF + MLP Sky, grass, tree, soil, gravel,
outlier

RGB

some situations. However, the stereo vision-based methods were demonstrated and proven to work
in many research programs including the DARPA Learning Applied to Ground Vehicles (LAGR)
program, the DARPA Legged Squad Support System (LS3) program, and the Mars Exploration
Rover (MER) program.

3.2. Traditional Learning-Based Methods for Terrain Classification
Terrain classification can help ground robots to perceive the surrounding off-road environments
and perform traversability analysis based on scene appearance. Significant work based on image
processing and machine-learning methods has been devoted to the problem of terrain classification.
Traditional learning-based methods for terrain classification, shown in Table 1, extract visual
features (e.g., color, texture) (Angelova et al., 2007; Zou et al., 2014) or distinctive features [e.g.,
Speeded-up Robust Features (SURF)] (Filitchkin and Byl, 2012; Lee and Kwak, 2011) for training
a classifier. For example, a hierarchical classifier is proposed in (Angelova et al., 2007) to lower
the computational cost for differentiating between different terrains (e.g., soil vs grass, sand vs
gravel). The classification was performed in a top-down fashion, starting from simple classifiers
and advancing into more complex classification tasks. Feature representations of varying complexity
including average color, color histogram, and texture-based features were used at different levels
of the hierarchy. A decision tree classifier was employed at each level, and a nearest neighbor
was used only in the last stage. The hierarchical classifier was evaluated on small patches from
six terrain classes (sand, soil, grass, gravel, asphalt, woodchip) in comparison with baseline (flat,
nonhierarchical) classifiers. The results showed that the hierarchical classifiers achieved competitive
accuracy and are generally faster than the baseline classifiers.

The long-range vision-based terrain classification method was proposed in (Bajracharya et al.,
2008) using a stereo camera. A histogram-based naive-Bayes classifier was used for terrain classifi-
cation using the stereo range data. The classification results were back-projected to the original
image as labeled image windows. To train a Support Vector Machine (SVM), 2D normalized
color histograms in labeled image windows were calculated for terrain classification. To verify the
learning mechanism used, which is learning long-range terrain classification from short-range terrain
classification, the data labeled by the local field classifier are split into a set of pixels at the near
field and another set at the middle field. The long-range classifier was trained only on the near
set and then evaluated on both the near and middle sets separately. The results showed that SVM
performed well at range extension with even higher accuracy at middle-field.

A near-to-far, online learning method using stereo images was proposed in (Moghadam and
Wijesoma, 2009). The authors used the near-field stereo information associated with the terrain
geometry and appearance (points belong to a ground plane or not) to train a classifier to classify
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the far-field terrain well beyond the stereo range for each incoming image. Their proposed method
can train incrementally over time on the incoming data stream adapting to unknown environments
without using any hand-labeled training data.

A comprehensive analysis of learning-based terrain classification methods by exploring various
image descriptor types was provided in (Zou et al., 2014). The model was evaluated on classic
composite descriptors (local ternary patterns, scalable color, edge histogram and color structure,
and homogeneous texture), novel composite descriptors [color and edge directivity, fuzzy color and
texture histogram, and joint composite descriptor (JCD)], bag of visual words (BOVW) sparse
vector of occurrence [SURF, scale-invariant feature transforms (SIFT)], and local ternary patterns.
Several classifiers were tried, namely extreme learning machines (ELM), SVM, and nearest-neighbor
classifiers. Results showed that the approach based on JCD and ELM classifiers performed best
in terms of classification effectiveness. JCD allows representing different terrain images with
significant interclass discrepancies, while ELM has mild optimization constraints and obtains better
performance over various types of terrain.

Consecutive steps in the classification pipeline and different fusion methods for visual terrain
classification were described in (Hang et al., 2017), with the focus being on the BOVW framework.
The paper presented a comparison of different BOVW frameworks and fusion methods for visual
terrain classification. The BOVW framework is based on the idea of using overcomplete basis vectors
to encode the local descriptors. These basis vectors are also known as codewords, and a collection
of those codewords is referred to as a codebook. The codebook is computed on the training set
and used for the descriptors of all images. The codewords are considered to be characteristically
representative of the image descriptors. The authors designed an optimum pipeline and developed
the hybrid representation to produce an effective and efficient visual terrain classification system,
which was robust to diverse noises and illumination alterations.

Similar to (Hang et al., 2017), the work in (Filitchkin and Byl, 2012) used BOVW created
from SURF for terrain classification. To improve SURF feature extraction, a gradient descent
inspired algorithm was proposed to adjust the SURF Hessian threshold. A vocabulary was then
generated from SURF descriptors by applying k-means clustering. There are six different terrain
types: asphalt, grass, gravel, mud, oil, and woodchips. Once the vocabulary has been created, each
type of terrain image can be described by a word frequency vector. The linear SVM was trained
using these frequency vectors afterwards.

A hybrid approach combing SURF features and a deep neural network for classifying terrain
types, such as sky, tree, grass, and soil, was presented in (Lee and Kwak, 2011). SURF feature
vectors were extracted from small regions in a grayscale image which was converted from an original
RGB image, and they were then used to train a multilayer perceptron (MLP) network (Mitchell
et al., 1997). Their MLP network was set as one input layer, two hidden layers, and one output layer.
Although the experiments for real off-road images showed that the method had a good performance,
the resulting classification presented a blocky structure. This is mainly because feature extraction
is based on small patches rather than a pixel.

One important aspect is that the appearance of natural terrain such as mud, rock, vegetation,
water, and sand can exhibit marked interclass similarity and significant intraclass variation. There-
fore, the main challenge for traditional learning-based approaches is to find complex features that
can not only accommodate intraclass variation but can also distinguish different terrain classes
correctly. Recent advances in computer vision, especially deep semantic segmentation, have shown
great success in scene understanding. The main advantage of deep learning methods is that they are
able to learn high-level features from data, whereas traditional learning-based approaches require
domain expertise and hand-designed feature extraction. The disadvantage, of course, is the usually
large amount of data required for training. A comparison between a convolutional neural network
(CNN) and an SVM trained on SURF in the context of terrain classification for off-road driving
was given in (Shen and Kelly, 2017). The CNN model was built with Keras (Chollet et al., 2015)
using Theano backend (Team et al., 2016) and took as input normalized RGB pixel values. Both
classifiers were trained on 100 × 100 pixel images of six terrain categories: pavement, dirt, foliage,
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bark, grass, and dry vegetation. The classification was tested on mixed terrain images, and generally,
the CNN was more robust to various sources of noise and generated smoother images. The SVM
additionally struggled to identify grass, likely due to the color insensitivity of SURF features. This
early finding has suggested the superior performance of a deep neural network over traditional
classification methods in terrain classification accuracy (Shen and Kelly, 2017).

Summary. Traditional learning-based methods for terrain classification rely on hand-crafted fea-
tures (color, variance, contrast, and many other statistics). Advantages are that these methods do
not need large datasets for training the classifiers. Labeling is a major challenge in the case of
terrain data. Because terrain types often have a fuzzy boundary in an image [e.g., where exactly is
the boundary between grass and dirt in Figure 1(b)?], labeling data is time-consuming and imprecise,
and hand-crafted features work around that issue. Disadvantages of the traditional learning methods
include the following: a) The feature extraction methodology is usually designed for specific terrain
classes and may not be easily generalized to different terrain types; and b) the terrain classes
exhibit similarity and variation among different types. Therefore, it is challenging to extract complex
features for a specific terrain type that can be robust to the variation and similarities in different
terrain classes. In addition, the concept of “shape” and structure, frequently exploited in many
recognition tasks in computer vision, does not apply to terrain (unlike a car or person, where
elements can be spatially structured).

3.3. Terrain Classification Using Deep Learning-Based Methods
The recent success of deep learning networks has enabled remarkable progress in image and video
semantic segmentation. Semantic segmentation methods using deep learning usually take image
data as an input and learn hierarchies of features through training. Afterwards, the trained network
is able to produce per-pixel labeled output. In the following paragraphs, we discuss deep-learning
image-based and video-based methods for terrain classification. A selection of deep learning-based
methodologies is given in Table 2.

3.3.1. Deep Learning-Based Image Semantic Segmentation
The fully convolutional network (FCN) introduced in (Long et al., 2015) was original proposed for
the semantic segmentation task. The insight of this approach is to take advantage of existing CNN
classifiers that are able to learn hierarchies of features and transform them by replacing the fully
connected layers with convolutional layers to produce coarse output maps. These maps are then
upsampled to dense pixel labels by fractionally stride convolution (i.e., deconvolution). The skip
connections were used to refine the segmentation by using higher resolution encoder feature maps.
Most of the state-of-the-art semantic segmentation methods are based on FCNs. Subsequently, a
FCN was used for semantic segmentation in terrain in (Maturana et al., 2018). The FCN is based
on the VGG16 architecture (Simonyan and Zisserman, 2014), which is a large network with 13
convolutional layers and 3 fully connected layers. VGG16 was replaced by Darknet, a similar and
more efficient architecture, in (Redmon, 2016). The Darknet version was found to be faster than
the original one (Maturana et al., 2018).

An encoder-decoder architecture named SegNet was introduced in (Badrinarayanan et al., 2017).
The encoder serves to produce hierarchical feature maps with a CNN backbone such as VGG without
fully connected layers. The decoder, conversely, maps these low resolution image representations to
pixelwise predictions by a set of upsampling and convolution layers. Specifically, the decoder uses the
max-pooling indices in the corresponding encoder to perform nonlinear upsampling. SegNet provides
a modular design by decoupling the segmentation architecture into encoder and decoder. In the con-
text of terrain analysis, this generic design allows the extension with different encoding and decoding
methods and aids practitioners to pick the most suited design choice for terrain classification.

In (Ronneberger et al., 2015) the authors proposed a u-shaped architecture network (U-Net)
where feature maps from different encoding layers are concatenated with the upsampled feature

Field Robotics, July, 2022 · 2:1567–1627



1580 · Borges et al.

Table 2. Deep learning-based terrain classification methods.
Reference Architecture Application Terrain type Data

Semisupervised methods
(Wellhausen et al., 2019)‡ ERFNet Terrain Asphalt, Grass,

Dirt, Sand
RGB

(Hirose et al., 2018)∗∗ GONet Indoor, Real-time NA RGB
Fully-Supervised methods

(Valada et al., 2019)†‡ Adapnet++ Terrain, Urban,
General

Grass, Sky,
Vegetation

RGB, Infrared,
Depth

(Iwashita et al., 2019)‡ TU-net, TDeeplab Terrain Sand, Soil, Rocks RGB, Infrared
(Rothrock et al., 2016)‡ Deeplab-v1 Terrain Sand, Rocks Grayscale
(Maturana et al., 2018)‡ FCN Terrain Sky, Road, Grass,

Vegetation
RGB

(Kim et al., 2018)‡ ENet, 3D CNN Terrain Vegetation,
Outdoor terrain

RGB, Point
cloud

(Suryamurthy et al., 2019)‡ ENet, ERFNet, SegNet Terrain Sand, Gravel, Road RGB
(Long et al., 2015)∗ FCN General NA RGB
(Badrinarayanan et al.,

2017)∗

SegNet Urban, General Tree, Vegetation RGB

(Ronneberger et al., 2015)∗ U-net Medical NA RGB
(Chen et al., 2014)∗ Deeplab-v1 General NA RGB
(Palazzo et al., 2020)∗ Deeplab-v2 / ResNet Terrain Grass, Road RGB
(Chen et al., 2018b)∗ Deeplab-v2 Urban, General Urban vegetation RGB
(Chen et al., 2017b)∗ Deeplab-v3 Urban, General Urban vegetation RGB
(Chen et al., 2018c)∗ Deeplab-v3+ Urban, General Urban vegetation RGB
(Paszke et al., 2016)∗ ENet Urban, General,

Real-time
Tree, Urban

vegetation
RGB

(Romera et al., 2017)∗ ERFNet Urban, Real-time Urban vegetation RGB
(Treml et al., 2016)∗∗ SQ Urban, Real-time Urban vegetation RGB
(Mehta et al., 2018)∗∗ ESPNet Urban, General,

Real-time
Urban vegetation RGB

(Zhao et al., 2018)∗∗ ICNet Urban, General,
Real-time

Urban vegetation RGB

(Chiodini et al., 2020)† Deeplab-v3+ Terrain Mars RGB
†Stereo camera was used in this work.
‡These methods are used for terrain classification.
∗Instead of original work, modified forms are used for terrain classification.
∗∗These methods are useful for real-time terrain classification.

maps from the corresponding decoding layers. Motivated by the success of U-Net in medical image
segmentation, a TU-net architecture that incorporated two U-Nets for terrain classification was
developed in (Iwashita et al., 2019). The approach fused thermal and RGB images at different levels
(early, middle, and late) to enable the network to be robust to illumination changes. The experiments
showed that TU-net achieved higher accuracy than U-net with RGB images only.

Refinements on fully convolutional networks were introduced to improve the segmentation
accuracy by incorporating context. (Yu and Koltun, 2015) introduced dilated or atrous convolutions,
which expanded the receptive field without losing resolution based on the dilation factor. Thus, it
provided a better solution for handling multiple scales. Deeplab-v1 was proposed in (Chen et al.,
2014), which proposed using atrous convolution to explicitly control the resolution at which feature
responses are computed and the fully connected conditional random fields (CRF) as a postprocessing.
CRF increase the segmentation accuracy at the cost of additional computation. The authors then
proposed the improved version that uses atrous spatial pyramid pooling (ASPP) for multiscale
support (Chen et al., 2018b). The Deeplab method was refined further by augmenting the ASPP
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module with image-level features to capture longer range information (Chen et al., 2017b). The
latest version (Deeplab-v3+) added the decoder module to improve segmentation along the object
boundaries (Chen et al., 2018c). As one of the state-of-the-art semantic segmentation architectures,
Deeplab has become a popular network for terrain analysis. A multimodal (e.g., RGB, near-infrared,
and depth) semantic segmentation framework that leveraged Resnet-50 (He et al., 2016b) and ASPP
module in Deeplab-v3 was proposed in (Valada et al., 2019). The results showed that this multimodal
framework achieved state-of-the-art performance on a number of public datasets, including one
dataset collected in a forest environment, while demonstrating robustness in adverse perceptual
conditions such as rain, snow, and night. Deeplab-v1 was employed for terrain classification on
high resolution images taken by the powerful telescopic imager in Mars’ orbit as well as for ground
images from Curiosity (Rothrock et al., 2016). The frames were manually annotated in regions of
“high confidence” in the images. Although the method is not reported to run “live” on Curiosity, the
classifier output assisted in landing site traversability analysis for the Mars 2020 Rover mission, and
slip prediction for the Mars Science Laboratory mission. The TDeeplab (Two Deeplab) architecture
that was built upon Deeplab-v2 was proposed in (Iwashita et al., 2019). In this work, RGB and
infrared images were fused at early or late stages to perform terrain classification. The results showed
that TDeeplab performed better than Deeplab using RGB images only.

As with terrain analysis, many advanced real-world applications such as autonomous robot
navigation and self-driving cars demand real-time processing of data on embedded devices. Accurate
deep architectures such as Deeplab-v3+ or PSPNet (Zhao et al., 2017) require enormous resources
and are computationally intensive. To address such challenge, alternative methods that focus
on reducing the computation complexity of deep CNN architectures while retaining remarkable
accuracy have gained more and more attention: e.g., SQ (Treml et al., 2016), ENet (Paszke et al.,
2016), ESPNet (Mehta et al., 2018), ERFNet (Romera et al., 2017), and ICNet (Zhao et al.,
2018). Among these methods, ERFNet and ICNet achieved better tradeoffs between frame rate
and accuracy. ICNet introduced a cascade feature fusion unit that fused semantic information in
low resolution with details from high-resolution images. ERFNet proposed a non-bottleneck-1D layer
that utilizes residual connections and factorized convolutions. In an early attempt to adopt efficient
semantic segmentation networks for off-road navigation, the deep multimodal network presented
in (Kim et al., 2018) consisted of 2D CNN and 3D CNN, which are fused by projecting 3D features
to image space to perform terrain classification. In this work, 2D CNN was based on ENet, and
3D CNN was used for the point cloud. The results showed that the multimodal network was more
robust to segment terrains under various seasonal conditions compared with unimodality networks.

Another approach using learning techniques was proposed in (Suryamurthy et al., 2019), where
classification was performed pixelwise, labeling the terrain as stone, sand, road/sidewalk, wood,
grass, metal, in addition to a general roughness estimation. Focusing on real-time applications, the
authors compared ENet, ERFNet, and SegNet networks and found that ERFNet gave the best
performance with faster inference time. One limitation is that all results are presented in small
scale terrain. Although the target experiments are with humanoid robots, expansion to UGVs seems
relatively straightforward.

All the learning-based methods discussed above belong in the realm of supervised learning,
which requires a large amount of labeled data for training. In some classification tasks, it can
be difficult to attain sufficient labeled data due to the high cost of the data-labeling process.
Semisupervised learning, as a branch of machine learning, aims to deal with the situation in which
a small amount of labeled data is available (Zhu, 2005). A semisupervised deep-learning method for
terrain classification was presented in (Wellhausen et al., 2019). Five terrain classes—asphalt, sand,
gravel, dirt, and grass—are sparsely labeled in images, and their labels cover between 0.1% and
10.9% of image pixels. The authors selected ERFNet with skip connection and trained the network
using a semisupervised learning technique called Mean Teacher (Tarvainen and Valpola, 2017). The
experiments showed that the weakly trained network was able to generate a dense prediction of
terrain classes in RGB images. A semisupervised deep-learning approach named GONet, which
leveraged Generative Adversarial Network (GAN) (Mirza and Osindero, 2014) for traversability
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estimation from fisheye images, was proposed in (Hirose et al., 2018). GAN was trained in a
semisupervised manner from traversable images of a fisheye camera and thus only learned to generate
traversable images. GONet compared the input image with the GAN generated image that was
similar to the input and as if it came from the set of traversable images. The difference between an
input image and its GAN generated image was then used to determine whether the area seen in the
input image was traversable or not. The results showed GONet outperformed supervised baselines
using ResNet (He et al., 2016a) in terms of accuracy and computation efficiency. However, GONet has
three limitations for terrain analysis: 1) it classified an image as traversable/nontraversable without
providing significant image semantic information; 2) it was evaluated on fish-eye images of indoor
environment only; 3) it could estimate traversability only at short range. Finally, (Sofman et al.,
2006) showed that self-supervision could be achieved for traversal estimation using overhead imagery.

Furthermore, multimodal networks, where multiple sensing modalities can be fused to exploit
their complementary properties, have recently been proposed for terrain classification. Although
multimodal networks have demonstrated higher accuracy than the network using unimodal infor-
mation under challenging perceptual conditions (Iwashita et al., 2019; Valada et al., 2019; Kim et al.,
2018), they are large and may not be suitable for real-time applications. Future work is expected to
develop efficient multimodal networks for off-road navigation.

Summary. State-of-the-art methods for terrain classification are built on deep semantic
segmentation networks. Deep-learning-based methods have several advantages: a) They do
not require domain expertise and can automatically learn high-level features from data; b) the
network design is generic and can be retrained to classify new terrains; and c) the network can be
extended to a multimodal network which can fuse multiple sensor data. However, these methods
require a large amount of annotated data for training neural networks. While usually the main
limitation for labeling data is resources in most cases, the case of terrain labeling comes with the
challenge of uncertainty and fuzzy boundaries. As an example, determining what is a horse or a
chair when labeling an image is a straightforward task. With terrain, however, it is sometimes hard
to visually differentiate between sand, dirt, or mud in an image, as they can look very similar (and
yet will have very different traversability characteristics). In addition, the spatial boundaries of
each class are not always easy to define, leading to noise in the labeling process. Recent advances in
simulated training data are promising for well-defined geometric structures (i.e., classes that have
a “shape” such as cars, trees, etc.), but are still challenging for terrain elements that rely more on
texture than shape. Results on simulated terrain data have illustrated that artificially generating
the realistic texture (not only visually pleasing for a human observer) that can be effectively used
for training is an ongoing research topic.

3.3.2. Deep Learning-Based Video Semantic Segmentation
The state of the art discussed in the previous section focuses on still-image semantic segmentation.
In off-road navigation, mobile robots receive video sequences from a camera sensor and can then
use them to perceive their surroundings. Naturally, it is possible to apply image segmentation
algorithms on each video frame, however such an approach completely ignores temporal continuity
and coherence cues that might help achieve higher segmentation accuracy and faster execution
speed. A number of recent approaches that utilize temporal information have emerged for video
semantic segmentation.

Optical flow has been exploited by deep video semantic segmentation pipelines to improve
accuracy and temporal consistency. Features wrapped from the previous frame by optical flow were
combined with those of the current frame to perform video segmentation in (Gadde et al., 2017).
Optical flow learned in a flow network (Dosovitskiy et al., 2015) was used to propagate the features
from the key frame to the current frame in (Zhu et al., 2017b). A spatiotemporal transformer gated
recurrent layer introduced in (Nilsson and Sminchisescu, 2018) combined optical flow-based feature
warping with a gated recurrent unit. An efficient video semantic segmentation pipeline that used the
optical flow method to exploit temporal information and ICNet for the main semantic segmentation
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architecture was proposed in (Paul et al., 2020). Alternatively, some methods have focused on
reducing inference times. The Long Short-Term Memory (LSTM) network was used in (Mahasseni
et al., 2017) to optimally select a subset of frames for pixel-level labeling by CNN and interpolated
the segmentation results to unselected frames. In (Shelhamer et al., 2016) the authors observed that
high-level representations within a network evolved slowly in a video, and thus proposed clockwork
networks that scheduled the computation of feature maps for key frames and shared feature maps in
between. Subsequent studies in (Li et al., 2018) and (Xu et al., 2018) further optimized scheduling
and propagation on video via adaptive feature propagation and adaptive selection of key frames
as schemes. To our knowledge, most video segmentation methods have been evaluated on datasets,
such as Cityscapes (Cordts et al., 2016) or CamVid (Brostow et al., 2009), which were set up for
urban scene understanding and autonomous driving. Although some terrain types (e.g., trees, grass,
or vegetation) are labeled in these datasets, there is no direct implementation of video semantic
segmentation methods for terrain analysis in the literature. Nevertheless, these specialized methods
for videos are worth exploring for future work.

A key bottleneck in the implementation of video semantic segmentation networks is that they
require the pixel level labeling in many frames of the training videos. Acquiring pixel level annota-
tions for image semantic segmentation is already costly. To ensure dataset diversity, many videos,
each of which consists of hundreds of frames even for a very short movie, require the annotation of
a very large number of frames.

3.4. Considerations
The traditional vision-based approaches developed in the early 1990’s have evolved over the years
and recently have been incorporated into deep learning methodologies. Traditional learning-based
and stereo-vision methodologies for terrain classification rely on geometry and do not need a
large dataset for training the classifiers. Researchers worldwide contributed towards the DARPA
Learning Applied to Ground Vehicles (LAGR) program that led to the evolution of vision-based
terrain classification methodologies during the last 20 years. In particular, the Jet Propulsion
Laboratory (JPL) championed the near-field real-time stereo geometry approach and self-supervised
long distance RGB feature learning. Only a few studies investigated video semantic segmentation
methods for terrain classification using temporal information between frames. A major advantage
of vision-based solutions for classification is that they provide appearance information. While
LIDAR is suitable for determining the geometry and roughness of the terrain independently of
illumination conditions, it cannot differentiate between two different types of flat terrain with the
same geometrical features (e.g., sand and mud). This is an important advantage of vision. While
stereo does combine the strengths of appearance and geometry, it must overcome the well-known
calibration and illumination challenges. Recent deep learning methods have led to very high semantic
segmentation performance for classes that are present in large public datasets, however those have
focused mostly on urban environments, and the demonstration of terrain classification in complex,
off-road environments is still limited in the literature. In addition, a key challenge in modern visual
terrain classification is the data-labeling process. This is because terrain does not contain well-defined
geometrical shape. In addition, terrain classes can be easily mislabeled by a human expert (e.g., sand
can be confused with dirt, or dry soil with wet soil, i.e., mud). This characteristic makes the use of
weakly supervised learning methods a promising avenue, where noisy data are taken into account.

4. LIDAR-Based Approaches
A LIDAR sensor primarily provides a geometric representation of scenes by emitting multilight and
detecting their returns. The 3D points of [x,y,z float] data type that are typically output by the
sensor encode the metric distance along each beam of light with respect to the origin of the sensor.
The reflectivity at that point can also be used to provide additional information. Returns not only
encapsulate the depth of the scenes but also offer additional physical knowledge in relation to the
elements of the scene reached by the laser beams, which can be utilized for terrain analysis. In
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this section, we will discuss LIDAR sensors and their uses with traditional model-based and deep
learning-based approaches for terrain analysis.

One of the most powerful aspects of a LIDAR sensor is its accuracy and consistency in measure-
ments compared to other sensors. As exemplified in (Brubaker et al., 2013), simple processing such
as a region growing with an outline filtering technique (e.g., random sample consensus) can produce
useful results. This shows how simple geometric structures can give strong features for segmentation.

Note that the use of LIDAR for terrain segmentation or classification has been extensively
established in the remote sensing community. In this paper, we focus on terrain analysis with
higher density point intensity (e.g., more than 200 pts/m2) and finer analysis scale (e.g., immediate
surroundings of a robot rather than city scale).

In addition to the well-established image-based techniques discussed in the previous section, there
has been a recent significant increase in LIDAR scene segmentation methods. These are sometimes
used in conjunction with image-based techniques to generate features that incorporate both RGB
and geometry data [e.g., (Qi et al., 2017; Choy et al., 2019) among many others, and we will cover
these in more detail in Section 7]. These provide advantages such as 3D object finding (for example
in the case of all-terrain autonomous vehicle driving, trees, lakes, or boulders) and high resolution
scene understanding (Tchapmi et al., 2017). While there are many model-based approaches that
can give strong scene information from LIDAR point clouds, the majority of recent work has been
focused on applying deep learning to the point cloud data format. Much progress on LIDAR point
clouds using deep learning has been made specifically targeting the autonomous driving (Li et al.,
2020), but a direct translation of those methods to terrain analysis is not always possible. The
rest of this section will discuss in more detail the aforementioned LIDAR-based terrain analysis
approaches: 1) traditional learning-based and 2) deep-learning-based approaches.

4.1. Traditional Learning-based Methods for Terrain Classification
Prior to the rise of deep-learning or Convolutional Neural Networks (CNNs), conventional model-
based approaches were often exploited to process LIDAR data. The work in (Thomas, 2015)
exemplifies the use of Maximum-Likelihood (ML) for processing multispectral LIDAR data. Three
multiwavelength data fed into a commercial classification framework which classifies the data into 4
classes using Maximum Likelihood. Although the LIDAR sensor provided high-quality measurements
which led to accurate classification results, one of the major concerns of this study is that the cost and
scale of this multispectral LIDAR setup may be unsuitable for some uncrewed ground robots (e.g., 1
m3 and 100 kg). Tree-trunk detection using SVMs and nodding 2D planar LIDAR is demonstrated
in (McDaniel et al., 2012). Even though this system requires a stationary ground station for data
gathering, the reported results were impressive and tested in various environments where the trees
were obstacles in the terrain.

In remote sensing, LIDAR is one of the most important sensors to derive Digital Terrain
Model (DTM) or Digital Elevation Model (DEM) (Mallet and David, 2016), which are widely
populated for many remote sensing applications such as characterizing surface roughness and
micro-topography (Brubaker et al., 2013). Airborne LIDAR data are usually used for these tasks and
processed with noise removal and feature extraction (Mallet et al., 2016) for terrain characterization.
As mentioned earlier, this research area is very broad and beyond the scope of our paper, so that
we only highlight some fundamental studies (Mallet and David, 2016; Brubaker et al., 2013; Mallet
et al., 2016).

Bayesian generalized kernel inference is used to determine a traversability map from LIDAR
data in (Shan et al., 2018). Incoming LIDAR data are incorporated as training data, and terrain
elevation is estimated. Therefore, they use a regression model on the LIDAR scans for all cells within
a distance threshold. Traversability is directly computed for the cells intersected by LIDAR points.
This is used as the training data for traversability inference, applied to all grid cells that are within
the same distance threshold used in the previous inference step. Even though the research focuses
on simulated data, they show promising results for the off-road with real-time processing.
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Even though the strength of deep-learning approaches is dominant in terrain classification,
traditional learning-based approaches are still popular and demonstrate promising results. Recently,
a purely model-based terrain classification based on the power spectral density (PSD) of the surface
3D profile obtained from a point cloud was presented in (Reina et al., 2020). It provides insight
not only on the magnitude of irregularities but also on how these irregularities are distributed at
various wavelengths. Waviness (indicates how quickly the energy of the surface decreases as the
wave-number increases) and the overall energy of the surface at the reference wave-number are
chosen as characteristic properties of a certain elevation profile (collectively referred to as roughness
parameters). Natural terrains show a larger energy decrease for increasing wave number than paved
surfaces.

As discussed in Section 2.4, roughness can be calculated by the distribution of the points in the
area of interest. In (Hamner et al., 2008), for example, the data are collected with a 2D LIDAR
pointing down at the terrain, in a push-broom fashion. After the data are buffered, least-squares
plane fitting can compute the residuals, where more residuals represent harder to traverse terrain.
A similar approach can be extended to 3D sensors [see (Krüsi et al., 2017)].

LIDAR is an effective sensor to detect negative obstacles such as ditches, ruts, or depressions
that are often occluded by the surrounding terrain. One approach is to voxelize the LIDAR data,
and classify each observed voxel into vegetation and solid surfaces using the statistics of each cell.
Voxals are a representation of LIDAR data obtained by dividing the scene volume into a collection
of 3D regular cubes (called voxels), and the LIDAR points are allocated to 3D voxels, with voxel
values being assigned according to the statistics of the LIDAR point(s) within the corresponding
voxels. After voxel generation, ray tracing can then be used to determine areas of occlusion between
voxels, enabling classification of these areas as negative obstacles using the context and class of
the surrounding voxels (Heckman et al., 2007). Similar methods exist using heuristics and SVM
to identify negative obstacles along a ray of LIDAR returns (Larson and Trivedi, 2011). Detection
of negative obstacles can also be computed with 2D height maps propagating information from
observed map cells to infer the unobserved terrain in the 2D map (Morton and Olson, 2011).

According to the survey conducted in this section, the following strategies can be incorporated
in learning-based methods:

1. DEM, DSM : Precise digital elevation model and digital surface model play a pivotal role in
terrain classification. This is mainly due to the fact that local/global feature extraction is
performed using these data.

2. Pre- or postprocessing: Although LIDAR provides relatively consistent measurements, it is
also important to get rid of obvious outliers and trends (e.g., biased mean). Voxelization is
one of the popular methods in point cloud postprocessing, but there is a tradeoff in resolution
and processing time.

3. Feature selection: Most of the traditional approaches made use of hand-crafted features, and
the performance mostly relies on how much features are distinguishable (e.g., features extracted
from vegetation vs. rock or mud).

4. Learning algorithms: SVM and Random Forest are often used for multi-/binary terrain classi-
fication tasks. Given discriminative features, stochastic framework options are also considered
such as Bayesian or Gaussian Mixture Models.

4.2. Deep-learning-based Methods for Terrain Classification
There has been a recent increase in research into using CNNs to semantically segment LIDAR scenes.
These scene segmentation techniques incorporate the use of LIDAR point-clouds to infer geometry or
a combination of geometry and color based features. A semantically segmented LIDAR scene could
be used for obstacle detection, for segmentation of point regions (for example as rough or manmade
terrain vs. smooth or natural terrain), and could supplement conclusions drawn from RGB data.
In the remainder of this section, we focus on purely LIDAR-based methods, discussing their role
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in analyzing terrain. Later, in Section 7, we will discuss how some of the LIDAR approaches are
combined with vision-based approaches.

When semantically segmenting point clouds, there are performance benefits by considering the
3D scene as a voxel-like structure. This can, however, cause finer resolution in the scene to be lost. To
try to get the best of both methods, SegCloud (Tchapmi et al., 2017) uses a voxelized grid structure
to perform 3D convolution. It avoids the coarse granularity present in most voxelization methods
by applying trilinear interpolation (TI). The core contributions of this paper are the conjoining of
the power of 3D convolution on regular voxel-like surfaces with the fine-grain resolution afforded by
Fully Connected Conditional Random Fields at the point level with TI. Although it has not been
shown in off-road terrain analysis directly, it is shown to successfully segment urban scenes into
classes such as high-vegetation, low-vegetation, man-made terrain, natural terrain, and buildings
on the Semantic3D dataset (Hackel et al., 2017). One limitation of this paper is that there are no
real-time inference time results reported.

Processing points directly from the point cloud is an interesting problem that was first proposed
by PointNet (Qi et al., 2016) and improved by its successor PointNet++ (Qi et al., 2017). Both of
these papers were pivotal works in applying CNN techniques directly to point cloud data. They have
been used in both object-centric and scene-centric contexts to great effect. PointNet applies a small
transformation network [a 3D extension of the type used by (Jaderberg et al., 2015) for 2D image
alignment] to predict an affine transform matrix that aligns the point cloud to a canonical space.
It relies on the inherent symmetry of a max-pooling layer to backpropagate the signal to train
the network. Pointnet++ extends on this by considering small “neighborhoods” of points, thus
allowing features to be learned at different scales (Qi et al., 2017). More recently, networks have
built on the ideas conceived through PointNet, and have achieved great success in semantic scene
segmentation benchmarks such as Semantic3D segmentation-8 (Hackel et al., 2017) and the ScanNet
benchmark (Dai et al., 2017). Both of these datasets involve measuring the success of a model in
semantically segmenting a large scene of points. Generating a similar cloud from a LIDAR attached
to a vehicle and semantically segmenting the scene into classes would allow for terrain regions to be
classified and integrated with information about the robot in question to determine traversability.

One way of identifying successful networks in the task of semantically segmenting scenes is to
check performance on dataset benchmarks. The work in (Choy et al., 2019) proposes the use of high
dimensional convolutions to directly process 3D videos. They create a point-cloud data ML engine
dubbed the “Minkowski Engine.” The paper implements a U-Net structure (Ronneberger et al., 2015)
to preserve scene geometry at different abstraction levels, and it achieved excellent performance on
the ScanNet indoor scene segmentation benchmark. There is also a focus on 3D videos, which is
potentially relevant to the on-vehicle terrain analysis task. The network itself implements sparse
convolutions using their proposed engine and sparse tensors for efficiency and speed.

LIDAR data may or may not hold RGB features depending on the sensor setup available for
fusion. Inherently, a portion of the information generated by LIDAR data is purely geometric.
The system in (Boulch, 2020) operates on both spatial and color features. A geometrical weighting
function is applied to the input points, with each allocated a weight based on the points similarity to
the points in a kernel patch. This enables training of the network on point cloud data without using
RGB values. They found experimentally that training without color generated different geometry-
based features to those in the colorised case. Indeed, both tests generated strong results. This
research paper has excelled at the Semantic3d Semantic8 benchmark (Hackel et al., 2017) (an
outdoor large-scale point-cloud segmentation challenge into the categories 1: man-made terrain,
2: natural terrain, 3: high vegetation, 4: low vegetation, 5: buildings, 6: hard scape, 7: scanning
artefacts, 8: cars).

It should be noted that not all of the above models have been used in real time, and thus some
work and consideration would be needed as to inference time and resource usage in the context of
terrain analysis with moving UGVs. The problem of achieving multi-modal terrain segmentation
(RGB and LIDAR) is one that would be highly valuable if achieved as it would allow leveraging
of the strengths of both sensor types. Research conducted in the area of driverless cars and their
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Table 3. LIDAR-based approaches.
Reference Architecture Application Terrain type Data Year
(Thomas, 2015) Model-based

(Maximum
Likelihood)

Terrain classification Vegetation,
building, road
etc.

3 multispectral
LIDAR

2015

(McDaniel et al., 2012) Model-based (SVM
with height filter)

Traversability analysis Off-road, forest Nodding LIDAR
with IMU

2012

(Krüsi et al., 2017) Model-based
(Optimisation)

Traversability analysis Urban, off-road LIDAR and
IMU

2017

(Shan et al., 2018) Model-based
(Bayesian Inference)

Traversability analysis Urban, off-road LIDAR 2018

(Reina et al., 2020) Model-based (Power
spectral density)

Terrain classification Urban, off-road LIDAR 2020

(Langer et al., 1994),
(Gennery, 1999),
(Hamner et al., 2008)

Model-based
(Regression)

Terrain roughness
analysis

Rough terrain
(Martial)

LIDAR 1994-
2008

(Larson and Trivedi,
2011)

Model-based (SVM) Traversability analysis Negative
obstacles
(ditches, rut)

LIDAR 2011

(Tchapmi et al., 2017) SegCloud Semantic
Segmentation
(Autonomous
driving)

Urban RGB, Point
cloud

2017

(Lang et al., 2019) Point Pillars 3D Object detection
(62 Hz)

Urban, off-road RGB, Point
cloud

2019

(Qi et al., 2016) PointNet 3D Object
classification and
segmentation

N/A RGB, Point
cloud

2016

(Qi et al., 2017) PointNet++ 3D Object
classification and
scene segmentation

Urban RGB, Point
cloud

2017

(Martínez et al., 2020) Model-based (Multiple
Classifiers)

Traversability cost Urban LIDAR 2020

(Goodin et al., 2021) Model-based
(Regression)

Traversability cost Off-road LIDAR 2021

†indicates airborne LIDAR
‡indicates mobile LIDAR

datasets, which while perhaps not explicitly terrain or scene segmentation, may provide insights
to real-time functioning LIDAR based networks. Of note is the system in (Milioto et al., 2019)
which has performed well in the semantic scene segmentation problem based on a labeled KITTI
dataset (Geiger et al., 2012) and is able to run on an Nvidia Jetson Xavier at between 5 and 13
frames per second. This paper performs a spherical projection of the point cloud to create a 2D
image. They are then able to use a CNN backbone and GPU-based computing to perform rapid
calculations that allow for high inference speeds.

The summary of the investigated LIDAR-based approaches is presented in Table 3 based on their
application, terrain type, architecture (method for model-based approaches), and input data. Model-
based approaches have been widely utilized for traversability analysis, whereas deep learning-based
show strength in scene segmentation and 3D object detection using visual and depth information.
This is mainly due to increasing popularity in autonomous driving and many open urban datasets
available.

4.3. Traversability Analysis
Important geometric ground information for terrain traversability can be derived from point clouds
obtained from a LIDAR sensor. This was demonstrated in (Krüsi et al., 2017) by fitting a robot’s
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footprint to the map and analyzing the local density of map points to estimate terrain assessment.
Some level of field navigation (e.g., rough outdoor terrain and dynamic urban environments)
performance is presented. It addresses challenging problems efficiently, and it is a promising strategy
for traversability analysis. The concept can be extended to include meshes and consider a flood-fill
approach to the meshes to identify traversable areas (Ruetz et al., 2019).

Without deep-learning, LIDAR is an efficient sensor to be used for regression instead of a classifier.
From the regression point of the view, ease of traversability can be estimated. A common strategy
is to extract basic terrain statistics from patches around the robot, most commonly in front, on
its upcoming path (usually vehicle-sized patches). For the patches, metrics like the variance can be
calculated (Langer et al., 1994; Gennery, 1999), in addition to the inclination (Hamner et al., 2008).

A different paradigm is to apply semisupervised learning to 3D data to differentiate between
traversable and nontraversable terrain (Suger et al., 2015). Initially, the robot learns its traversability
capabilities based on human operation across a given environment. From this partially and only
positive labeled training data, the proposed approach infers a model for the traversability analysis
of that particular platform.

An earlier model-based approach for point cloud-based terrain classification is presented in (Van-
dapel et al., 2004). It uses local 3D point statistics to compute saliency features that capture the
spatial distribution of points in a local neighborhood. The authors create a parametric model of
the saliencies distribution by fitting a GMM using the Expectation-Maximization (EM) algorithm.
The Bayesian method is used to classify data into three classes: 1) clutter to capture grass and tree
canopy, 2) linear to capture thin objects like wires or tree branches, and 3) surface to capture solid
objects like ground terrain surface, rocks, or tree trunks. Their method could produce a visually
accurate classification, although some data were misclassified as linear at the surface edges and scan
lines of the laser. Reducing the number of classes to 2 (surface and canopy) produced better results
and real-time performance even on the computer platform available at the time of publication (2004).
Despite these facts, generally speaking, these deterministic model-based approaches often struggle
with data samples that are not taken into account over the training phase (e.g., fitting GMM using
EM). This then increases the likelihood of poor system performance in unseen environments.

4.4. Considerations
The use of LIDAR data for scene semantic segmentation and terrain analysis is one of the most
popular and powerful strategies. This is mainly due to the fact that it is capable of capturing
metric information, which is very useful especially for robot tasks (e.g., autonomous navigation)
and providing high-quality measurement consistency and high-fidelity information (e.g., a variety
of returning waveforms depending on terrain property) which also can be used for terrain analysis.

With regard to processing LIDAR data (e.g., point clouds), 3D convolutional neural networks
are gaining popularity among the computer vision, machine learning, and robotics communities
in either supervised, semi- or weakly supervised, self-supervised manners. Supervised approaches
may be the most popular due to their simplicity and already established work in 2D convolution.
However, one of bottlenecks is analogous to those of deep 2D CNNs (i.e., difficulty in obtaining
high-quality annotation data).

LIDAR-based approaches can be powerful to distinguish some categories of terrain, especially
obstacles with distinct geometry such as tree trunks or vegetation, however, terrain sections with
no clear geometric features remain difficult to distinguish without using appearance information.
For example, a section of flat terrain can be critically different in terms of terrain traversability
depending on whether it is composed of sand, dry soil, or mud, however the state of the art has not
demonstrated the ability to reliably estimate this difference.

5. Alternative Exteroceptive Sensing
Alternative exteroceptive sensing methods are particularly useful to classify types of terrain such
as mud, water, or vegetation. Most terrain categories can be disambiguated using vision and
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LIDAR-based approaches for terrain traversability analysis. However, mud and vegetation pose
different challenges due to their nature and dependency on weather conditions. In addition to
LIDARs, active sensors such as radars are used in self-driving vehicles for improved detection,
tracking, and classification in low visibility conditions. Alternative passive sensors such as infrared
(IR) sensors have been used to classify mud and vegetation in low light conditions. In the following
paragraphs, we discuss alternative passive and active sensing applications to mud and vegetation
detection using IR, hyperspectral cameras, and radars, respectively.

5.1. IR and Nonvisible Spectrum
Alternative exteroceptive sensors are used in the literature for the classification of mud, vegetation,
and soil. For example, in the remote sensing literature, multispectral sensing is used to identify these
elements. The bare soil observed by the multispectral data exhibits a linear relationship between
the near-IR (NIR) and the red band, known as the soil line. This soil line could be used to classify
the wet and dry soil using the bare soil pixels placements. The NIR and red band of the scene are
used to find the Normalized Difference Vegetation Index (NDVI) (Wang et al., 2014)(Rankin and
Matthies, 2010). The soil line is obtained by using the least-squares fit of the NIR and red reflectance
data captured in two different scenarios using the multispectral camera. In the first experiment, the
area contained vegetation and bare soil, in and out of shadows. In the second experiment, the area
contained wet soil along with the vegetation. The difference between the NIR and red reflectance
was used as a measure to classify between vegetation, dry soil, and mud in both scenarios. Given
the soil line slope and y-intercept, a normal distance to the soil line image and a distance along
the soil line image were generated. The former image together with the NDVI is used to classify
the vegetation from the soil. The later image along with NDVI is used to segment mud from the
dry soil. It was observed that the multispectral data could be used to classify vegetation and soil in
shadows and dry soil out of shadows. However, it was not possible to detect whether the soil in the
shadow is dry or wet using this method.

Intuitively, wet soil absorbs more light than the dry soil. Therefore, shortwave infrared could be
used to measure the soil moisture contents. It was found that the intensity difference of shortwave
infrared for different types of soils is difficult to detect and, therefore, the sensor is not very useful
to identify the mud (Rankin and Matthies, 2010). However, shortwave infrared could be used to
identify water-saturated fields such as mud puddles. The wettest portions of the field will appear
darker in the image and therefore they could be classified easily. Furthermore, additional clues such
as water reflections from the sky could help to identify the mud patches in the terrain. Using the
shortwave infrared image, the mud could be classified based on the darker regions in the image.
However, other classes such as snow, ice, water, and vegetation also appear similar in contrast, and
therefore it is not possible to distinguish mud from these classes only using the shortwave infrared.

Midwave infrared and long-wave infrared sensors are within the thermal infrared spectrum.
The main reason behind using this spectrum is to find the temperature difference between cooled
surfaces (e.g., mud, water) and the uncooled surfaces (e.g., ground, dry soil) for passive terrain
perception (Owens and Matthies, 1999). The authors in (Rankin and Matthies, 2010) also find
that thermal imagery is useful to detect mud in nominal weather conditions. Furthermore, thermal
infrared sensors are useful to detect mud from the thin occluded vegetation such as pine needles
and leaves. Still, the temperature difference between different classes may not always be sufficient to
resolve the segmentation of other classes from mud, in particular in nighttime operations. Mud and
water classification, using the stereo pair of thermal infrared cameras, is demonstrated in (Rankin
et al., 2011) along with pedestrian and vehicle detection, tree trunk detection, and negative obstacle
detection. Long-wave infrared stereo cameras are used in off-road natural environments during day
and nighttime to classify the terrain for the military applications. The temperature was recorded
for dry soil, mud, and air during an overcast day. The lowest temperature difference of 1.5 ◦C was
recorded between the classes, which provides thermal contrast in the long-wave infrared imagery
to distinguish between the dry soil and the mud in the field. Due to the thermal contrast, the
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dark regions appeared in the thermal imagery as candidates of mud. However, shadows, snow, ice,
vegetation, and water can also appear in dark regions within the long-wave thermal infrared imagery,
and therefore additional information from different sensors is required to better perceive the terrain.

Beyond-visible-spectrum sensors have also been combined with other exteroceptive (Milella et al.,
2017) and proprioceptive sensors (Milella et al., 2019), where ground mapping and characterization
are proposed. Multimodal ground maps were generated with a robot moving on various ground
types (stone-paved, ploughed ground, and grass), with results showing good classification accuracy,
with particular application in farming.

Thermal images have also been used in combination with RGB in order to avoid expensive
annotation of nighttime images by leveraging an existing daytime RGB-dataset and using a teacher-
student training method to transfer the dataset’s knowledge to the nighttime domain (Vertens et al.,
2020). The authors use a domain adaptation method to align the learned feature spaces across the
domains through a novel two-stage training scheme. This work also introduces a dataset consisting
of over 20 000 time-synchronized and aligned RGB-thermal image pairs. Although the method is
not focused exclusively on ground analysis, it finds direct applicability to terrain datasets and has
shown interesting results in autonomous driving.

5.2. Hyperspectral
Hyperspectral cameras measure reflected light in hundreds of narrow bands at each pixel across the
electromagnetic spectrum to produce a hypercube. In contrast, multispectral cameras typically cover
from 2 to 10 carefully selected bands along electromagnetic spectrum for specific applications. The
high spectral resolution of hyperspectral cameras increases the possibility of accurately classifying a
broad range of materials and terrain surfaces. The recent advances in optics, sensor technologies, and
mobile computing have transformed hyperspectral imaging from a satellite-based sensing method
to a mobile, in-situ, and small payload compatible for ground vehicles and UAVs for scene analysis.
Hyperspectral data can be collected by either point spectrometers, line imagers, or full frame
imagers. Due to the sensor characteristics, they can generally be grouped as VIS-NIR (visible
through near infrared, or roughly 400–1000 nm), the near-infrared range (NIR 1000–1700 nm),
short-wave infrared (SWIR 1000–2500 nm), and medium-wave infrared (MWIR 2500–5000 nm).

A full-frame hyperspectral camera mounted on a ground vehicle for terrain classification in rough
terrain and dynamic scenes is used in (Winkens et al., 2017; Winkens and Paulus, 2018). A fully
supervised method (Random Forest) is trained on the normalized spectral reflectance (VIS-NIR)
to get an initial per-pixel classification. Then, a fully connected conditional random field is utilized
to enhance and smooth the segmentation results using neighborhood information. The authors
demonstrate that vegetation class with high chlorophyll content gives the highest accuracy while
humans and painted materials have the lowest reported accuracy. They also show that the classifier
is able to separate the road from rough ground and obstacles (Winkens et al., 2017).

To overcome the lack of labeled hyperspectral datasets, the work in (Ma et al., 2018) formulated
the problem as an anomaly detection, with background pixels versus foreground (target pixels). An
AutoEncoder (AE) is used to learn high-level features of the hyperspectral data (126 bands from
400–2500 nm) in an unsupervised way. Then, subpixel segments are determined according to local
adaptive weights to their neighboring pixels. It is assumed that anomalies have a lower occurrence
probability than the background pixels, therefore the reconstruction errors are directly used as an
anomaly score to segment backgrounds from anomaly targets.

In (Liyanage et al., 2020) the authors used a hyperspectral camera in VNIR range for weakly
supervising RGB images for off-road UGVs in unstructured terrains. A manual dataset is collected
using a VNIR hyperspectral camera covering different terrain classes such as muddy, grass, gravel,
and various natural object types. First, a Min-Max pooling method is used for band selection to
reduce the dimension of a hyperspectral data cube from 204 spectral bands to 25 spectral bands (a
cube is a representation composed of stacked images of the same scene seen at adjacent wavelengths
so that for any image point a complete spectral reflectance curve is provided). Then, a shallow
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neural network classifier is trained and tested. For RGB images, the false-colorized RGB images
generated from the HSI data cube are used to provide one-to-one correspondence between RGB
and hyperspectral images. The results suggest that classification based on hyperspectral images
gives overall good pixelwise accuracy, but weak labeling of a limited number of false-colorized RGB
images did not boost the classification performance.

While the application of a hyperspectral camera for land cover classification on aerial and remote
platforms has been widely investigated, the impact of hyperspectral data for in-situ, ground-based
robots has yet to be determined. Most notably, the majority of the current methods rely heavily on
dimensionality reduction and band selection approaches to deal with the high dimensionality and
the nonlinear properties of hyperspectral data. However, this additional spectral information, often
statistically dependent in a local spectral window, could be utilized as a data regularization term
in deep-learning-based solutions.

5.3. RADARs
RADARs have been used in some robotics applications to take advantage of their larger wavelengths
(lower frequency) compared to LIDARs. This section focuses on two types of radar: Ultrawide band
(UWB) radars and mm-wave scanning radars.

5.3.1. UWB RADAR
The ultra-wideband (UWB) radar operates at low frequency, which results in a large beamwidth.
Therefore, a UWB radar can penetrate through some elements like vegetation. In (Ahtiainen et al.,
2013; Ahtiainen et al., 2015), the authors have used UWB radar to reduce the number of obstacles
seen by the LIDAR measurements. First, a grid-based traversability map was built using the LIDAR
data. Then, an adaptive threshold for the obstacles was computed using the UWB radar. The fused
traversability map was obtained by using the radar measurements cells in the map, initialized with
the higher probability, in the untraversable areas due to the LIDAR measurements. The minimum
and maximum range for the obstacle detection using the radar was set to 3.5 and 10 m, respectively.
The minimum and maximum thresholds were also set to avoid clutter measurements. The map cells
were considered occupied if the measured intensity exceeded the detection threshold. The map cells
were considered free (no obstacles) when the measured intensity was below the detection threshold.
The free cells were also classified into two different regions: a) the region before the first detection; b)
region after the first detection. The conditional probability of two different regions was computed to
formulate the probabilistic sensor model. In (Ahtiainen et al., 2015), the UWB radar sensor model
was learned using a SVM to create a probabilistic occupancy grid. The features were extracted
using the radar data, where the traversable and untraversable cells on the grid map were manually
labeled. The extracted features from the radar data were a) the angle from the radar to the labeled
cell, b) range bin index, and c) measured intensity. The learning was done using the C-support
vector classification and using the radial basis function kernel. The resultant sensor model was used
to create the probabilistic occupancy map, which results in reducing the obstacles clutter due to
the LIDAR measurements. The methodology was tested in a flat lawn and rural environment using
LIDAR and UWB radar on two different vehicles. A true negative rate (pass rate to distinguish
between vegetation and obstacle) and a false positive rate (miss rate) were used to evaluate the
performance of the algorithm in the different field trials and experiments. It was observed that
the true negative rate was 92% of 10 cm depth of foliage and drops to 83% with 40 cm of foliage
depth. The false negative rate increases from 9% to 15% for the same experiment. It is evident that,
while LIDAR can provide close- and long-range measurements, sensor fusion using UWB radar can
improve the overall obstacle detection in outdoor environments.

5.3.2. mm-wave Scanning RADAR
High-quality mm-wave RADARs used for imaging usually operate at a higher EM frequency than
UWB and offer better resolution and lower noise. Although limited research has made use of mm-
wave RADARs for terrain analysis, these sensors have an advantage of extra reliability in adverse
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environmental conditions due to a better penetration of its signal through airborne dust, smoke, and
fog, for example, even though this penetration is not sufficient to see through as much vegetation
as their UWB counterparts. Once processed appropriately, the returns from a mm-wave imaging
RADAR can be used in a similar way to LIDAR returns, albeit with higher noise and usually lower
resolution and accuracy. In (Reina et al., 2011) a frequency-modulated continuous wave (FMCW)
mm-wave RADAR was used to classify the terrain as obstacle or traversable on an off-road vehicle
using a traditional supervised learning method. Then the same authors used a camera to help train
a classifier run on the RADAR data (Reina et al., 2012).

5.4. Considerations
Multispectral sensors have limited ability to disambiguate mud from other terrain classes in shadows
robustly. Reports indicate that thermal imagery can be a reasonable passive sensing option at
nighttime for mud detection. In the literature, a combination of passive sensors such as thermal,
stereo, and polarization cameras was recommended to detect mud during day and nighttime. UWB
radar, used in combination with LIDAR and/or stereo camera, has the potential to detect actual
obstacles through foliage and vegetation during day and nighttime, in close proximity to the robot,
thereby allowing a robot to drive through some level of vegetation with some more confidence.
However, this requires extensive scanning or multiple UWB units on the robot. mm-wave RADARs
can see through environmental obscurants such as airborne dust and smoke very effectively but with
lower resolution and accuracy than LIDAR. They are a good complementary sensor in challenging
environmental conditions.

6. Proprioceptive Sensing
The last two decades showed growing interest in using self-sensing (proprioceptive) methods for
characterizing traversability of the terrain. There are several reasons for this attention. First, the
information obtained from the exteroceptive sensors may not correctly identify the traversability
properties of the observed terrain, even if the terrain class itself has been categorized correctly. The
differences in appearances (e.g., wet sand vs. dry sand) could be too subtle but nevertheless require
significant adjustments to driving control in order to achieve the best dynamic performance. An
excellent example of such ambiguity is provided by (Martin, 2018) and shown in Figure 6, where the
left image shows loose terrain and the right image shows hard aggregate concrete. Another example of
potential ambiguity for different types of soil is shown in Figure 7. Also, sometimes identification may
fail due to insufficient training set, current environmental conditions, or prior events like fallen leaves
on the ground. In these circumstances, more reliable or alternative information about the current
terrain is in the feedback from the proprioceptive sensors. Second, considering that labeling of data
for training is usually very time-consuming, it may be possible to use traversability classification
obtained from the proprioceptive sensors to provide ground truth for visual- or geometry-based

Figure 6. An example of terrain appearance ambiguity for loose gravel and exposed aggregate concrete. Figure
extracted from (Martin, 2018).
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Figure 7. Another example of potential visual ambiguity between wet sand on the left and red clay on the right.

exteroceptive data. Third, proprioceptive sensors usually provide measurements in a single time
domain dimension and as such require much less processing power and fewer storage volumes
compared to 2D or 3D information from the exteroceptive sensors. Together with very small
power consumption, this can be an attractive property for autonomous vehicles, especially of small
size (Best et al., 2013). Also, compared to LIDARs or RADARs they are not intrusive and do not
emit signals into the environment, which may be beneficial in certain applications (e.g., defence).

6.1. Vibration
It is important to note that vibration-based measurements depend heavily on the vehicle body dy-
namics (Coyle, 2010). Any terrain classification based on vibration data should take the vehicle mass
distribution model into account. This is in addition to nonlinear dependency on the current velocity
and acceleration of the vehicle. As such, the classifier cannot be immediately transferred to other
types of vehicles without defining the model for the new vehicle. This issue is further complicated if
the vehicle should carry some nonconsistent useful load for practical applications. Unfortunately, not
many authors address these issues and usually make assumptions on the rigid body mass distribution
(same vehicle was used for training and testing) as well as consistent vehicle dynamics.

Vehicle vibration analysis can nevertheless be successfully used for terrain classification taking
into account the limitations described above. Spectral analysis of the inertial sensor data at
different vehicle speeds were used to extract features for training a probabilistic neural network
in (Sadhukhan, 2004). Performance of the classifier was tested on four types of terrain (grass, gravel,
packed dirt, and sand) and showed reasonable results at higher vehicle speeds. The work in (Weiss
et al., 2006) evaluated the performance of an SVN-based classifier on the data collected from the
accelerometer mounted on the vehicle body. The paper proposed a novel feature extraction method
which showed better performance than those based on power spectral density of Fourier transforms.
Both of the above papers reported that classification rates decrease at lower speeds.

A comprehensive discussion on the fundamentals of terrain classifiers based on inertial sensors,
including physics behind vibration sensing and application of frequency-domain techniques, has been
presented by Coyle in his thesis (Coyle, 2010). The author details the benefits of several different
pattern recognition classifiers, which are compared based on accuracy and computational speed.
It was argued that vehicle speed and load dependency are the most difficult problems to address,
generally requiring taking these parameters into account while training the classifier. As a result, a
large amount of empirical data may need to be collected to ensure good accuracy of the algorithm.
A theoretical background for vibration-based terrain classification was presented in (DuPont et al.,
2008a; DuPont et al., 2008b). The papers demonstrated that the signature of a particular terrain
is given by the magnitude of the spatial frequency response of the system. They have also shown
that the speed of the vehicle and the vibration transfer function of the system define a map from
the spatial frequency response to the frequency responses of the vibration sensors. As a result, the
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magnitudes of the latter frequency responses can serve as speed-dependent terrain signatures. A re-
lated approach combining deep-learning with vibration signatures has also been proposed, where the
authors present high accuracy discrimination between sand, brick, cement, and soil (Bai et al., 2019).

6.2. Multisensor Approaches
Early work in (Ojeda et al., 2006) explored terrain classification based on a range of onboard
proprioceptive sensors such as gyros, accelerometers, wheel encoders, as well as motor current and
voltage sensors. In addition, the paper describes some less commonly used sensors (microphones as
well as ultrasonic and infrared sensors) and their effectiveness for terrain classification. A multilayer
feedforward neural network was trained to recognise five different terrains: gravel, grass, sand, pave-
ment, and dirt. The work used frequency domain response for classification and discussed the benefits
of using inertial sensors over other types of modalities. The paper presented theoretical analysis of
a strong correlation between motor currents and rates of turn (MCR) and soil parameters, arguing
that MCR curves can be used to predict driving parameters for safe handling on the specific terrain.

The doctorate work by Martin (Martin, 2018) proposes methods for a robot to sense terrain,
estimate terramechanical properties, build traversability maps, and plan optimal energy paths.
The work investigates proprioceptive sensors to estimate the terramechanical characteristics of
the terrain over which the robot is driving. By sensing terramechanical traversability online, it is
possible to build spatial maps of traversability using the robot’s past experience, which can be used
for planning minimal-energy paths. To extrapolate the method to areas beyond the path driven,
Gaussian Process (GP) regression is used to interpolate traversability estimates. As part of the
study in terramechanics, various classification algorithms based on wheel slippage and IMU sensors
were tested in (González and Iagnemma, 2018). Deep neural networks and CNNs were compared
to more traditional SVMs and multilayer perceptron-based classifiers. One of the advantages of the
former methods was that there was no need for any filtering of the input data while maintaining
good performance. Interestingly, SVMs outperformed CNNs while detecting high-slip samples,
but CNNs worked better at detecting moderate-slip samples. Adding to CNNs, recurrent neural
networks have also been used for terrain classification using proprioceptive sensing (IMU and wheel
odometry) (Vulpi et al., 2021). In that work, sensor signals are classified as time series directly using
both a recurrent neural network and CNN having as input higher-level features or spectrograms from
the temporal signals. For both networks, results show comparable performance when contrasted with
SVMs. The authors have made an open source package available online.4

6.3. Audio Analysis
Iagnemma et al. were among the first to propose using auditory sensors for terrain classification (Iag-
nemma and Dubowsky, 2002). They also described a mathematical framework for wheel-terrain
interaction analysis based on simplified forms of classical terramechanics equations with the emphasis
on real-time calculations. This work was further developed for the estimation of terrain cohesion
and internal friction angle for planetary rovers (Iagnemma et al., 2004). DuMond et al. observed
a variability in the measurement of cohesion and friction angle when driving on nonhomogeneous
terrains, and they developed a stochastic model for estimating these parameters (Dumond et al.,
2009). The work in (Libby and Stentz, 2012) specifically concentrated on using sound to distinguish
different types of terrain based on acoustic data alone. They applied this method on two types
of vehicle-terrain interactions: benign (driving over grass, pavement, or gravel) and hazardous
(splashing in water, hitting an object, and losing traction), and they achieved good classification
results especially for the latter type of interaction. An investigation of sounds from vehicle-terrain
interaction was also performed in (Valada and Burgard, 2017). The authors used a new CNN

4 https://github.com/Ph0bi0/T_DEEP
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architecture for learning deep spatial features, complemented with LSTM units that learn com-
plex temporal dynamics. The results demonstrated that learning temporal dynamics can improve
classification compared to learning only in the spatial domain. In addition, they evaluated the
robustness of the model to various types of acoustic noise, from pure white noise to domestic
and street noise. One of the conclusions was that without noise-aware training, the accuracy of
terrain classification can significantly drop if the signal-to-noise ration (SNR) is less than 20 dB.
An updated version of this technique used unsupervised acoustic feature learning for self-supervised
visual terrain classification (Zürn et al., 2021). The results illustrate that the proprioceptive terrain
classifier exceeds the state-of-the-art among unsupervised methods and that the self-supervised
exteroceptive semantic segmentation model has a performance comparable to supervised learning
with manually labeled data.

6.4. Special Cases
A special case of a vibration sensor mounted on a vehicle with shock absorbers and elastic tyres
was investigated in (Mei et al., 2019). Any vibration is significantly dampened in this case, which
complicates discrimination of different terrains. The authors analyzed seven different classifiers used
on three types of features and concluded that a one-dimensional LSTM network provides the best
accuracy in these conditions, though it may not be the fastest method for real-time applications.
The modeling of the kinematic and dynamic behavior of a skid-steer vehicle allowed development
of a robust terrain classification algorithm based on the slippage experienced by the vehicle during
turning motion (Reina and Galati, 2016). Using common onboard sensors (wheel encoders, electrical
current sensors, and yaw rate gyroscope) the proposed system could characterize four types of terrain
(asphalt, dirt road, ploughed ground, and sand) in real time during normal vehicle operations.
Proprioceptive sensing for robotic terrain classification was also used for legged robots in (Szadkowski
et al., 2018). Although the paper focuses on a hexapod robot, it investigates using an LSTM model
to classify terrain into several categories; asphalt, bricks, dirt, office, stairs, and grass based on
an angle error from the front two legs of the robot. It achieves strong results in some of these
categories (grass, office, stairs) and with lower accuracy in the other categories. It is possible that
conclusions drawn from this paper could be adapted to other proprioceptive sensors (e.g., IMU) on
wheeled vehicles. Torque and state information from joints in legged platforms have also been used
for terrain classification (Ahmadi et al., 2021; Tennakoon et al., 2018; Wu et al., 2016; Best et al.,
2013). In general, legged platforms have the advantage of having a higher flexibility in probing the
terrain and extracting information about its characteristics.

6.5. Fusion Strategies
In general, using only proprioceptive sensors for any long-term off-road driving would not be suffi-
cient as they only react to the current vehicle dynamics and cannot be used for identifying the sur-
rounding terrain, which would prohibit any route planning as a result. But such inherently reactive
nature gives a unique ability to reflect the current driving conditions at the current vehicle speed with
the current mass distribution. As such they can play an important part for robust terrain traversabil-
ity analysis. For example, a joint visual (using color and geometry) and proprioceptive (motion
resistance, vehicle slippage, and vibration) data classification algorithm was proposed in (Reina
et al., 2018; Reina et al., 2017) to support autonomous operations by an agricultural vehicle.

As discussed earlier, proprioceptive sensors can provide ground truth information for training
classifiers based on exteroceptive modalities. A framework for self-supervised training of vision-based
classifier was proposed in (Brooks and Iagnemma, 2012), which allowed a robotic system to learn to
predict mechanical properties of distant terrain, based on measurements of mechanical properties
of similar terrain that has been traversed previously.

The authors developed two classifiers for proprioceptive sensing, one for vibration and another
for wheel traction, and a terrain classifier based on visual features such as color, texture, and
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geometry. Initial evaluation showed that self-supervised training of the latter classifier by employing
classification results from the former showed similar or better results compared to a fully supervised
approach. Another study (Bajracharya et al., 2009) describes a fully integrated real-time system
for autonomous off-road navigation, which uses end-to-end learning from onboard proprioceptive
sensors, operator input, and stereo cameras to adapt to the current terrain. The system is using
its proprioceptive sensors as the source of supervision, so that it can learn the mapping of terrain
geometry and appearance to traversability online and fully autonomously. At the same time, the
image-based terrain classifier is capable of classifying terrain in the far field. As a result, the system
can adapt to terrain that it has never seen before and be robust to a changing environment.

A recent study in (Kahn et al., 2021) expands traditional geometric-based traversability analysis
using a method that learns about physical navigation affordances from experience. The authors
developed a novel navigation system called BADGR, which was trained with self-supervised off-
policy data collected in real-world environments without any simulation or human supervision.
The system was trained on three different events (collision, bumpiness, and position) to generate
an image-based, action-controlled predictive deep neural network model. The experiments showed
that the navigation system cannot just outperform pure LIDAR based policy in complex real-world
environments but can improve its performance as it gathers more data.

6.6. Considerations
Proprioceptive sensors can play an important role in terrain traversability analysis despite their
inability to sense characteristics of the “upcoming” terrain. Sensors like IMU and wheel slippage
detectors provide valuable information about the current vehicle dynamics and as such can be
employed both for vehicle control and terrain traversability estimation. Although their usefulness
can be limited if they are used individually, the data from these sensors can be complementary
to other sensor modalities for the terrain classification training (various sensor fusion approaches
will be discussed in the next section). It is possible to train a classifier purely on the data from
various proprioceptive sensors to detect the type of terrain the vehicle is driving on (e.g., sand,
rock, or gravel), but it would be more practical to directly use dynamic vehicle parameters, such as
traction, slippage, skidding, etc., to assess terrain driveability. An interesting research direction is
in developing self-supervised machine learning algorithms for training exteroceptive data classifiers
using these immediate parameters as ground truth.

7. Sensor Fusion Approaches
In this section, we present terrain analysis approaches using sensor fusion. To achieve robust and
accurate scene understanding, mobile robots and autonomous vehicles are usually equipped with
various sensors and multiple sensing modalities that can be fused to exploit their complementary
properties. There exist various ways of fusing these diverse data (e.g., from stochastic or simple
concatenation). The choice of the appropriate fusion strategy is important and depends on the
input data available and the objectives and priorities of the application.

7.1. Fusion Strategies
Figure 8 shows two common strategies for sensor fusion that apply to several methods that can
be used for terrain analysis. The first strategy, shown in the top figure, initially processes the data
in a single modality (or device). Subsequently, the results are merged with simple voting or more
sophisticated approaches that consider the amount of noise in each sensor or sensing modality. The
bottom figure illustrates a more advanced strategy, where the data from the sensors are initially
merged and then the resulting combined data are processed.

Regarding the types of sensors, in this section we focus on exteroceptive and proprioceptive
sensors and their fusion. Probably the most common example is the combination of LIDAR and
cameras, although many more exist.
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(a)

(b)

Figure 8. Illustration of the different sensor fusion strategies that are commonly seen in methods that can be
applied terrain analysis. The top figure illustrates the “process & fuse” strategy while the bottom figure shows
the “fuse & process” approach. Both strategies rely on time synchronization and spacial calibration of the sensors
to work correctly.

A strategy to estimate traversability using a LIDAR-camera is to check for statistical coherency
between the data extracted from both modalities (Aeschimann and Borges, 2015). Using a 2D LIDAR
and a stereo-camera, the stereo pair can provide 3D ground shape information, however its depth
observations are generally noisier than that from a LIDAR. This can cause false-positives/negative
obstacles to occur. If the 3D data are checked with a more precise 2D range sensor in points of inter-
est, the likelihood of errors is decreased. Because visual stereo data are often heavy to process, fusion
can be done after the 3D data are reduced to a DEM representation (Oniga and Nedevschi, 2009).

Alternatively, the 3D LIDAR and single camera setup also presents advantages. In the method
presented in (Shinzato et al., 2014), terrain analysis is based on fusion of sparse and unstructured
3D point clouds and images. As with most fusion methods, it requires not only accurate time
synchronization but also extrinsic calibration between sensors. In this case, the calibration should
make it possible to transform a 3D point from real world in the 2D image coordinate. The core idea
is to use spatial relationship in image perspective view (birds-eye) combined with 3D range values
to determine if a point corresponds to an obstacle or not. Subsequently, polar histograms are used
to generate a confidence map that represents the ground area in the camera view.

Feature representations from different sensing modalities can be fused at early, middle, or late
stages (Figure 9).

• Early fusion combines different sources of data as early as possible, before the interpretation
of the sensor data. For example, two exteroceptive inputs such as color information and depth
are combined to produce a colored point cloud, or depth is added to an RGB image to produce
an RGB-D image. Redundant information then needs to be fused in a nonconflicting manner,
which can be challenging as different sensors might perceive the world in different ways. This
colored point cloud or RGB-D image is then used as input to a single classifier, which benefits
from more input data, usually allowing for more discrimination power than using a single source
of data. However, if one of the sources of sensory data is corrupted, this can negatively affect
the fused output.

• Late fusion usually combines output at the latest stage. An example is the fusion of two or more
classification outputs that were performed independently. For example, one classifier might use
vision only, and the second classifier uses LIDAR data only. The combination of those outputs
may use some form of confidence in each classification. Another common strategy is to use
three different classifiers and adopt the outcome that at least two of them produce (Korthals
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Figure 9. Illustration of early fusion, late fusion, and middle fusion methods used by multimodal fusion networks.

et al., 2018). The main advantage of late fusion is to be more reliable if one of the sources of
data is corrupted; even though one of the classifiers may make errors, the other classifiers can
still produce valid outputs.

7.2. Multimodal deep learning fusion network
In the context of multimodal fusion for terrain segmentation using learning, three main fusion
operations can be summarized as follows (Feng et al., 2020):

• Addition or Average Mean: The feature maps of multiple modalities are either added element-
wise, or averaged.

• Concatenation: The feature maps from different modalities are usually stacked along their
depth before they move to a next layer.

• Mixture of experts: The feature map of each modality is processed by its domain-specific
network called “expert.” Afterwards, the outputs of multiple expert networks are averaged
with the weights modeled by the gating network, which takes the combined outputs from all
the expert networks as input.

A convoluted mixture of deep experts architecture that fused segmentation masks from different
modality networks including RGB, depth, and infrared was proposed in (Valada et al., 2016a). More
recently, the authors introduced a fusion module that could dynamically fuse intermediate feature
maps from multiple modalities according to the object class, its spatial location, and the scene
context (Valada et al., 2019).

Recent work in (Wang, 2019) discusses proprioceptive, visual, and LIDAR sensing modalities and
their combinations. Feature sets are vibration frequencies from accelerometer, co-occurrence matrix
for visual texture classifier, and power spectral density for LIDAR. The author employs SVM and
principal component analysis (PCA) based classifiers for all three modalities. The results show a
significant increase in classification accuracy for multimodal classification over single modalities.

Earlier work concentrates on obstacle detection methods, but discusses terrain classification for
traversability (Manduchi et al., 2005). The authors use stereo range measurements that do not rely on
typical structural assumption on the scene (such as the presence of a visible ground plane). They use
a color-based classification system to label the detected obstacles according to a set of terrain classes
and an algorithm for the statistical analysis of LIDAR data that allows to discriminate between grass
and obstacles (such as tree trunks or rocks), even when such obstacles are partially hidden in the
grass. Terrain classes include soil/rock, green (photosynthetic) vegetation, dry (nonphotosynthetic)
vegetation (which includes tree bark), and a “none of the above” class. The authors show that
photosynthetic vegetation displays distinctive spectral characteristics.
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A recent multisensory terrain classification algorithm with a combination of geometric and
semantic features is presented in (Schilling et al., 2017). It focuses on urban navigation using road,
sidewalk, vegetation, and terrain classes from the CityScapes dataset (Cordts et al., 2016). The
authors employ transfer learning to adapt the model to off-road environments (e.g., classifying snow).
They use late fusion to combine the visual and geometric (point cloud) features using a random
forest algorithm to classify the terrain traversability into three classes: safe, risky, and obstacle.
Also focusing on complex terrains (caves, collapsed buildings), a multimodal fusion network has
been proposed in (Nguyen et al., 2020), where the authors focus on simulated data to train a
network using LIDAR and visual data. They show examples of successful transfer from simulation
to operations on a real robot.

It is worth considering using other spectral modalities to assist terrain classification. The work
in (Bradley et al., 2007) specifically explores near infrared (NIR) response of green vegetation for
chlorophyll detection, and it shows that a simple pixel-by-pixel comparison between red and NIR
reflectance, normally referred to as a vegetation index or a band-ratio, provides a powerful and
robust way to detect vegetation (often seen as obstacles in off-road terrain).

Over the course of preparing this survey, we found a few papers that attempted to exploit the
fusion of active sensors such as LIDAR or RADAR (Guerrero et al., 2015; Peynot et al., 2010b;
Milella et al., 2014) but not as many as the camera-LIDAR combination. This is mainly because
1) operating and processing a RADAR sensor is challenging due to low SNR, and 2) the relatively
large size of a sensor. Obviously, there are unique characteristics of the use of RADAR such as
longer range detection (∼ 100 m) and material-specific amplitude returns which can provide useful
information for terrain analysis (e.g., varying intensities for vegetation and rocks).

7.3. Considerations
We presented different approaches of multimodal fusion spanning from early to late fusion. Whereas
each approach shows promising results but comes with its own challenges, aside from sensor cost
and weight aspects, the tradeoff to consider is usually performance and computation efficiency. For
an agile robot, the early-fusion approach is arguably recommended to due its simpler complexity
and more feasible real-time performance than others. Research shows that choosing the right sensors
for the fusion in respect to the terrain that should be detected is crucial to enable a high performing
system. The more complementary sensors are, the more object properties can be captured and
fused—challenging terrain such as mud and water is likely to need additional sensory input to
be detected reliably. For instance, knowing that vegetation reflects on water surfaces, a dedicated
method just for these challenging tasks might be appropriate, and it would then possibly overwrite
other methods.

8. Major Challenges
In this section, we discuss some common key challenges that significantly affect the performance of
terrain traversability analysis systems. Although some of those aspects have been discussed as part
of the methods mentioned throughout the paper, we focus on the specific characteristics that create
the challenges and methods that aim to overcome them.

8.1. Challenging terrain classes: Water and mud
Some terrain classes that are of particular interest for terrain traversability estimation have proven
to be challenging to distinguish; these include water and mud, to which we dedicate this subsection.
More so than other terrains, these classes might be traversable in some areas and not in others,
while not giving many distinctive features to differentiate. Additionally, traversing through these
areas might cause deformations of the terrain, and it is especially risky for UGVs to slip on. In
the literature, these classes are usually considered individually, and classification is often binary.
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Therefore, in this section we specifically discuss research that has been carried out to detect these
classes, show their individual challenges, and the results that have been obtained when doing binary
classification within learning- and model-based methods.

8.1.1. Water Detection
When trying to detect water with vision-based methods, one of the main challenges is that
surrounding terrain may reflect off the water body and its appearance may be visible on the
water surface. In addition, some areas might reflect the sunlight or bright areas of the sky. In
some methods (Nguyen et al., 2017; Rankin and Matthies, 2010) reflections are leveraged to gain
an initial guess of water occurrences in an image. Another challenge is that water bodies change
appearance based on their distance and angle with respect to the perceiving sensor. Therefore, most
successful methods combine multiple water cues to find all water bodies in an image and rarely rely
on one single water property. This suggests that a late fusion approach for water detection is likely to
perform best, as shown in (Rankin and Matthies, 2006). With respect to temporal changes, water also
tends to not present extreme variations (apart from reflections) from the point of view of a moving
observer from frame to frame, making this a distinct feature (Borges et al., 2008). Additionally, some
information is processed or assumed in order to increase performance. Knowledge about the ground
plane and surrounding terrain or sensor position can be used to determine reflective angles and to
reject areas of space where water surfaces would not be expected, or modulate the probability of
occurrence of water in parts of an image frame (Borges et al., 2008). For instance, if a different type
of terrain is classified (significantly) below ground plane level, it is likely to be a reflection, as shown
in (Rankin and Matthies, 2006). Note that none of the aforementioned methods use active sensors
for water detection, though some add a LIDAR to gain a better understanding about ground-plane
and surroundings with respect to the camera or movement in-between frames.

Another approach that uses temporal information is proposed by (Santana et al., 2012). This
algorithm detects water by extracting its dynamic change in texture over time. It is a model-based
method and aims to recognize chaotic changes in consecutive frames. The extraction happens based
on the chaotic movement of the water body’s optical flow. Usually, when rigid objects move across a
scene, most optical flow vectors on this object point towards a similar direction, whereas with water
the optical flow vectors contain more entropy. Even with camera movements, most neighboring flow
vectors follow a similar direction. The authors expand the region to fill an appearance-based segment
and expand the boundaries to include regions that do not have the chaotic optical flow but still fit
into the same color segment. Evidently, this method needs a moving water body, either disturbed
by wind or in a flowing state, such as rivers or creeks.

Other methods [e.g., (Nguyen et al., 2017)] have leveraged input from additional sensors to
enhance performance, for example using polarized light sensors and stereo information. In this work,
the reflective properties of polarized light were modeled to detect highly reflective areas of a certain
wavelength, and then to train a Gaussian mixture model (GMM). The method first calculates a
disparity map, then estimates a ground plane and computes reflection and azimuth angles with
respect to the ground. Finally, the GMM is trained from pixelwise labels.

The work published in (Rankin and Matthies, 2010) proposed an explicit model considering
especially reflections and color variation. The authors found that color works well for closer
proximity, whereas reflection works best when parts of the sky are reflected in water bodies that
are farther away. First, the method finds regions in an image with low texture but a high intensity
compared to the surrounding area. These areas are then passed as possible water candidates, after
which they propagate around this area using a flood-fill algorithm, by using the intensity gradient as
a threshold to determine the edge of the water body. If intensity decreases rapidly, it is likely to be
a boundary of the water body. These regions are then merged into ellipsoids and the overall density
is used to further determine their likelihood to be a water body. Lastly, the approach combines both
methods to increase accuracy and allow detection of water near and far from the camera.

A method that has a high focus on tractability with a UGV has also been developed by Rankin
et al. (Rankin and Matthies, 2006). In this work the authors found that the combination of multiple
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methods and sensors might bare the best overall robustness. Here they performed late fusion on
multiple cues for water that can be found in a 2D image. The actual water detection was done by
using a combination of multiple explicit water models. The broad combination of multiple methods
seems to enhance the performance of the algorithm. Multiple cues indicate the initial position of the
water bodies. These methods are based on color, texture, stereo range reflections, and zero stereo
disparity. Hue, saturation, and brightness levels were tuned to get water cues from its color. Stereo
range data were used to find patterns with range reflections, reflections of trees, or other terrain
extending below ground level. Additionally, zero disparity areas on the ground have also been found
to indicate water. Afterwards, ground detection was used to estimate the water bodies elevation by
considering the surrounding ground, and temporal filtering in the world map was used to further
increase accuracy. Estimating the ground plane helped to embed the water body into a 3D map with a
more accurate depth/elevation. All water bodies were detected from at least a 7 m distance, with only
0.2% false positives. This method shows how multiple cues can be included to boost performance.

Recently, learning-based approaches for water detection have also been proposed (Li et al.,
2019)(Wang and Wang, 2019). The two methods use the same dataset for training and testing, and
their results should be highly comparable. Even though they do not compare results within their
papers, both compete against a similar baseline achieved by using a simple FCN structure, and
both succeed in achieving better performance. One proposes a neural network structure to include
temporal knowledge (Li et al., 2019), whereas the other optimizes on the network architecture and
activation function (Wang and Wang, 2019). Both methods show improvements against simple FCN
architectures on the Puddle-1000 dataset (Han et al., 2018), where region-independent filters were
trained to abstract texture or color properties to do binary classification on water bodies.

Previously discussed methods exploit a combination of known properties in order to detect water
with vision sensors. Overall, using a dedicated method for water detection and excluding its detection
from further processing seems to be most effective. More recently, a water-dedicated binary classifier
using deep learning proposed in (Wang and Wang, 2019) showed the most promising results when
substantial labeled data for training are available. Note that existing applications for UGVs usually
classify water as an obstacle, and they do not investigate the potential traversability of the water
bodies.

8.1.2. Mud Detection
In the context of terrain classification, there are two broad categories of mud: a) wet soil, which
appears darker than the dry soil or sand; and b) water puddles in the soil, which is the combination
of water and mud. The latter could be detected using water detection methods. In this section, we
review the methodologies for the classification of mud, which appears as isolated wet soil surrounded
by dry soil in nominal weather conditions. Imaging sensors such as stereo cameras were used to
segment the darker soil from the surrounding region in the daytime (Rankin and Matthies, 2008).
Stereo cameras are usually used to identify tall vegetation from mud and soil in the cluttered natural
scenario. In (Rankin and Matthies, 2010), a stereo camera was used to detect and remove ground
clutter by using terrain elevation measurements, estimated local tilt of the terrain, and local plane-fit
residual. The local tilt was estimated using the least-squares plane fit, given the minimum elevation
measurement within each grid cell over 1.2 m × 1.2 m in a 40 cm resolution grid map. The resultant
map, without the ground clutter, could further be used to classify mud and other classes. Color
could also be used as a feature to distinguish mud from shadow. However, segmenting the shadow
in mud or when the entire field is wet (for example, after rain) is difficult using only a color camera.
The water reflection cues could be useful during the bright daylight conditions. Using color, mud
detection is performed by detecting edges and finding a threshold to isolate darker regions (mud)
compared to surrounding regions (dry soil) (Rankin and Matthies, 2010). The authors found that
the mud detection based only on color is not useful to distinguish between tree shadows and mud,
particularly when the entire field is wet.

Polarization contrast provides a simplified measure of the degree of linear polarization at each
pixel value, depending on the filter orientation (Pandian, 2008). It was observed that the polarization
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contrast for water detection can be changed based on weather conditions. However, for mud
detection, the contrast was higher than the surrounding dry soil and is not affected by the weather
conditions. Therefore, the degree of linear polarization can detect the mud robustly, depending on
the weather conditions. It is worth mentioning that the polarization contrast for wet and dry soil in
the shadows is similar. Therefore, it is difficult to classify mud using only the polarization contrast in
the shadows. In (Rankin and Matthies, 2008; Rankin and Matthies, 2010), the polarization contrast
was tested to detect mud in the daytime nominal weather conditions along with the stereo camera
on the robot. The polarization pixels were projected onto the left stereo camera image to classify the
mud within the world map. The mud patches were at two different locations in the test scenario. The
first mud patch was detected at a range of 30.5 m along with a second mud patch at a range of 48.1 m.
The second mud patch was a cluster of small spaced mud bodies, which appeared to be a single mud
area in the polarization imagery. Both mud plots were classified correctly, without false positives,
in the test scenario and at a comfortable range from a vehicle for decision-making purposes. In
the literature, mud, sand, and vegetation detection methodologies also used alternate exteroceptive
sensors and proprioceptive sensors, which are discussed in Sections 5 and 6, respectively.

In all reviewed work on mud detection, multiple sensors were used to classify mud areas in
nominal weather conditions. Detecting mud in shadows and in wet weather conditions is a challenging
problem and requires a multimodal approach. From the literature, it is evident that mud detection
in natural and cluttered scenarios is still an open research problem, in particular using the passive
sensors. To our knowledge, traversability through mud using vision approaches is not yet considered
in the literature.

8.1.3. Water and mud traversability
Finally, terrain classes like water and mud are challenging specific cases because the traversability
(rather than just detection) depends on a number of factors, many of which are not directly
observable by any sensors. Like the general case of obscuration already discussed, water can obscure
other traversability-affecting terrain types or obstacles which lie beneath the surface. The depth of
water or mud is also difficult to detect with normal sensing modalities, although there has been
some limited success with polarized RGB-Depth sensors (Yang et al., 2017) and LIDAR (Matthies
et al., 2003).

8.2. Vegetation
Vegetation poses a number of challenges for evaluating traversability (Wellington and Stentz,
2004). It depends on the nature of the vegetation—for example, a small bush versus a thick
tree trunk—and on the ability of the combined sensing and algorithmic system to successfully
detect these relevant characteristics. Traversability of vegetation is also complicated because, unlike
predominantly ground-plane-based classes like water or sand, vegetation exists in the volume above
the ground plane, and subtle variations can result in large differences in traversability. For example,
a tree-trunk anchored to the ground may be untraversable, but that same thickness in a horizontal
branch may be traversable through bending the branch, if its base is far enough from the path of
the vehicle. Finally, vegetation-based traversability cannot be determined entirely in isolation but
must also occur jointly with assessment of the traversability of other elements in the scene. For
example, the traversability of a small tree may be irrelevant if that tree is submerged in water that
is sufficiently deep to trigger a “nontraversable” flag.

Vegetation can also obscure or interfere with assessment of other terrain traversability charac-
teristics, most notably by partially or fully obscuring other terrain types or even obstacles, such
as large rocks. This obstruction is relevant to both visual and most range-based sensors such as
LIDAR. Some sensing modalities such as radar offer the potential for limited detection through
foliage (MacDonald et al., 1981), offering the ability to detect major physical obstacles—like a large
rock—(as discussed in Sec. 5) but limited ability to detect and recognise different types of terrain
when fully obscured by foliage, such as distinguishing sand from dirt.
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8.3. Negative Obstacles
Negative obstacles such as cliffs, ditches, ruts, or other depressions pose a difficult problem for
autonomous off-road navigation. Negative obstacles exist on unpaved road surfaces but are especially
common when traversing natural terrain with highly capable vehicles, such as Crusher (Stentz et al.,
2007), or the Legged Squad Support System (LS3) (Bajracharya et al., 2013). Vehicle mounted
sensors cannot easily see negative obstacles as the near-field terrain occludes the trailing drop,
slope, or rising edge. The difficulty of seeing negative obstacles from ground level prompted the
DARPA PerceptOR program to detect them from the air (Matthies and Rankin, 2003). Compared
to a positive obstacle, occlusions and viewing angles result in fewer pixels-on-target (Matthies and
Rankin, 2003), which in turn reduces the effective detection range, often to within the stopping
distance of ground vehicles moving at any appreciable speed.

Negative obstacles are often defined by occlusion, rather than being a distinct observable class
such as a tree or rock. From a distance they can only be seen as a discontinuity, making image-based
detection difficult. For example, a ridge in an undulating pathway hides the terrain beyond, even
if the pathway continues and can be seen in the distance. In off-road navigation, traversability
determination has to consider that this ridge could hide a cliff, washout, or crater, whereas on-road
vehicles make use of prior maps and road continuity assumptions. Even as a vehicle approaches the
negative obstacle and gains observability into it, the underlying terrain may very well be of the same
class as the surroundings, making labeling difficult in image space.

Most existing methods for negative obstacle detection are fundamentally geometrical, measuring
a drop in terrain elevation, or identifying unknown or unobserved areas surrounding the vehicle.
These methods commonly use either stereo vision (and methods presented in Section 3.1) or LIDAR
sensors (and associated methods in Section 4.1). For both LIDAR and stereo, classification of the
surrounding terrain (i.e., into vegetation or a solid surface) is critical as the occlusions caused by
vegetation can confound purely geometric approaches. Thermal imagery, exploiting the differential
cooling of depressions in the ground at night, has been used for negative obstacle detection (Rankin
et al., 2007), but there are no prominent methods that depend only on monocular color camera
imagery in outdoor terrains.

8.4. Presence of Airborne Dust, Smoke and Fog
Environmental conditions affect different sensors differently. Airborne dust (a common phenomenon
for UGVs operating in dry terrain) has been identified as a challenging problem in perception due
to the creation of false-positive obstacles in LIDARs (Peynot et al., 2009), hence generating a wrong
representation of the terrain. These errors are usually due to the misinterpretation of the perception
system, which tends to be considered sections of LIDAR point clouds due to airborne dust particles
as obstacles. Many recent LIDAR models can provide multiple echos/returns, which allows for some
mitigation of this issue, in cases of light dust. In addition, recent studies showed that it may be
possible to detect which LIDAR points are due to airborne particles such as dust and snow (Stanislas
et al., 2019).

A similar effect is observed with rain (or snow), where the water particles cause misleading
LIDAR returns as well as attenuation. Studies have shown that the humidity in the air acts as a
screen for the infrared radiation (Weichel, 1990). Both fog (Ijaz et al., 2013) and rain (Filgueira et al.,
2017) reduce the signal intensity by absorption and diffusion phenomena of the beam by the small
water particles. Fog and rain act then as a screen on LIDAR sensors that limit their capabilities and
detection range. Cameras, in contrast, are generally more robust to a certain amount of dust (Borges
et al., 2010; Peynot and Kassir, 2010) or rain in the environment. Although cameras may suffer
from a loss of contrast in those circumstances, the effects can be partially mitigated with adequate
image processing, making many vision-based terrain analysis methods applicable (evidently, the
performance depends on the amount of dust or rain). Care must be taken, however, for dust or
water not to be deposited on the sensor itself. Solutions have been engineered to ‘clean’ the sensors,
with wipers (Ingram et al., 2020) that can remove water, dust or snow.
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Smoke is a problem for both LIDARs and cameras, and once again, it depends on how severe.
Smoke can obviously significantly affect the visual information from cameras. Standard LIDARs also
tend to fail in smoke, although more modern multi-echo return LIDARs are more robust to the phe-
nomenon. Thermal IR cameras can reliably see through smoke and have been successfully used, often
in combination with visual cameras, for robot navigation in such conditions (Brunner et al., 2013).

Other sensors like sonar and radar work much better in penetrating smoke, dust or fog. As
discussed in Section 5, however, they often lack the resolution of LIDARs and the richness in
information of cameras and suffer from much lower signal-to-noise ratio. This can be a problem
for creating detailed maps of the terrain or for classification. However, this can be mitigated by an
intelligent combination of sensor data provided by LIDAR and mm-wave RADAR, as in (Gerardo-
Castro et al., 2014). Sonar can also suffer severely from multipath effects, making mm-wave RADAR
usually better for imaging in fog, airborne dust, and smoke. Recent RADAR developments driven
by a rise in demand from the automotive industry, in particular self-driving cars projects, have
led to the availability of affordable and compact RADAR units, however they are usually limited
to obstacle detection and tracking. To perform terrain classification and advanced traversability
analysis, higher-end imaging RADAR are required, such as in (Peynot et al., 2010b), but they
remain relatively expensive.

As indicated in Section 7, it is particularly important that UGVs are equipped with multiple
sensors with different physical properties, such that redundancy between sensors can be exploited.
The specific choice of sensors will depend on the application scenario and the likely elements to be
encountered during operations.

8.5. Extreme Illumination Challenges including Night Operations
The day-night cycle is one of the most dominant challenges for all visual perception systems and
presents a range of challenges including low light and high dynamic range situations. The first and
most obvious is that illumination at nighttime is generally reduced, causing challenges for visual
camera-based perception systems that have been primarily developed for well-illuminated conditions.
In the past, infrared or multispectral sensors have been used to mitigate these issues, but they are
not always a panacea for operations in low light. For example, in natural environments, temperature
differentials across much of the environment can reduce to near zero during a night cycle, rendering
the environment near-featureless in appearance to a heat-based sensor (Maddern et al., 2014).
Advances in visible spectrum camera technology over the past decade have resulted in relatively lower
cost camera hardware that can see at least as well as the human eye in low light conditions—and
with specialist hardware, in almost pitch black conditions (Mount and Milford, 2016).

One of the attractive properties of these developments is that the image representation produced
at night is similar in appearance to that produced during the day, in terms of color and intensity
representation, unlike a thermal camera (Maddern et al., 2014). Consequently, a range of techniques
developed for daylight conditions is adaptable for nighttime conditions, as opposed to requiring
entirely new development, as is the case with alternative visual sensing modalities like thermal
cameras or event cameras (dynamic vision sensors) (Kim et al., 2016). With these improvements,
visual detection at night becomes more tractable (although issues such as blurring remain problem-
atic). Algorithmic attempts to address perception for vehicles in low light conditions by integrating
poor quality information over time to produce improved performance have been developed (Milford
and Wyeth, 2012). Nighttime operations are not entirely without advantage either: in environments
without external illumination, much of the challenge of dealing with shadows encountered during
the daytime is removed (Corke et al., 2013).

For vision-based systems, the second challenge in nighttime operations concerns the range of
illumination conditions that are encountered. Factors including artificial lighting from vehicle and
personnel can introduce major variations in illumination across the scene that can rapidly vary
from one moment to the next. This nighttime challenge is in many ways the more challenging of
the two, because it is not simply a question of everything in the scene being darker, but rather one
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of dealing with a potentially very wide range of illumination conditions that can vary rapidly. Once
again, nonvisual sensors are largely unaffected by such illumination challenges, but incorporating
visual sensing is relevant to obtaining improved terrain traversability performance. As new hardware
developments in camera technology have enabled performance in low light conditions, they have also
led to increased camera dynamic range—the range of variation in intensity in a scene that can be
captured simultaneously. This improved hardware performance is still likely insufficient to deal
with both direct illumination by artificial lighting and completely unlit areas of a scene. Multiple
camera setups can be implemented, such as is employed in some autonomous vehicle systems where
a dedicated camera is used to reliably detect traffic signals (Diaz-Cabrera et al., 2015). Extreme
lighting variations are not only encountered at night: daytime operation, especially around sunrise
and sunset, can result in challenging conditions due to the low position of the sun in the scene.

Naturally, nighttime operations are not a challenge for systems based on active sensors such
as LIDARs, however relying purely on those sensors can be a liability in some applications where
passive sensing is preferred.

8.6. Deformable and Unstable Terrain
Most terrain traversability studies consider the terrain to be rigid, i.e., the terrain shape and
characteristics are static and they never change, even over time. However, few studies consider
the case of deformable terrain, where the terrain (usually its geometry) can change as a result of the
interaction with the robot and an attempt to predict this terrain deformation (Ho et al., 2013). For
example, an unstable pile of rock may change shape once a robot drives over it, due to the weight
applied to it (Ho et al., 2016), mud may be moved as a robot slips on it, or low cohesion soil such as
sand could move. In extreme cases, some authors consider terrain collapsing when a patch of terrain
cannot hold the weight of the robot (Tennakoon et al., 2018; Tennakoon et al., 2020). Examples
include a rotten wooden floor or holes covered with leaves or thin ice.

8.7. Soiled Camera Lens due to Mud, Dirt, Water, Foam
Here we address the issue of disruption to the camera lens itself rather than the environment in
front of the lens, caused by mud, water, or other environmental conditions that decrease visibility
and therefore affect the performance of the learning-based system. The first set of approaches to this
problem involve attempting to correct for the disruption while retaining access to the information in
the image. In (Uricar et al., 2019), a Generative Adversarial Network (GAN) is used to generate an
augmented soiled dataset for training a model. CycleGAN was used to generate the soiled version of
the clean images, captured using the fisheye camera (Zhu et al., 2017a). The authors have trained two
DeepLabV3 models (Chen et al., 2018b), using the WoodScape dataset (Yogamani et al., 2019), on
the clean and the soiled images. ResNet50 and FCN8 are used as an encoder and decoder to develop
the binary semantic segmentation network. To evaluate the performance, the model trained on clean
images was tested on both clean and soiled images. A drop of 21.8% mean Intersect Over Union
(IoU) was observed by the model trained on the clean images, when tested using the soiled images.
The decrease in the performance of typical classification tasks, common for autonomous driving,
suggests that the epistemic uncertainty in the model could be reduced using the soiled dataset.

Recovery of information from the image may not always be possible; in these cases, reliable
detection of the disruption is still useful. This can be achieved through various methods including
relatively straightforward learning-based techniques such as in (Zeng et al., 2017) and (Zhang et al.,
2014), which learn to predict the utility of the image based on relevant training data.

8.8. Other Challenges
Terrain ambiguity is the general challenge of terrain types with different traversability implications
being indistinguishable using one or more of the sensing modalities, even for human observers. For
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range-based sensors like LIDAR or range-producing sensors like stereo vision, this ambiguity can
result from terrain types that have very similar geometric texture. For vision sensors, some terrains
can have highly similar visual appearance in certain conditions, such as loose sand versus compacted
wet sand.

Obscuration is another common challenge that has long been known (Schwartz and Sharir, 1987)
in the computer vision literature: although a system can detect the terrain types present in the
current image, there may be critical terrain types obscured by parts of the scene (such as foliage,
or leaf cover on the ground plane). By the time those obscured terrain types become observable (if
ever), it may be too late—for example, if the vehicle has pushed through the foliage only to drive
directly into a deep pool of water. The complementary problem is also possible: a shallow pool of
undisrupted water may not be directly detectable using visual techniques, which would instead only
see the underlying terrain type such as dirt.

9. Open Resources: Datasets and Open Code
This section lists some of the relevant publicly available semantically annotated datasets and open
code that find application in terrain analysis.

9.1. Datasets
While there are multiple publicly available autonomous driving datasets, only a few focus on off-
road5 navigation. The vast majority of semantically annotated driving datasets have been captured
for urban navigation, and the emphasis is on common objects that appear in an urban scene, such
as roads, cars, pedestrians, traffic signs, or buildings. Nonetheless, many of these datasets include
relevant off-road terrain classes, such as road-side vegetation, gravel, snow, and water, and they
represent a similar viewpoint. An off-road terrain detection system can be initially trained on one
of these urban navigation datasets and then fine-tuned on the (much smaller) off-road datasets, if
required. For this reason, this section briefly summarizes both urban and off-road datasets.

Most of these annotated datasets contain single sensor modality, in the form of visual information,
mostly in the form of images (Neuhold et al., 2017; Procopio, 2007; Zhou et al., 2019) or video-
sequences (Yu et al., 2018; Brostow et al., 2009). Some datasets (Cordts et al., 2016; Valada et al.,
2016b; Huang et al., 2018) are captured using a stereo-camera setup, which, in addition to visual
information, can also provide depth information. A couple of datasets also contain a geometric profile
of the terrain captured by LIDARs in the form of a point cloud (Geyer et al., 2020; Sun et al., 2020).
The terrain geometry data can be either stand-alone or synchronized with visual sequences.

9.1.1. Urban Navigation Datasets
One of the most popular autonomous navigation datasets is Cityscapes (Cordts et al., 2016),
which has been used by many researchers for training and benchmarking of self-driving cars.
Although its primary purpose is urban navigation, it contains several useful terrain classes: road,
sidewalk, rail tracks, and vegetation. The Mapillary Vistas dataset (Neuhold et al., 2017) is another
large and diverse urban dataset with 152 object categories with several useful terrain classes
such as water, snow, sand, vegetation, road, and terrain. BDD 100 K (Yu et al., 2018) is the
largest (120 000 000 images) and most diverse publicly available urban dataset. It has similar class
specifications to Cityscapes while also including datasets for driveable surface labeling, semantic
instance segmentation, etc. Another popular dataset was built by LabelMe (Russell et al., 2008), a
community-based online annotation tool for general computer vision research. Being an open tool,
it has a significant number of object classes, of which some classes (such as road, field, grass, river,
plant, sand, rock, desert) are relevant to terrain classification.

5 “Off-road” as defined in Section 1.
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9.1.2. Off-road Navigation Datasets
Two of the most relevant off-road datasets are the Freiburg Forest dataset (Valada et al., 2016b) and
the RELLIS-3D dataset (Jiang et al., 2020). The Freiburg dataset is a semantically labeled dataset of
unstructured forest environments with six classes: obstacle, trail, sky, grass, vegetation, and void. It
was collected by a robot driven on a narrow forest road in a German province over 3 days in various
lighting conditions. It includes the following sensor modalities: the robot’s odometry, a Velodyne
HDL 64, four Bumblebee stereo cameras, and an Applanix navigation system. The benefit of this
dataset is that with such a rich set of modalities, it is possible to evaluate various types of joint
classifiers. The RELLIS-3D dataset is a multimodal dataset collected in an off-road environment
containing annotations for 13 556 LiDAR scans and 6235 images. The data were collected on a
university campus and present challenges in terms of class imbalance and environmental topography.
The dataset contains RGB camera images, LiDAR point clouds, a pair of stereo images, high-
precision GPS measurement, and IMU data, all in an ROS format. This is the most comprehensive
dataset available for off-road data.

Another notable dataset captured in nonurban environments is DARPA LAGR (Procopio, 2007).
It consists of three off-road scenarios for two lighting conditions, resulting in six image sequences.
The data are stored in a Matlab-6 compatible format and represent various terrains (mulch, dirt,
grass) as well as natural obstacles (trees, dense shrubs, hay bales). Unfortunately, the dataset has
only three labeled classes: Obstacle, Ground-plane, and Unknown. It would require further labeling
if this dataset is to be used for terrain classification purposes. A related dataset focusing on images
has been published recently (Dabbiru et al., 2021), where the authors include the type of vehicle
and consider this variable for traversability evaluation.

The Marulan dataset (Peynot et al., 2010b) is collected in variable environments using synchro-
nized sensors, which include four 2D laser scanners, a radar scanner, a color camera, and an infrared
camera. This dataset includes the presence of airborne dust, smoke, and rain.

9.1.3. Vision-LIDAR synchronized Urban Navigation Datasets
Just like vision-based public datasets, most Vison-LIDAR synchronized datasets such as the Audi
dataset (Geyer et al., 2020) and Waymo open datasets (Sun et al., 2020) are of urban cityscapes. The
Audi dataset includes about 40 000 frames of synchronized and semantically segmented images and
point cloud labels, and another 12 000 frames of 3D bounding boxes. The semantically segmented
vision and corresponding synchronized point cloud data are categorized into 38 classes, such as
pedestrian, car, vegetation, etc. This dataset was captured using six cameras and five LIDARs and
has a 360 degree view. The Waymo dataset contains about 1950 segments of independently labeled
3D 7-DoF bounding box labels for LIDAR data, and 2D bounding box labels for camera data. Each
sensor’s data are synchronized and annotated into five classes: vehicle, pedestrian, cyclists, signs,
and no-label. This dataset was captured using five LIDARs and five cameras pointing front, front
left, front right, side left, and side right.

Tables 4 and 5 provide a further summary of various relevant semantically annotated datasets
that can be used for training and testing of terrain classification, along with the useful classes, and
information on where to find them. It should be noted that not all datasets can be used directly
for training an autonomous vehicle’s perception system. Some of the reported datasets in Tables 4
and 5 have a limited amount of data, while some of the publicly available off-road sequences have
a limited number of terrain classes, as discussed previously. Image augmentation and/or expanding
the class range by additional labeling (e.g., a drivable surface could be further classified into asphalt,
gravel, or a dirt road) should be considered.

9.1.4. Synthetic Datasets
It is worth mentioning that off-road synthetic datasets can be generated using simulation frameworks
to produce purely virtual environments. Although there is always a danger that a classifier
trained on computer-generated data may not perform as well in natural environments, synthetic
datasets can still be very useful as they can capture a range of situations including edge-case
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Table 4. Terrain analysis datasets (Part 1/2) (sensor types: P - proprioceptive, V - monocular camera, S - stereo
camera, L - LIDAR).

Dataset Sensing
Name Type Terrain Classes Type Link and Comments
Freiburg Forest (Valada

et al., 2016b)
Off-road

dataset
trail, grass,

vegetation,
obstacle, sky, void

PS http://lifenav.informatik.uni-
freiburg.de/datasets.html
Contains the following
multimodal/spectral images with
ground-truth annotations: RGB, Depth,
NIR, NRG, NDVI, EVI, and their
variants.

RELLIS-3D (Jiang et al.,
2020)

Off-road
dataset

asphalt, dirt, grass,
floor, tree, pole,
water, sky, vehicle,
object, build, log,
person, fence, bush,
concrete, barrier,
puddle, mud, rubble

PSL https://unmannedlab.github.io/research/
RELLIS-3D
a multimodal dataset collected in an
off-road environment containing
annotations for 13 556 LiDAR scans and
6235 images. It includes RGB camera
images, LiDAR point clouds, a pair of
stereo images, high-precision GPS
measurement, and IMU data.

CityScapes (Cordts et al.,
2016)

Urban
cityscape

road, sidewalk,
parking, rail track,
vegetation, terrain

S https://www.cityscapes-dataset.com/
Stereo video sequences recorded in street
scenes

Mapillary Vistas (Neuhold
et al., 2017)

Urban
cityscape

road, sidewalk,
vegetation, snow,
sand, water,
building, wall, fence,
pole, bridge, tunnel

V https://www.mapillary.com/datasets
25 000 high-resolution images, 152 object
categories, variety of weather, season,
time of day, camera, and viewpoint. Free
version available for noncommercial
research.

LabelMe (Russell et al.,
2008)

Mixed road, field, grass,
river, plant, sand,
rock, desert

V http://labelme.csail.mit.edu
Dataset and online annotation tool to
build image databases for computer
vision research

BDD 100K (Yu et al.,
2018)

Urban
cityscapes

road, ground,
vegetation,
sidewalk, sky, car,
street light, rider,
building, wall, fence,
pole, bridge, tunnel

VP https://bair.berkeley.edu/blog/2018/05/
30/bdd/
Total 120 000 K images (10 K instance
segmentation), 40 instance segmentation
object classes, variety of weather, season,
time of day, and viewpoint. Free version
available for noncommercial research.

Apolloscape-Scene (Huang
et al., 2018)

Urban
cityscapes

road, sidewalk,
vegetation, pole,
building, wall, fence,
bridge, tunnel,
overpass

VS http://apolloscape.auto/scene.html
Includes RGB videos with high resolution
images and per pixel annotation, survey-
grade dense 3D points with semantic
segmentation, stereoscopic video, and
panoramic images

Marulan (Peynot et al.,
2010b)

Special
classes

grass VL+IR http://sdi.acfr.usyd.edu.au/
The main contribution is the inclusion of
multiple elements such as airborne dust,
smoke, and rain.

scenarios, generated via simulation, that might be hard to observe in real-world data. Besides,
modern computer-generated images can achieve a very high level of realism, in many cases barely
distinguishable from the real data. Secondly, the user can adjust various parameters of the model to
get different driving scenarios (object arrangement and behavior, weather, lighting, etc.) as well as
different (sometimes with subtle difference) types of terrain, which would be much harder to find and
capture in real life. Thirdly, and most importantly, considering that the most labor-intensive process
in dataset creation is ground truth labeling, there is an undeniable advantage of having immediate
and well-segmented ground truth information about different parts of the synthetic world. This
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Table 5. Terrain analysis datasets (Part 2/2) (sensor types: P - proprioceptive, V - monocular camera, S - stereo
camera, L - LIDAR).

Dataset Sensing
Name Type Terrain Classes Type Link and Comments
Terrain8 (Wu et al., 2019) Terrain

images
asphalt, dirt, grass,

floor, gravel, rock,
sand, and wood
chips

V http://pan.baidu.com/s/1o7Clk0a
each class contains 300 images of the
same size (256x256 pixels). Certain
images are captured with a camera under
different weather conditions, and the
others come from Google Image Search.
Most of the images in Terrain8 are
collected with the camera facing
downward to the ground.

ADE20K (Zhou et al.,
2019)

Scene
dataset

road, pavement, dirt,
grass, gravel, sand,
water, snow,
vegetation, trees

V https://groups.csail.mit.edu/vision/
datasets/ADE20K/
25 K densely annotated images in
different scene categories with
corresponding segmentation masks.
Object parts are associated with object
instances.

CamVid (Brostow et al.,
2009)

Urban
cityscapes

road, shoulder, lane
markings, sidewalk,
parking block, tree,
vegetation, building,
wall, fence, pole,
bridge, tunnel,
archway

V http://mi.eng.cam.ac.uk/research/
projects/VideoRec/
Over 10 min of high-quality 30 Hz
footage is being provided, with
corresponding semantically labeled
images at 1 Hz and in part, 15 Hz

DARPA LAGR (Procopio,
2007)

Off-road
dataset

ground, obstacle,
unknown

S https://mikeprocopio.com/
labeledlagrdata.html
MATLAB-6 compatible *.mat files with
the raw RGB image as well as the
disparity information.

Kaggle Vale (Hosseinpoor
et al., 2019)

Movability
based
terrain

blue foil, styrofoam,
linoleum, cardboard,
rubber

P https://www.kaggle.com/sadhoss/vale-
semantic-terrain-segmentation
Sensor readouts from quadruped robot:
eight potentiometers attached to each
joint, Inertial Measurement Unit, a
Gyroscope and a Magnetometer.

Audi dataset (Geyer et al.,
2020)

Urban
cityscapes

pedestrian, car,
vegetation

VL https://www.a2d2.audi/a2d2/en/dataset.
html
About 40 000 frames of synchronized
Vision-LIDAR semantically labeled data
categorized into 38 classes with a 360
degree view.

Waymo datasets (Sun
et al., 2020)

Urban
cityscapes

vehicle, pedestrian,
cyclists, signs, and
no-label

VL https://waymo.com/open/data/
About 1950 segments of synchronized
3D 7-DoF bounding boxes of LIDAR and
2D bounding boxes of camera data
categorized into 5 classes.

CARLA (Dosovitskiy
et al., 2017)

& AirSim (Shah et al.,
2017)

Simulation
engine

simulated terrains PVSL http://carla.org/ and
https://microsoft.github.io/AirSim
The simulation platform supports flexible
specification of sensor suites (including
LIDARs, multiple cameras, depth sensors,
and GPS, among others), environmental
conditions, full control of all static and
dynamic actors, maps generation, and
more. CARLA is provided with
integration with ROS via ROS-bridge.
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is especially valuable for nonvisual types of data such as point clouds. Such synthetic datasets
can give a good indication of the viability of the classifier approach at the early stages of the
development.

There are many tools for creating realistic virtual worlds, such as Unity3D (Unity Technologies,
nd), Unreal Engine (Epic Games, nd), and Blender (The Blender Foundation, nd). Gazebo (Open
Source Robotics Foundation, nd) is another widely used simulator in robotics development and
a major component of the ROS environment. Plugins can expand the capabilities of Gazebo to
include dynamic loading of custom models and the use of stereo and infrared cameras, LIDAR,
RADAR, GPS, or IMU sensors. Another notable synthetic dataset creation tool is the open source
CARLA (Dosovitskiy et al., 2017) project, based on Unreal Engine, which has the purpose of
simplifying dataset creation. Although as with many other datasets CARLA’s primary purpose is
urban driving, it can be useful in generating weather conditions and driving scenarios on various
terrains. AirSim (Shah et al., 2017), another popular simulation framework also based on Unreal
Engine, is a powerful and flexible tool that can use Unreal Marketplace assets to build outdoor
environments and thus generate off-road synthetic datasets. Both of these frameworks can generate
data from multiple types of sensors including LIDARs, radars, cameras, and IMUs, among others.
New sensor types can be added by users if needed.

Despite certain advantages that simulation-only datasets can offer, there is always a tradeoff
between the effort to create such datasets and the benefits that they can deliver. Such a tradeoff
should be carefully considered before committing to creating a new virtual dataset depending on
the project requirements.

9.2. Considerations (Datasets)
As tabulated in Tables 4 and 5, most of the public datasets for autonomous driving focus on urban
cityscapes with vision as the primary sensing modality. While they contain some relevant terrain
classes for an off-road driving task, the range of these classes is limited. For a robust deep-learning
based off-road terrain classification, a greater range of annotated terrain classes is required along with
synchronized annotated data from other sensors. However, these datasets provide a good starting
point for autonomous navigation modeling, and models trained on these datasets can later be
fine-tuned on off-road datasets.

Models trained on datasets such as Cityscapes or Mapillary with additional fine-tuning on
RELLIS-3D or Freiburg Forest dataset would provide a good starting point for off-road autonomous
navigation. Though such a model will lack the detailed terrain information required for robust
navigation in rough terrain, such as identification of mud, gravel, etc., it would be able to identify
the common driving hazards and driving surfaces allowing for basic off-road navigation. Then an
additional smaller dataset would be required to fine-tune the network. This approach also provides
an opportunity for initial model comparison between different networks, in terms of performance
and speed, so further training effort can be focused on the most suitable model.

9.3. Open Code
A number of software packages that may potentially be used for terrain classification and analysis
are available online, particularly in the learning domain. In this section, we discuss some of the
implementations that are available based on the previous investigations within this paper. It is
important to note that, in most cases, these techniques cannot be directly applied to a specific
terrain problem and will likely need specific training and tuning in order to find any potential
usefulness in a given terrain analysis domain.

Much of the research in this area is developed in the Python programming language. Currently,
some of the most popular backends that are used for learning in Python are Tensorflow (Abadi et al.,
2015) (which also offers some support for other languages) and Pytorch (Paszke et al., 2019). Most
of the learned approaches investigated in this paper use one of these two back-ends to facilitate deep
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Table 6. Commonly used platforms for machine-learning algorithms.
Package Name Comments on Library
Tensorflow (Abadi et al.,

2015)
A platform that provides the functionality necessary to deploy Machine Learning

systems at every level. It has a wide support base from the community and is
widely used in the field. It also has an “ecosystem” of tools that make the
production of effective ML models more accessible and more effective. There
is also limited support of some other languages, though these language are not
yet covered by the Tensorflow stability promises.

Pytorch (Paszke et al.,
2019)

PyTorch is another widely used back-end tool for ML solutions. It is implemented
in python and provides access to distributed training, an ecosystem of tools to
support and facilitate development, and a strong community of users. It is
used for a lot of the techniques investigated in this paper.

Keras (Chollet et al., 2015) Keras is essentially an API that is a wrapper for Tensorflow and Theano. It
enables models to be built in more simple, straightforward ways. Keras allows
for fast prototyping as well as running seamlessly on CPU and GPU.

Theano (Team et al., 2016) A python library aimed at allowing users to use GPU-based methods and other
optimization techniques to work with large amounts of multidimensional data
in an efficient way. It has a focus on tensor expressions and is used in some of
the techniques investigated in this paper.

Scikit-Learn (Pedregosa
et al., 2011)

Scikit-Learn is a commonly used library that provides tools for data analysis in
python. It is available for use under the BSD license and would be used in
many of the existing online implementations of the techniques investigated in
this paper.

learning, however other libraries and wrappers such as Keras (Chollet et al., 2015) and Theano (Team
et al., 2016) are also used in various research. Table 6 provides a brief description of some commonly
used software back-ends in tasks that can be applied to terrain analysis.

A list of some relevant vision-based techniques is given in Table 7. Of these, the Deeplab variants
(Chen et al., 2018c; Chen et al., 2018b; Chen et al., 2018a) are interesting due to the well maintained
code base, their success in semantic image segmentation tasks, and their existing implementation
on various datasets such as CityScapes and ADE20K. Although this has not been applied directly
to terrain analysis in this repository, Deeplabv3+ may be of interest, as it has achieved good
results in semantic segmentation of outdoor or urban scenes, and the existing implementation is
well structured, simplifying much of the adaptation process.

Some relevant LIDAR research code bases are also shown in Table 8. While these are all semantic
scene segmentation techniques and as such should only be considered potential implementations
of future work, they all have excellent online repositories available under various licenses. The
ConvPoint repository (Boulch, 2020) has achieved strong results on the large outdoor LIDAR dataset
Semantic3D Semantic8 benchmark that segments large outdoor scenes into eight classes, which
include vegetation, man-made terrain, buildings, and natural terrain (Hackel et al., 2017). Although
this is not directly terrain analysis, semantically segmenting a large outdoor LIDAR scene into these
categories may assist with that task.

For exteroceptive sensing, a Matlab package based recurrent neural network classification (Vulpi
et al., 2021) is available online (https://github.com/Ph0bi0/T$_$DEEP).

These tables show some of the existing code-bases online that could be considered to assist
research on terrain analysis, although these lists are far from exhaustive, and other considerations
such as licensing, technological relevancy, and ease of use would need to be considered.

9.4. Considerations (Open source tools)
As shown in the above tables, many of the techniques investigated in this paper have supporting
online code bases that could be considered when beginning research into the terrain analysis task.
Most of these methods will likely require some amount of adaptation or rework—specifically those
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Table 7. Vision-based methods.
Ref. Technique Description
(Shen and Kelly, 2017) Terrain Classification For

Offroad Driving
A repository of this technique is provided, however no

licensing information is explicitly attached.
(Valada et al., 2019) Adapnet++ An online code base for this technique is available. It

claims to need a single GPU with at least 12 GB of
memory. Adaptnet++ has been benchmarked
against Cityscapes and Freiburg Forest, however it
is highly likely that retraining or at least fine-tuning
would be required to solve the terrain analysis
problem at hand. This implementation uses
Tensorflow. It is licensed under the GPL-3.0 License.

(Suryamurthy et al.,
2019)

Terrain Segmentation and
Roughness Estimation using
RGB Data: Path Planning
Application on the
CENTAURO Robot

There is a code base available for this paper online,
however no licensing information is explicitly
provided. The code is implemented through a
different back end, Caffe (Jia et al., 2014).
Adaptation may be required here, as the paper
appears to be more focused on small local areas of
artificially positioned terrain rather than large
scenes outdoors.

(Chen et al., 2018c),
(Chen et al., 2018b),
(Chen et al., 2018a)

Deeplab Variants These references are variants on the Deeplab
architecture for which there is a model available
online under the Tensorflow model garden. There
are likely multiple specific implementations available
as well, however the main one investigated for this
table was the Tensorflow model garden version. It is
implemented through Tensorflow and supports a
Mobilenet architecture (Sandler et al.,
2018),(Howard et al., 2019). This may need to be
adapted, retrained, or fine-tuned on a terrain
dataset for effective use.

(Romera et al., 2017) ERFNEt An implementation of this technique is available
online under a noncommercial license. It uses
PyTorch and the Cityscapes (Cordts et al., 2016)
dataset, meaning some adaptation may be required
for off-road terrain analysis.

(Mehta et al., 2018) ESPNet The code base for this technique uses PyTorch and is
available under the MIT license. It has been shown
to run at 9FPS on the Cityscapes Data set on a
TX2. Fine-tuning, retraining, or other work would
likely be needed to adapt this to off-road terrain
analysis.

(Zhao et al., 2018) ICNet There is an online implementation of this paper based
on the Caffe back-end. It contains pretrained
models on Cityscapes. No explicit licensing
information is provided.

that show promising results in scene segmentation benchmarks but have not been used explicitly
for terrain classification.

Learning-based approaches are fairly consistent in their use of certain standard platforms such as
Tensorflow and PyTorch. Many model-based vision approaches also use these or similar packages.
These techniques are most promising for terrain analysis as they are performing segmentation.
Although a specific implementation should be further investigated before it is selected for use, these
tables give an indication of which techniques could be developed and tested more quickly than
others, given sufficient fine tuning on prelabeled terrain data.
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Table 8. Comments on Code Repositories For LIDAR-based Methods.
Technique

Ref. Name Comments on code base
(Choy et al., 2019) Minkowski

Engine
A code base was released with the Minkowski Engine Paper. It uses a

PyTorch backend and provides an autodifferentiation library for
sparse tensors. It was used in the paper to implement a U-Net that
functioned on Point Clouds for semantic segmentation. This could
be considered for future work, however it is not directly related to
terrain analysis. Adaptation necessary may include training on
relevant LIDAR data as terrain analysis has not been shown with
this model. The repository is online under the MIT license.

(Boulch, 2020) ConvPoint Repository that implements the ConvPoint paper. Runs on a PyTorch
backend. It is released under a dual license and requires explicit
permission for commercial use. Similar to other learned methods,
adaptation and alteration may be required to get useful results.

(Liu et al., 2019) PVCNN (Point
Voxel CNN)

Repository implementing PVCNN: Point-Voxel CNN for Efficient 3D
Deep Learning. It has been shown to work on an Nvidia Jetson
Xavier in a driverless car to perform obstacle detection. While this
has not been used explicitly for terrain analysis, it could be
considered a promising technique for future work given the
hardware used and the demonstrated ability to make it run “live.”
The code base is available online under the MIT license.

(Cortinhal et al., 2020) SalsaNext A code base was released with the SalsaNext paper, which
implements uncertainty-aware semantic segmentation of a full 3D
LiDAR point cloud in real time.

10. Synthesis and Conclusions
In this section, we summarize our findings, providing insights and relevant conclusions on the topic
of terrain analysis and understanding. First, it is important to point out requirements for success in
the task of terrain classification for off-road vehicles and also identify common observations in the
literature.

• Methods in the literature often assume that accurate 6-DoF localization (x, y, z, yaw + attitude)
of the vehicle is available at all times, accurately synchronized with all sensor data, unless the
method is only classifying each scan/image at a time (e.g., no accumulation of sensory data in
a map before classification).

• All multisensor methods require accurate calibration and synchronization between the sensors.
This calibration should be both intrinsic and extrinsic. Although this paper does not explore
this aspect, it is a crucial requirement and there is a large body of literature with effective
calibration methods.

• All learning methods, especially deep learning, require large amounts of (labeled) sensor data,
taken in the relevant environments and conditions, and sufficiently capturing the variety of
situations and conditions that are significant.

• Most studies in this review conduct the terrain classification off-line. When performed onboard
the robot, off-road vehicles are usually driving (very) slowly (e.g., at walk pace or similar). Most
studies with higher-speed vehicles are on the road in urban environments. They can exploit
more structure, making for a “simpler” problem in terms of traversability analysis.

10.1. On Visual-based Methods
More traditional learning-based methods using imaging for terrain classification rely on hand-crafted
features and have shown good success in fairly specific applications with a relatively clear bounded
domain. These methods generally do not require large datasets for training the classifiers. However,

Field Robotics, July, 2022 · 2:1567–1627



1614 · Borges et al.

some of the disadvantages of those methods are (i) the fact that the feature extraction methodology
is usually designed for a specific terrain class and may not be easily generalized to a different
terrain type; and (ii) the terrain classes exhibit similarity and variations, which are hard to be
represented with specific features. Hence, many state-of-the-art methods for terrain classification
are built on deep semantic segmentation networks, particularly with the advancements in the last
5 years. The deep networks do not require domain expertise and can automatically learn high-level
features from data. Also, the network design can be generic and retrained to classify new terrains.
Finally, the network can be extended to a multimodal network that can fuse multiple sensor data.
The disadvantage, however, is that a large amount of annotated data is required for training, and
the data need to extensively cover the variety that can be encountered in the real world, as those
methods are usually not very effective at extrapolating far beyond what is included in the training
data. Ensuring that coverage is sufficient is a common challenge. The extension from still images to
video can exploit temporal information between frames, which can improve classification accuracy
and/or speed. Once again, a drawback of videos is that they tend to expand the labeling effort, with
labeling in many frames of the training video. To our knowledge, there is no explicit implementation
of video semantic segmentation methods for terrain classification. Nevertheless, these specialized
methods for videos are worth exploring and should be investigated.

We also reviewed “expert systems” to detect specific classes of interest such as mud and water as
these are particularly challenging. There is minimal research with multiple-class terrain classification
that was shown to be successful in detecting water or mud, compared with the dedicated method
that was focusing on one (or both) of those specific classes. In terms of pure vision, a water-dedicated
binary classifier using deep learning (Wang and Wang, 2019) shows promising results when sufficient
labeled data for training are available. To the best of our knowledge, there is no research focusing
on traversability analysis through water, but only classifying water as an obstacle. In all reviewed
mud detection works, multiple sensors were used for classification. Identifying mud in shadows and
in wet weather conditions is extremely challenging and possibly requires a multimodal approach.

10.2. On LIDAR-based Methods
The use of LIDAR data for scene semantic segmentation and terrain analysis has been one of
the most popular and powerful strategies in recent works. This is mainly due to the fact that it is
capable of capturing accurate metric information, which is very useful especially for robot tasks (e.g.,
autonomous navigation) and providing a high quality in measurement consistency and high-fidelity
information (e.g., a variety of returning waveforms depending on terrain property). It is important
to note that LIDAR’s success is generally seen in the analysis of three-dimensional structures in the
terrain (tress, rocks, bush, etc.) and for regression of terrain traversability. For classification, in the
case of geometrically similar surfaces (e.g., sand, mud, dirt) the usefulness of LIDAR is very limited.

With regard to processing LIDAR data, (e.g., point cloud), 3D convolutional neural networks are
gaining popularity among computer vision, machine learning, and robotics communities in either
supervised, semi- or weakly supervised, and self-supervised manners. Supervised approaches may be
the most popular due to their simplicity and already established work in 2D convolution. However,
one of the bottlenecks is analogous to those of 2D CNNs, i.e., difficulty in high-quality annotation
data.

10.3. On Alternative Sensors
IR thermal cameras have been used with some success as complementary sources of information
to visual cameras, in particular to detect mud, some instances of water, and negative obstacles.
They also allow for vision-based perception at nighttime, albeit with its own limitations, but with
the advantage of being a passive sensor. In the literature, a combination of passive sensors such as
thermal, stereo, and polarization cameras were recommended to detect mud during day and night.
It is important to note that IR thermal cameras also robustly see through smoke. Radars have
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been used mostly due to the better penetration of their signal, compared with LIDAR and visual
cameras. Two main uses can be highlighted here. First, mm-wave radars are very effective at seeing
through dense airborne dust, smoke, and fog. FMCW mm-wave radars can be used in a similar
way to LIDARs for terrain classification or traversability, however they usually offer a much lower
resolution and signal-to-noise ratio, leading to a significant reduction in accuracy compared with
LIDAR-based methods. UWB radar, used in combination with LIDAR and/or stereo cameras, has
the potential to detect actual obstacles through foliage and vegetation during day and night, in close
proximity to the robot, thereby allowing a robot to drive through some level of vegetation with some
level of reliability. However, UWB radars are even lower resolution and have lower signal-to-noise
ratio compared with FMCW mm-wave radars, and this approach requires extensive scanning or
multiple UWB units on the robot.

10.4. On Sensor Fusion
Selecting the right sensors for the fusion in respect to the environmental conditions and the terrain
that should be detected is crucial to enable a high performing system. The more complementary
sensors with various physical properties are included, the more object properties can be captured
and fused. Based on our investigation, some challenging terrain, such as mud and water, is likely to
need additional sensory input to be detected robustly. For a reliable field system, sensor fusion is
mandatory and should be a core focus in the design of a robust system.

One of the greatest challenges is to determine where to limit the addition of sensors, as more
sensors generally cause more annotation effort and computational cost, apart from the device cost.
As discussed, LIDARs and cameras, both monocular and stereo, form the bulk of the literature and
show the most relevant results. Combining them effectively (which has only been done to a limited
extent in the context of terrain analysis) is essential.

10.5. On Open Datasets
Section 9 has shown that the vast majority of the public datasets for autonomous driving contain
urban scenes with vision as the primary sensing modality. There are only very limited off-road data,
with only a limited number of terrain classes. If robust off-road terrain classification is required, a
greater number of annotated terrain classes are necessary, as what is currently openly available is not
sufficient. It is also paramount to consider datasets that contain synchronized annotated data from
other sensors, particularly LIDAR and imaging. Nonetheless, these online datasets are a relevant
starting point in the absence of one’s own labeled data, as models trained on these datasets can
later be fine-tuned on off-road datasets, or might be considered as a complementary source of data
either for additional training or for testing in a different environment.

As examples, models trained on datasets such as Cityscapes or Mapillary with further tuning
on the Freiburg Forest or RELLIS-3D dataset could potentially provide an initial base for off-
road autonomous navigation. Such a model would lack the fine terrain information necessary for
robust navigation in rough terrain (e.g., detection of mud, rocks) but it would be able to identify
usual driving hazards and driving surfaces, allowing for some level of off-road autonomy. Then,
complementary smaller datasets would be necessary to fine-tune the network. This strategy also
allows for initial comparisons between networks regarding their performance and speed.

As indicated in Tables 4 and 5, there are no public datasets focusing on off-road navigation on
a similar scale to urban cityscapes. RELLIS-3D is still the largest one available, so the creation of
an even larger scale annotated off-road dataset would certainly assist the community in developing
more sophisticated and reliable methods for off-road navigation.

10.6. On Online Software Resources
We have seen in the tables of Section 9 that a number of the techniques discussed in this paper
have supporting online code-bases that could be used as a starting point for the terrain analysis
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task. Preliminary investigation has shown that most of these methods will require some amount
of adaptation or rework—specifically those that show promising results in scene segmentation
benchmarks but have not been used explicitly for terrain classification. The fact that they work
well in other benchmarks makes them good candidates for further testing.

This review has indicated that learning-based approaches using vision are fairly consistent in
their use of certain standard platforms such as Tensorflow and PyTorch. Several model-based vision
approaches also use these or similar packages. Although a specific implementation or package needs
to be further tuned before it is used, the tables indicate which techniques could be developed and
tested more quickly than others, given sufficient fine tuning on one’s data. In particular, ESPNet and
DeepLabv3+ both have been shown to run semantic image segmentation effectively. The Deeplab
code base is excellent and is a part of the Tensorflow model-garden, so it is well structured. It comes
with existing pretrained checkpoints that can be fine-tuned, and a Colab notebook, which is useful
for speeding up development. Although the default backbone of Deeplab is an Xception network
(which can be computationally heavy for onboard usage in some systems), it can be swapped by a
Mobilenet backbone, for example, which uses fewer resources.
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