
Field Robotics, June, 2022 · 2:1263–1290 · 1263

Regular Article

The sensing, state-estimation, and
control behind the winning entry to
the 2019 Artificial Intelligence Robotic
Racing Competition

Christophe De Wagter* , Federico Paredes-Vallés , Nilay Sheth and
Guido C. H. E. de Croon
Micro Air Vehicle Lab, Delft University of Technology, 2629HS Delft, the Netherlands

Abstract: Autonomous drone racing currently forms an extreme challenge in robotics. While human
drone racers can fly through complex tracks at speeds of up to 190 km/h (53 m/s), autonomous
drones still need to tackle several fundamental problems in AI under severe restrictions in terms of
resources before they reach the same adaptability and speed. In this article, we present the winning
solution of the first AI Robotic Racing (AIRR) Circuit, an autonomous drone race competition in
which all participating teams used the same drone, to which they had limited access. The core of
our approach is inspired by how human pilots combine noisy observations of the race gates with a
mental model of the drone’s dynamics. The navigation is based on gate detection with an efficient
deep neural segmentation network and active vision. Combined with contributions to robust state
estimation and risk-based control, our solution was able to reach speeds of ≈33 km/h (9.2m/s) and
hereby more than triple the speeds seen in previous autonomous drone race competitions. This work
analyses the performance of each component and discusses the implications for high-performance
real-world AI applications with limited training time.

Keywords: aerial robotics, obstacle avoidance, position estimation, autonomous drone racing, deep
neural network

1. Introduction
Artificial Intelligence has seen tremendous progress over the last decade, especially due to the
advent of deep neural networks (Krizhevsky et al., 2012; Schmidhuber, 2015). The major milestones
in the history of AI have always been associated with competitions against human experts. These
competitions clearly show the increasing complexity in the tasks in which AI can extend beyond
human performance. In 1997, IBM’s Deep Blue showed the power of search methods combined with

∗http://mavlab.tudelft.nl.
Received: 27 June 2021; revised: 7 February 2022; accepted: 9 May 2022; published: 16 June 2022.
Correspondence: Christophe De Wagter, Micro Air Vehicle Lab, Delft University of Technology, 2629HS Delft, the
Netherlands, Email: c.dewagter@tudelft.nl
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2022 De Wagter, Paredes-Vallés, Sheth and de Croon
DOI: https://doi.org/10.55417/fr.2022042

http://fieldrobotics.net

https://orcid.org/0000-0002-6795-8454
https://orcid.org/0000-0002-9478-7195
https://orcid.org/0000-0002-7825-4567
https://orcid.org/0000-0001-8265-1496
http://mavlab.tudelft.nl
mailto:c.dewagter@tudelft.nl
https://doi.org/10.55417/fr.2022042
http://fieldrobotics.net

1264 · De Wagter et al.

expert systems (Campbell et al., 2002) by beating the world champion in the game of chess, Garry
Kasparov. Chess is a fully observable, turn-based game, with ≈ 10123 possible game states. After
chess, the AI community started to aim for the game of Go, which has a much larger branching
factor that also results in a much higher number of ≈ 10360 possible game states, rendering most
search methods ineffective. In 2017, the Master version of Google Deepmind’s AlphaGo beat Ke Jie,
the top-ranked Go player at the time. AlphaGo used an elegant combination of Monte Carlo tree
search and deep neural networks for evaluating board positions (Silver et al., 2016). In 2019, Google
Deepmind’s AlphaStar reached a GrandMaster status in the real-time strategy game StarCraft II
(Vinyals et al., 2019). This game represents yet a higher complexity, as it involves real-time instead
of turn-based play, partial observability, and a large and varied action space. Finally, even the
online multiplayer game Dota 2 was tackled with reinforcement learning, forming another step in
complexity (Berner et al., 2019).

Robotics will form a new frontier in AI research since the associated problems are even more
complex (Yang et al., 2018). Typical robotics problems are high-dimensional, continuous, and only
partially observable. Moreover, and most importantly, robots have to operate in the real world, of
which many relevant aspects remain hard to model or simulate. Sample-intensive learning methods
may apply to simplified robot models in simulation, allowing for faster than real-time learning, but
transferring them to an actual robotic system typically leads to a reality gap (Jakobi et al., 1995;
Koos et al., 2012; Scheper and de Croon, 2016) that substantially reduces performance. One part
of the reality gap is the difference in sensory input like visual appearance and sensor noise. The
other part of this reality gap is the specifics of a robot itself, concerning both its “body” (energy
source, structure, sensors, actuators) and “brain” (processing power, memory). For example, there
may be unmodeled aerodynamic effects or different timings in the perception-action cycle of the
actual robotic hardware.

One extreme challenge at the moment for AI in robotics is formed by autonomous drone racing.
Similar to human drone races, the goal for the drones is to finish a pre-determined racing track in
as short a time as possible (see Figure 1A). The drones have to race by using only their onboard
resources, such as onboard sensors and processing, which are heavily restricted in terms of size,
weight, and power (SWaP) (Floreano and Wood, 2015). To be successful, the drones will have to fly
through complex tracks at very high speeds (human racers reach speeds of up to 190km/h). This
means that they need a fast perception-action cycle on lightweight hardware, which additionally
should be robust, as the margin for error is small.

The research on autonomous drone racing finds its roots in seminal work on agile and aggressive
flight (Lupashin et al., 2010; Mellinger et al., 2012; Mellinger and Kumar, 2011). The focus of many of
these early studies was mostly on high-performance control, outsourcing sensing and state estimation
to external motion tracking systems and associated central computers. Later studies focused on also
getting the sensing and state estimation onboard, allowing the drones to perform quick maneuvers
through gaps (Falanga et al., 2017; Loianno et al., 2016). A real drone race additionally requires the
drone to detect racing gates in more complex spaces, with multiple gates and potential distractors
in view, while not only passing one gate, but flying a full trajectory in sequence, dealing with
unforeseen deviations on the way. The research on drone racing received a boost by the first-ever
autonomous drone race competition, organized in conjunction with the IROS robotics conference in
2016, in Daejeon, South Korea (Moon et al., 2017). This competition let the participants free in their
choice of platform and only required that all sensing and processing took place onboard. The first
competition showed the difficulty of the problem, with the winner reaching 10 gates at an average
speed of 0.6 m/s. This is in stark contrast to the impressive racing performance reached a year later
by Morrell et al. (2018), whose drone only lost by a few seconds from an expert human pilot on their
track. In-competition flight speeds remained inferior to out-of-competition flight speeds also over the
ensuing years, with IROS drone race speeds of the winner reaching 2.5 m/s in 2018 (Kaufmann et al.,
2019). The reason for this mostly lies in the real-world aspects of the competitions. They take place
in environments previously unknown by the teams, with no opportunity for benign, solution-specific
changes, and little time for adapting the developed solution to the environment in situ. Moreover,

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1265

Figure 1. Human inspired approach to drone racing: single-camera position estimation, dynamics prediction,
a rough model of the track. (A) Race elements. (B) Timeline of the season with an online qualification phase,
3 season races, and a championship race. (C) Training data overview and approach to focus on gate detection,
quick tuning, robustness to variation, and risk awareness. (D) System schematic of the approach.

competitions often pose a more challenging environment, with gates located slightly differently than
on the precommunicated maps or even moving during the race, unforeseen lighting effects optimized
for spectators rather than for drones, and large crowds of moving people around the flight arena.

In this article, we present our winning approach to the 2019 Artificial Intelligence Robotic Racing
(AIRR) competition (see Figure 1), which was organized by Lockheed Martin (LM) and the Drone
Racing League (DRL) in 2019 and had a grand prize for the best AI of 1M$. The AIRR competition
strives to support the development of AI for racing drones that will be able to surpass human drone
racing pilots. It is completely different from the previous autonomous drone racing competitions
in many aspects. For example, the competition did not take place on a single day at a conference
but had two phases: a qualifier phase and a competition phase. In the qualifier phase, 424 teams
registered worldwide and had to qualify by performing a computer vision task, racing in simulation,
and describing their proposed approach and team composition. The competition phase was also
unique as it was organized as a complete season with three seasonal races and a championship race.
The races themselves were organized by DRL as e-sports events, also aiming for the amusement of
the audience, and adding specific requirements on the teams and robots. Moreover, the organization
provided all teams with the same type of racing drone, developed by the organizers. These drones

Field Robotics, June, 2022 · 2:1263–1290

1266 · De Wagter et al.

were equipped with four high-resolution, wide field-of-view cameras, and an NVIDIA Xavier board
to run the embedded AI (see Figure 1A). Hence, the robotic hardware was the same for all teams,
making the competition only about the difference between the AI software. Moreover, the teams
had very little direct access to the racing drone hardware, making it very hard to get acquainted
with the hardware, perform calibrations, and identify potential reality gaps. The amount of flight
testing was low and happened in different conditions than the races in terms of light, room size,
and even air density. Finally, during the races, the AI code was uploaded to refurbished drones that
had never flown this particular code before without the possibility to improve in between the runs.
Consequently, the AI developed for the competition had to be very data efficient and robust.

The goal was to mainly develop AI solutions on the provided DRL simulator, which figured a
substantial reality gap in terms of drone dynamics and sampling characteristics of especially the
camera. The simulator, which contained unknown drone dynamics, did have a hardware-in-the-loop
setup for the processing, i.e., it communicated with the same NVIDIA Xavier board and allowed
teams to accurately test the computational effort of the developed algorithms.

2. Strategy: human-inspired, gate-based approach to autonomous drone racing
In our approach to developing an AI for the AIRR competition, we used the characteristics and
restrictions of the competition as a point of departure (Figures 1A–1C). First and foremost, we
desired to fly as fast as possible, ideally close to the physical limits of the drone. This implied that
we did not use perception methods that would restrict the drone’s maximum speed. Importantly, it
meant the exclusion of state-of-the-art methods for feature-based Visual Inertial Odometry (VIO),
e.g., Delmerico and Scaramuzza (2018), since the blurry images that occur at higher speeds lead to
more difficulties in finding and tracking features. The reliance on this type of VIO was one of the
main reasons that the runner-up team limited their velocity to 8 m/s (Foehn et al., 2020). Moreover,
current accurate VIO methods have the disadvantage that they are computationally intensive. For
similar reasons, we did not employ feature-based Simultaneous Localization And Mapping (SLAM)
methods, e.g., Mur-Artal et al. (2015), as used by the winning team in the IROS 2017 competition
(Moon et al., 2019). Additionally, SLAM methods have difficulties handling changes in the map,
like the foreseen gate displacements.

Instead, we drew inspiration from human pilots who focus greatly on the gates, while combining
their observations with knowledge of the drone’s responses to control inputs and an approximate map
of the track (see Figure 1C). Hence, we developed an accurate, robust, and computationally efficient
monocular gate detection method. We aimed to process images at frame-rate at the fastest speeds
the drone could achieve. Whereas previous competitions contained gates of a uniform, unique color
(Moon et al., 2017, 2019), the AIRR competition featured more complex gates, precluding hand-
designed detection methods as in Li et al. (2020a,c). Relative localization can also not be done with
standard rectangle-based detectors such as SSD (Jung et al., 2018) since the bounding boxes gener-
ated by such methods by themselves do not allow for an accurate determination of the drone’s relative
pose. Furthermore, we did not choose a deep neural network that immediately maps images to
relative pose, as in Cocoma-Ortega and Martinez-Carranza (2019); Kaufmann et al. (2019). Such net-
works experience difficulties when multiple gates are in sight and are more difficult to analyze and fix.

We developed a novel gate segmentation deep neural network called “GateNet” to create a fast
vision pipeline that is minimally sensitive to the various known perturbations at high velocities. This
includes the increasing levels of motion blur, rolling shutter deformation, the possible absence of tex-
ture in large parts of the scene due to the lack of features in parts of the man-made environment. The
DNN also was used to overcome overexposure as teams could control neither the exposure settings of
the camera nor the light conditions. The vision pipeline also had to deal with the presence of moving
unknown entities, the absence of precise frame timing information and unknown shutter-times.

Subsequently finding gate corners was done with very efficient active perception (Li et al., 2020a).
Especially on flying robots where every gram matters, active vision is highly relevant (Aloimonos
et al., 1988; Sanket et al., 2018; Bajcsy et al., 2018) and we show it can be part of successful

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1267

Figure 2. Perception pipeline. Overview of the perception pipeline and execution time of each of the submodules
on the Jetson AGX Xavier. GateNet was running on the GPU and RANSAC and the remaining vision pipeline
were running on 2 CPU threads.

engineering designs. Pose estimates finally can then be computed using perspective-n-point (PnP)
(see Figure 2) combined with the racecourse map.

Further inspired by human FPV pilots’ ability to predict drone motion, we enhanced the drone’s
state estimates with model-based predictions from a dynamic model fitted on flight data. Merging the
visual measurements with the predictions is then done with a random sample consensus (RANSAC)
based Moving Horizon Estimator (MHE) from previous work (Li et al., 2020c) but extended to
better estimate the drone’s yaw angle during the race.

Concerning control, we designed a strategy that would permit high speeds but would allow flying
very early on and would have short intuitive tuning cycles, given the little available flight time. As a
result, promising methods such as deep reinforcement learning (Loquercio et al., 2019) or imitation
learning (Rojas-Perez and Martinez-Carranza, 2020) were ruled out. The short timeline and little
flight time would not allow for a thorough investigation of the reality gap between the drone and the
simulator with methods like abstraction (Scheper and de Croon, 2016; Kaufmann et al., 2020). Even
online adaptation (Johnson and Kannan, 2005) would yield limited benefits in a race where every
drone only flew once, measurements could be very noisy and the time to the first gate is a mere
2 seconds. Finally, the long down-times, loss of log files (stored in RAM) and failed competition
runs in case of a crash, made risk management a crucial part of the control development. While
perception-aware trajectory generation (Murali et al., 2019) can optimize speed and perception, it
does not take into account that collision risks depend on relative position to the gate.

The control is therefore designed from a gate-centered perspective in which risks and constraints
but also position uncertainty vary depending on the distance to the gate. The controller makes use
of classical control theory but was gradually augmented to fly increasingly close to the platform
limits. This allowed us to start flying early in the process and gather crucial log files to steadily
investigate drone limitations while minimizing risks.

On top of the initial scheme, we implemented an open-loop full-throttle take-off called “Boost” to
overcome sensor boot-time delays. We adopted a pitch-for-altitude controller to maintain altitude
when thrust saturated and an offline optimized gate-approach-line strategy. Finally, we developed a
human-inspired risk-aware strategy that speeds the robot up substantially when far from obstacles
or when it is aligned with the next gate but slows down when uncertain or misaligned. Whereas
both in computer vision and robotics a lot of research effort is invested in increasing the accuracy
of methods, we put computational efficiency at the core of our approach. The reason for this is that
control performance is not only determined by accuracy but also by the control delay, two factors
which are most often on a trade-off with each other. Moreover, not saturating processing power
allowed us to have additional threads logging all data (images, states, measurements, etc.). This
logged data was extremely important to estimate the drone’s model and fusion parameters and for
retraining and improving the perception pipeline.

In the next section, we give an in-depth explanation of the implementation used in the competition
and our approach.

Field Robotics, June, 2022 · 2:1263–1290

1268 · De Wagter et al.

y f b
z f b

vw

x f b

T

drag

θ

30◦

15◦

Figure 3. Axis definitions: Drag-based model with the camera viewing angle which has a 30◦ offset in the x -y
plane and looks 15◦ up.

3. Implementation
3.1. Drone specifications
All participating teams in the 2019 AIRR competition operated the same race drone type called
“Racer AI” (see Figure 1A). This plus-configuration quadcopter was approximately 70 cm in
diameter, weighed around 3 kg, and had a thrust-to-weight ratio of about 1.4. It was equipped
with two sets of forward-facing stereo camera pairs which looked sideways with an angle of ±30◦
and up with an angle of 15◦ (see Figure 3). The cameras were the global shutter, color Sony IMX 264
sensor, which provided 1200×720 resolution images at a rate of 60 Hz. The wide field of view lens
had a focal length of ≈590 pixels. Besides cameras, the Racer AI had a Bosch BMI088 IMU, with
a measurement range of ±24 g and ±34.5 rad/s (with a resolution of 7×10−4 g and 1×10−3 rad/s)
provided at an update rate of 430 Hz; and a downward-facing laser rangefinder Garmin LIDAR-Lite
v3 with a measurement range of up to 40 m (resolution of 0.01 m) and update rate of 120 Hz. As the
embedded computer, the Racer AI was equipped with an NVIDIA Jetson AGX Xavier, containing a
GPU with 512 CUDA cores and an 8-core ARM CPU. It ran Linux with the PREEMPT RT kernel
patch. Lastly, the Racer AI had a BetaFlight low-level autopilot controlling the angular velocities
of the drone and accepting commands at a rate of 50 Hz.

3.2. Perception
The perception modules (Figure 2) were executed sequentially in a dedicated thread, while a separate
thread did the logging of images. We only used one out of the four cameras, as this setup matches the
challenge that human pilots have to face. Although monocular vision is more challenging in terms of
depth perception, it entails less computational load and calibration requirements. Moreover, it allows
for lighter and hereby faster drones to be created in the future. Since none of the cameras faced
forward, we had the drone fly in the direction of the optical axis of the selected camera. The original
1200×720 images provided by the camera were first centrally cropped to 720×720 to remove parts of
the own robot that were in sight (see Figure 12A), and then downsized to 360×360 using OpenCV’s
bilinear interpolation function. No radial lens undistortion was performed on the images, but instead,
the lens parameters were used in the pose estimation. The correction of only a few corners through
reverse lens parameters saves a lot of CPU load when compared to correcting all pixels.

3.2.1. GateNet: Gate detection by semantic segmentation
In the first stage of our perception pipeline, GateNet was used to transform each resized input image
I into a binary mask M that segments all visible gates regardless of their distance to the camera
(see Figure 7). GateNet is a fully convolutional deep neural network architecture that consists of
a four-level U-Net (Ronneberger et al., 2015) with [64, 128, 256, 256] convolutional filters of size
3×3 and (elementwise sum) skip connections. All layers use ReLU activation functions except the
final prediction layer, which uses a sigmoid to keep M in the range [0, 1]. GateNet was trained in a
supervised manner through a weighted combination of the binary cross-entropy and soft-Dice loss

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1269

Figure 4. Overview of the raw training data: From left to right per column: qualification data, simulator,
workshop, Orlando, Washington, Baltimore, Austin, and the testing area in Littleton.

functions on a dataset eventually consisting of 2336 images recorded in 8 distinct environments (see
Figure 4). The ground-truth mask for each sample in the training dataset was manually annotated.
We augmented the training data through random affine transformations and variations in the HSV
color space and artificial motion blur. The blur consists of the convolution of a squared averaging
filter of random size between 5 and 15 pixels and random orientation. For the deployment on
NVIDIA’s Jetson AGX Xavier, we ported the network to TensorRT 5.0.2.6 with a batch size of 1
and full precision FP32 mode. The network contains 1 723 713 trainable parameters. The forward
pass execution time measured on the CPU to send an image, have it processed on the GPU, and
retrieve the result was measured to be 13.18 ms (≈75.9 Hz) (see Figure 2).

We deployed a different GateNet version in each competition race, with the only differences
being the size of the training dataset and the data augmentation mechanisms. Networks were
always trained from scratch when changing the augmentation mechanisms. The otherwise fine-tuned
previous models when expanding datasets. Before new races, we quickly fine-tuned the models to
deployment environments with training data from the test sessions through incremental training
after adding hand-labeled training data from typically roughly 50 manually selected difficult images.

3.2.2. Snake-gate: active vision for corner identification
To then retrieve the inner and outer corners of only the next gate, even when multiple gates were
in sight, we employed a variation of the lightweight, active-vision algorithm (Bajcsy et al., 2018)
known as snake-gate and first presented in Li et al. (2020a). This two-stage, iterative sampling
method reports the desired gate corners in a fixed order. The first stage starts at the intersection of
the vertical and horizontal histograms of M. The histograms represent the number of white pixels
per column or row and the maxima in the histogram point to the pixel with a high probability
of belonging to the closest (largest) gate. From that point, it starts sampling white pixels in a
fixed direction in the image space (i.e., top-left, top-right, bottom-right, or bottom-left) until the
corresponding outer corner is found. Thereafter, the sampling direction changes until all corners
have been identified. A pixel is considered to be a corner if the sampling method cannot progress
in the specified direction. Once the outer contour was identified, we used the centroid of this set
of corners as the starting point to identify the inner corners of the gate by sampling black pixels
instead. To overcome incorrect corner association at bank angles greater than |45◦|, the mask M
was first de-rotated using the drone’s estimated roll angle around the optical axis.

Snake-gate requires (i) the mask of a gate to be continuous, and (ii) no gate overlap in the image
space. The first requirement was normally met thanks to our robust and accurate GateNet model
(see Figure 7). However, most of the AIRR tracks had gates placed in front of each other, violating
the second requirement. To cope with this, we developed gate-prior.

Field Robotics, June, 2022 · 2:1263–1290

1270 · De Wagter et al.

3.2.3. Gate-prior: sanity check on the identified corner locations
Snake-gate does not provide any form of confidence metric regarding the identified corners. Therefore
we developed a sanity check. The expected 3D location of the next gate based on the internal flight
plan was projected into the image space, and is called “gate-prior.” We then compared the sides
and angles of both inner and outer contours of this projection to those of the identified gate and
only accepted the validity of a corner if the error of the associated sides and angle was below 25%.
Rejected corners of a contour with at least two valid corners were corrected using the shape of
the gate-prior (see Figure 7B). This actively reduced the number of outliers and it improved the
robustness to challenging scenarios that could lead to discontinuous masks (e.g., HDR scenes, fast
motion, partial gate in the image) and gate overlap (see Figure 7). If no valid corners were found
for two full seconds, a recovery mechanism would override “gate-prior” and accept any gate corners
given by snake-gate.

3.2.4. Localization via perspective-n-point
The size, approximate location, and orientation of the AIRR gates were known in all races. The
estimation of the drone’s position and orientation was found by solving the Perspective-n-Point
(PnP) problem, using the identified corner locations in the image space and their corresponding 3D
locations (maximum eight corners). As in Li et al. (2020a,c), instead of relying on pure vision-only
PnP, we combined it with the onboard attitude estimate of the drone to retrieve the camera’s 3D
location, as this was shown to be more robust in drone racing conditions. We used the OpenCV
library to solve the PnP problem, or more specifically: an iterative method based on Levenberg-
Marquardt optimization, which minimizes the reprojection error and requires at least three point-
correspondences.

3.3. State estimation
Attitude estimation was performed using a complementary filter fed with gyroscope and accelerom-
eter data. Position and velocity estimates were propagated using a drag and thrust model in the
“flat-body” frame fbRW shown in Figure 3, which is a local tangent plane rotated by the yaw ψ of
the drone. The predicted drag specific forces in the flat-body frame (afbx , afby) were modeled as[
afbx
afby

]
=
[
d̂x 0
0 d̂y

] [
cψ sψ
−sψ cψ

]
︸ ︷︷ ︸

fbRW

[
vW
x

vW
y

]
, (1)

where cψ and sψ present the cosine and sine of the yaw angle, (vW
x , v

W
y) the velocities in the world

frame and the linear drag parameters d̂x and d̂y were found by fitting the integrated path to best
match the known gate locations using flight logs. To reduce the drift of drag-model predictions in
the world frame aW, an additional first-order linear filter called “alpha” fused the drag specific force
model with accelerometer measurements (subscript m). The resulting prediction model is

aW = α ·WRfb

afbxafby
0

+ (1− α)WRB

aBxaBy
0

m

+

0
0
g

+W RB

 0
0
aBz

m

, (2)

where α determines the ratio between predictions based on drag model or accelerometers, wRB is the
rotation from body-to-world, g is the local gravitational acceleration, and aBx,y,z are the accelerometer
measurements. A value of α = 85% was found to yield the best predictions. The predicted velocity vw
and position pw in the world frame were obtained through integration: vW =

∫
aW and pW =

∫
vW .

For the altitude, a Kalman filter merged the low-pass filtered (6-Hz cutoff) vertical accelerations
and the low-pass (50-Hz cutoff) filtered attitude-corrected downward-facing laser range measure-
ments.

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1271

tk−5 tk−4 tk−3 tk−3 tk−2 tk−1 tk

p

Prediction Measurement Estimate

Outlier

Time window

pk−2

p̄k−2

1pk−2

1tk−2

Figure 5. Moving Horizon Estimator. The predictions xk at various time steps k is scaled (êvx ,y) and offset (êpx ,y)
to best match the visual measurements x̄k within the 2 second time window. Random sample consensus is used
to remove outliers by sampling N random points from the buffer.

Horizontal position corrections were performed by merging the PnP estimates in world coor-
dinates from the perception pipeline with the predicted path (see Figure 5). As vision estimates
occasionally still contained large errors, a moving horizon estimator (MHE) based on random
consensus (RANSAC) was used. It is directly adopted from Li et al. (2020c), but besides position
and velocity corrections, yaw corrections were also made to account for initial heading alignment
errors and yaw integration drift. The corrections were done by running the MHE filter independently
on each axis (px, py, ψ). Separate buffers with a maximum of 180 samples hold information about
PnP estimates and delay-compensated inertial estimates.

Samples older than 2 seconds were removed. The delay was fixed to 20 measurements (at 0.04
second intervals) on the drone and 110 when run as HiL (Hardware in the Loop) simulation. Using
random sample consensus with 200 iterations with 80% of the samples, the filter fitted the predicted
world path and heading with the PnP measurements. The result was a position correction êpx,y and
a velocity correction êvx,y on top of the predicted estimates to obtain the current state at each time
step. The heading correction êψ on the other hand, was only applied once upon passing each gate.
The least squares fit for RANSAC was written as x̂ = (ATA+∂I)−1AT y, where the prior δ ensured
a preference for small corrections in velocity estimates, and x̂, A and y were defined to map the
position and velocity errors in function of time ∆t over the buffer with samples n = 1 to N (given
only for px):

∆px|n=1
∆px|n=2

...
∆px|n=N

︸ ︷︷ ︸

y

=

1 ∆t|n=1
1 ∆t|n=2
...

...
1 ∆t|n=N

†

︸ ︷︷ ︸
A

·
[
êp
êv

]
︸︷︷︸
x

. (3)

This estimator ran in a separate thread and was executed each time there were enough samples
in the buffers. When a gate was crossed, the prediction was reset to the value of the state and the
MHE buffers were cleared. A minimum number of 27 PnP estimates (18 in simulation due to lower
frame rates) were then required before the solution was allowed to jump to the new estimate.

3.4. Flight planning
Path planning was done by tracking position waypoints from a list of approximate gate locations.
We used the locations provided by the organizers during the practice runs and a manually updated
flight plan during the races to better correspond to the perceived gate locations, which corresponds
to true locations only in case of perfect calibrations. The altitude setpoint was kept constant at
1.75 meters since all gate heights were identical and fixed. To better align with gates, the current

Field Robotics, June, 2022 · 2:1263–1290

1272 · De Wagter et al.

commanded position px,y,z(cmd) was not the gate waypoint itself, but a temporary waypoint placed
6 meters perpendicularly in front of the gate along its so-called “centerline.” When the robot got
closer than 7 meters to this target, the point remained at 7 meters from the drone and moved
towards the gate along the centerline until reaching the gate center.

3.5. Control
The heading ψ was commanded to align the active camera with the center of the next gate. The
selected active camera was either the right-center camera for tracks with right turns or the left-
center camera for tracks with only left turns. This maximized the time gates were in-view and
minimized the open-loop odometry phases. When arriving close to a gate, heading commands could
get unnecessarily aggressive and reduce the quality of the model-based predictions. The yaw rate
was therefore limited to 180 deg/s and the robot even stopped aligning the camera with the current
gate when getting closer than 2.2 meters from the gate. This corresponds to the point where the
gate would not be completely visible anymore.

The proportional position controller mapped the horizontal position errors in the flat-body frame
∆pfbx,y to commanded horizontal velocities vfbx,y. An additional proportional term was mixed in the
lateral axis to have to robot align with the gate sooner by computing the perpendicular distance
towards the gate centerline ∆pgate

y (see Figure 6A). The total lateral control (see Figure 6B) became

vfby = (1− αcenter) kp1 ∆pfby + αcenter kp2 ∆pgate
y , (4)

where kp1 = 0.45 and kp2 = 0.45 were gains and the mixing parameter αcenter would determine if the
robot flew directly to the waypoint along the shortest path or followed the gate centerline to improve
perception and improve approach angles at the cost of increased distance to fly. Since the distance
between gates was small in the last races, no obstacles were present along the gate centerlines, and
some gates were placed at shallow angles, in the end, a value of αcenter = 60% was used.

The forward velocity was a function of the distance to the gate ∆pfbx and the current motion
vector. Far from the gate (>10 meters), the winning entry used a commanded velocity of 7.5 m/s.
Then the speed was reduced to an alignment speed of 5.5 m/s. Once the state estimation predicted
that the robot was sufficiently well aligned to pass through the gate within 80 centimeters of the

Figure 6. Cascaded controller. (A) Illustration of the various controller modifications S.2–S.5. (B) Schematic
representation of the cascaded PID control pipeline but with several enhancements for fast and risk-aware flight.

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1273

center, it was allowed to speed up as much as possible. If the robot got so close to the gate that the
gate was not in-sight anymore, to minimize the open-loop time spent in the gate it would always
accelerate if it had not reached at least the gate-crossing speed of 7.5 m/s.

A velocity control loop converted the velocity commands to desired pitch and roll angles using a
feedforward gain of 0.009 rad/m/s and a velocity error feedback gain of 0.4 rad/m/s. The commanded
pitch angle was constrained between −45◦ and −14◦ pitch down, hence preventing pitching up (see
Figure 6A). This served in keeping a good forward speed and helped perception as the fixed 15◦
upward-looking angle of the camera meant that the bottom of the gate could fall outside the field
of view when pitching up. Moreover, slower speeds and fast deceleration into the own propeller
downwash also led to a larger drift of our drag-based odometry approach. The total bank angle
was saturated at 45◦ by maintaining the ratio between pitch and roll and is referred to as coupled
saturation (S.2 in Figure 10B). Finally, a rate limiter of 320 deg/sec was applied to reduce the effects
of attitude changes on the available throttle.

Thrust commands were generated using traditional PID with a feedforward hover-thrust of 67%
at sea-level and 73% in Littleton, which scaled with the inverse cosine of the total bank angle of
the drone. Saturation was applied to the altitude error ∆pwz (+/− 2 meter) and Tcmd (15%–100%).
An integrator windup protection was added to the PID loop by not integrating when the Tcmd
saturation was active.

When the throttle would saturate in full throttle, a “pitch-for-altitude” controller was activated
(see Figure 6A). As the throttle saturation could occur both in forward flight as well as in turns,
instead of implementing a traditional “pitch-up to climb” controller, a max-bank reduction was used
on top. In fast forward flight, the pitch-for-altitude controller would command pure pitch-up while
during saturating turns the maximum roll angle of 45◦ of roll was also reduced by the same amount.

Attitude control was achieved by computing feedforward rate commands for the BetaFlight low-
level autopilot that was running a rate controller tuned by DRL. This was augmented with a bounded
feedback controller on the error between the commanded and the current attitude (see Figure 6B).
The errors in attitude are given as eφ, eθ, eψ while the feedback and feedforward gains are kp = 0.12
and kff = 1/dt. The change in desired pitch and roll angles in the given discrete time step are noted
∆θcmd and ∆φcmd with time step dt. The rate commands in roll, pitch, and yaw pcmd, qcmd, rcmd
then become pcmd
−qcmd
rcmd

 =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

kff∆φcmd + kpeφ
fff∆θcmd + kpeθ

kpeψ

 . (5)

These were scaled and sent together with the commanded thrust to the BetaFlight low-level
controller at 50 Hz.

The gains were tuned based on a total of 60 short remote outsourced flight tests, lasting 5 to 15
seconds, after which logs would be returned. The test flights were performed at a separate roughly
60% smaller track with a different density altitude than at the competition locations. This altered
the drone dynamics, made flights very short, limited the types of maneuvers, and made it hard to
reach full speed. The parameters were then manually fine-tuned during the 1-hour test slot the day
before the races (see timeline Figure 1B).

4. Analysis and Results
In this section, we show the impact of the various elements of our approach on its performance,
for perception, state estimation, and control. These experiments are conducted with a combination
of real data collected with the drone, and synthetic data from the hardware-in-the-loop simulation
platform provided by the competition organizers. Regarding perception, we assess the accuracy and
robustness of the different GateNet models that we used throughout the competition qualitatively
and quantitatively. Additionally, we provide an overall view of the computational expenses of the
perception pipeline. Subsequently, we compare the performance of the developed state estimation

Field Robotics, June, 2022 · 2:1263–1290

1274 · De Wagter et al.

scheme with that used in previous competitions. Concerning our control strategy, we conduct a
detailed investigation of the various control improvements we introduced. Next, we determine the
robustness of our approach to inaccuracies in the internal drone race map. Lastly, we discuss the
results of the competition, for the qualification stage, the seasonal races, and the final winning
championship race.

4.1. Perception
To quantitatively compare the different GateNet models that we used in each of the AIRR races, we
collected and manually annotated a dataset consisting of 165 images logged during our 12-second
winning run in the championship race. This dataset is characterized by (i) motion blur on the
images due to the high-speed profile achieved in this run, (ii) strong illumination changes, and (iii)
a challenging environment with banners containing visual features similar to those of the gates along
the course of the track. The reason for only using logged images from this race in this evaluation is
that it is the only data that was not used in any training dataset. When tested on this dataset, the
different GateNet models deployed in the three seasonal races (i.e., GateNetR1, GateNetR2, and
GateNetR3) achieve an average intersection over union (IoU) of 70%, 74%, and 76%, respectively.
GateNetCR, the actual model deployed for the championship race achieves an average IoU of 87%.
Qualitative results in Figure 7A also exemplify GateNet’s progressive improvement throughout the
competition using images from each of the events. The significant improvement from GateNetR3
to GateNetCR can be attributed to two factors. First, as for every race, we added more manually
annotated images from the race environment, which in this case was important for learning to
ignore the newly placed banners. Second, after the third race, we added an artificial motion blur
data augmentation mechanism to the training pipeline. Note that this artificial blur was not applied
to the ground truth masks to still promote sharp segmentations (see Figure 7B, top).

Figure 7. Qualitative results of our perception pipeline. (A) Segmentation masks generated by the four
different GateNet models deployed throughout the competition from onboard images of each of the events.
(B) Robustness of our GateNetCR-based perception pipeline to motion blur (top), distant gates leading to
incomplete segmentation masks (center), and gate overlap, and aggressive bank angles (bottom).

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1275

The example images and segmentations in Figure 7B show the performance of GateNetCR in
challenging scenarios like motion blur, distant gates, and adverse lighting conditions. They also show
the robustness of our corner association algorithm. Our computationally efficient gate corner detector
called “snake-gate” identifies the inner and outer corners of the front panel of the gates by actively
sampling a small percentage of the pixels of the segmentation result. Then, our state-prediction-
based sanity check and refinement of identified corner locations called “gate-prior,” compares the
sides and angles of the inner and outer contours of both the detected and expected gate in the
image plane to neglect distractor gates when multiple gates are in sight (like overhead projected
gates from the live video stream). It also corrects the location of the estimated corners in case
snake-gate didn’t identify a corner properly. The resulting corrected corners are finally fed to the
PnP-based pose estimation. This allows the drone to localize itself with respect to the next gate
even in the case of a discontinuous GateNet mask (see Figure 7B, center) or gate overlap in the
image space (see Figure 7B, bottom).

Computing the forward pass of GateNet models requires on average 13.18 ms and thus can be
performed faster than the camera update rate (i.e., 60 Hz or ≈16 ms). The estimated gate mask
from the cropped and downsized input image is de-rotated using the estimated camera roll angle
around the optical axis to prevent incorrect corner association and requires an average of 1.32
ms computing time (see Figure 2). The active-vision-based snake-gate method requires accessing
the intensity information of only 1.64% of the pixels of a 360×360 mask, which translates to a
workload of 0.23 ms per image. We used the full horizontal and vertical histograms of the masks
for snake-gate initialization even though computationally more efficient alternatives exist (Li et al.,
2020a,c). Gate-prior takes on average 0.14 ms to correct the identified corners, and lastly, solving
the perspective-n-point requires 1.12 ms. Combined with the 1.08 ms import and pre-processing, the
perception pipeline takes 17.07 ms while the thread runs at an average of 54 Hz, as it occasionally
needs to wait a few milliseconds for delayed images (see Figure 16-spare vision time). Note that the
full image derotation was only added just before the championship. It was not implemented in the
active-vision-based corner detector for risk mitigation purposes, although this could allow the vision
pipeline to execute under 16 ms.

Due to the importance of GateNet in the perception pipeline, we also analyzed the impact that
each of the features of the AIRR gates has on the segmentation accuracy. We experimented with
synthetic data in which we varied the appearance of the gates’ features (i.e., checkerboards and
text) and assessed the quality of the segmentation both qualitatively and quantitatively. As shown
in Figure 8, the appearance of the gate was manipulated by (A) changing the scale of the gate in the
image space, (B) removing the checkerboards, (C) substituting the default logos with our own, (D)
removing the logos, and (F) modifying the transparency of both logos and checkerboards. The results
confirm the importance of the contrast changes introduced by the logos and checkerboards. Removing
the logos or checkerboard patterns leads to local gaps in the segmentation (Figures 8B and 8D). The
test with the different logos confirms that GateNet has not learned the specific shapes of the AIRR
logos but exploits more generic contrast in this region (Figures 8A and 8C). The transparency
test shows the importance of the presence of contrast. GateNet is quite robust to low contrasts
(Figure 8F), but there is a dependency on the scale. Figure 8E shows the intersection-over-union
(IoU) for different gate scales and transparencies. At most scales, GateNet’s performance only breaks
down at ≈80% transparency, whereas at the smallest scale (0.1) it breaks down at ≈60%.

4.2. State estimation
The vision-based position estimates are fused with model-inertial-based odometry to smoothen the
measurements and overcome periods in which no gates are detected. This odometry is primarily
based on a linear drag model of the quadrotor in the “flat-body” frame (see Figure 3). The
values of the linear drag were fitted with the scarce data from the real flights. Under low flight
speed and constant altitude assumptions, this easy-to-identify model was shown to be a reasonable
approximation (Li et al., 2020c). To improve the predictions during more aggressive maneuvers,

Field Robotics, June, 2022 · 2:1263–1290

1276 · De Wagter et al.

Figure 8. How does GateNet perform gate segmentation? Qualitative and quantitative results of the impact of
the gate’s features on the segmentation accuracy. Different manipulation techniques were employed: (A) variation
of the scale of the gate in the image space, (B) removal of checkerboards, (C) substitution of default logos with
our own, (D) removal of logos, and (F) variation of feature transparency. (E) summarizes the importance of scale
and feature transparency. It presents the Intersection over Union (IoU) as a function of the scale of the gate and
the feature transparency for hundreds of data points. This shows that good detections are possible if the logo
has a maximum of 80% transparency (20% contrast) for gate sizes down to 30%, but requires more contrast to
detect the smaller gates. In all cases, the maximum scale of the gate was set so that the four outer corners of
the gate coincide with the extremes of the image space, of size (360×360).

instead of fitting a more complex model for which insufficient data was available, we chose to fuse
accelerometer data in the odometry [see Eq. (2)]. The difference in performance was compared
between the drag-only model called “flat body,” the combined model-inertial “alpha” method
(named after its α parameter to set the relative importance of the drag-model versus accelerometer
odometry), and traditional body-frame accelerometer-only odometry.

Since no position ground truth is available for the competition flights, the comparison is made
with drone observations and track knowledge instead. This can in theory be subject to scaling and
offset errors, but as long as the robot perception matches its predictions, they can successfully be
merged, just like walking animals merge step-based odometry with visual observations without the
need for a calibrated meter representation.

Position measurements close to the gate are very precise thanks to the very good geometry
of the PnP triangulation. In other words, small changes in position appear as large changes in
pixel position of gate corners. Moreover, passing the gate is a crucial part of the race and relies
on odometry only for the last few meters. We therefore first compared the odometry methods
on 1.8-second stretches just before a gate (see Figure 9A for the statistics and 3C, for example,

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1277

Figure 9. Odometry results based on the real-world data from all competition and training runs (A, B, C) and
state estimation error at the gate measured in simulation (D). (A) Average of errors in odometry of the three
dynamic models (inertial-only, model-only “flat-body” and combined “alpha,” and the lateral and longitudinal
components of “alpha”) after 1.8 seconds of prediction, where the gate size is indicated as a dashed line. (B)
Statistics of the total accumulated odometry errors from the starting podium to each gate for the 13 full tracks
flown competition tracks. (C) Odometry-based position estimate top view for a typical track. Note that the third
gate had a different orientation than expected from the flight plan, which causes the vision measurements to
appear rotated. The flight time in seconds is indicated. (D) Accuracy of state estimates as a function of distance
to a gate measured from simulation runs.

stretches). Subsequently, we integrated the odometry methods from start to end on 13 full tracks
and compared it with the end-gate in the relatively accurate gate map (<1m displacements). The
results can be seen in Figure 9B and a specific track in Figure 9C. They show that the model-inertial
“alpha” method obtains the best results, which is why we used it in the final championship race. In
general, the model-inertial-based odometry can obtain very good results given the scarce resources it
requires (50% within <15m endpoint error without calibration for a 12 seconds prediction horizon).
Nevertheless, it only seems well-suited for tracks that have sufficient gates to perform position
corrections.

Field Robotics, June, 2022 · 2:1263–1290

1278 · De Wagter et al.

Figure 10. Contribution of the various controller modifications in simulation on the Austin track. (A) Simulation
test results for various configurations. (B) Top view of the tracks of the different controllers.

4.3. Control and path planning
To qualitatively validate the contribution to speed and reliability of the different control additions,
a simulation study was performed. The initial classical control setup, marked as S.1 and shown in
Figures 6 and 10, only finished the track half the time when configured at competitive speeds. Four
modifications were made to increase its speed and reliability.

The first modification to the classical control scheme combines the maximum roll and pitch angles
into a single maximum bank called “coupled saturation” since separate maximum pitch and roll
angles could yield 42% higher bank angles when saturating together. Moreover, instead of putting
a low and safe maximum bank angle of about 35◦ to never saturate thrust, we increased the limit
past this point to 45◦. This would occasionally lead to insufficient thrust, which was addressed
by introducing a pitch-for-altitude control loop. As shown in Figure 10 S.2, the pitch-for-altitude
control loop leads to higher robustness, now finishing 8 / 10 runs with only minor speed loss.

An open-loop take-off with 100% thrust and a saturating nose-down attitude called “boost” (S.3)
was added that took off before the slow laser-range altitude sensor had finished booting. Likewise,
a saturating pitch down was applied just before the final gate to get an even quicker finish in case
the drone sensed it was well aligned. This reduces robustness (6 out of 10 runs finishing the track)
but leads to slightly quicker flight times in simulation and much quicker finish times in real races
by skipping the up to 1.5-second laser-range startup delay (not present in simulation).

Instead of moving along the shortest path towards the gate, an optimal approach line called
“gate-centerline” was defined to prevent sharp approach angles to gates. Too sharp angles not only
significantly decrease the safety margin of passing through gates but also affect the position dilution
of precision (PDOP) of PnP corners, in turn reducing the quality of state estimates. This addition
(S.4) increased the robustness to a success rate of 9 out of 10 through safer gate crossing angles and
increased quality of perception.

The final addition to the pipeline is an adaptive, risk-based longitudinal velocity controller
(Figures 6 and 10, S.5). At large distances from the gate, the drone is allowed to accelerate
significantly until it arrives at the optimal gate viewing distance, where it has to make sure the
camera sees the gate. Once the drone is sufficiently confident that it is aligned properly with the
gate, it can accelerate. On the other hand, when a gate is not at the expected location or takes

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1279

longer to identify, or if the control fails to align quickly, the drone slows down. This combination of
risk and perception awareness was simple to implement and very light, was intuitive to tune, and
resulted in robust fast behavior. Figure 10 S.5 shows that including risk-aware accelerations led to
10 successes out of 10 runs, while substantially increasing the average speed from 4.7 m/s to 5.4
m/s in simulation.

4.4. Robustness
Robustness was required to deal with possible camera calibration issues, random initial starting
podiums, uncertainty about which drone was used for which race, and the inability to measure the
track precisely (initially gate locations were even planned to change between runs).

4.4.1. Variations in the track
To evaluate the robustness of our approach to changes in the racing environment, we performed a set
of simulation experiments in which we perturb our drone’s internal representation of the individual
gates and starting podium. Both position and orientation are altered. The drone is thereby forced to
react to unanticipated gate locations. This is evaluated in the DRL simulator, which has fixed gate
locations, by adding uniform errors to the flight plan. Figure 11A shows that the state estimates
quickly jump to the correct relative location with respect to the internally expected gate locations
(prior waypoints). These red gates represent the (deliberately biased) expected gate locations in
the robot’s internal map while the yellow gates mark the actual locations. The black line is the
simulator’s ground truth of the drone trajectory, while the green line represents the drone’s internal
state estimates. The advantage of this approach in a race with only a single lap is that the drone
does not need to distinguish between its state error and internal map error. Figure 11B shows that
our pipeline can finish the course even with 3 m perturbations in the course map or about 25 % of
the 12 m intergate distance, albeit with lateral swings due to the control initially aligning with a
wrong gate location and then needing to correct. Figures 11C, 11D, and 11E show perturbations of
5 m, 20◦, and 40◦. The table in Figure 11F summarizes the robustness of the approach for various
perturbations. The success rate only starts to drop substantially (to 6/10 runs) when gates are
displaced 5 m on a track where the inter-gate distance is about 12 m.

4.4.2. Influence of camera calibration
The AIRR competition was unique in that robots would only fly a single lap in a single heat per
race. The code only booted on the hardware for the first time, the second the race started. Although
teams could ask which robot would be used in which heat, over the championship due to logistical
reasons this could change, for instance, when robots were damaged by other teams before take-off
or when insufficient robots were available to race against the human pilot and robots had to be
re-used after falling into the final gate. This posed unique challenges to the developed AI to adapt
to the unknown drone it was running on.

Furthermore, setting up the race drones was done within a very limited amount of time during a
training session the day before the competition and was an important part of the challenge. Within
this time slot, 60 minutes were available for flight tests with a single robot which, due to logistics,
resulted in on average 2 to 7 short flights. This also meant that the other 4 robots were never
flight-tested by the teams. The flight testing started with flight plans with the approximate gate
locations given by mail beforehand. The test data could then be analyzed in the remaining hours and
used to prepare all the SD cards with the final race code for the race the next day. During this time,
one task consisted in updating the flight plan to reflect the average seen gate locations as measured
by the robot, to possibly improve the performance at the risk of submitting untested code. Another
task was to calibrate all robots. The time required to calibrate the drones was considerable and
error-prone. Errors could happen after swapping hardware or after a crash that involved a camera
repair. Hence, the choice was made to fly with a fixed hard-coded calibration for all robots and
maximize the resilience of our algorithms against changes in calibration parameters.

Field Robotics, June, 2022 · 2:1263–1290

1280 · De Wagter et al.

Figure 11. Robustness to errors in internal track representation in simulation. (A) The onboard state estimation
based on the internal model (red gates) jumps to the correct relative solution after gathering sufficient evidence.
(B) Ground truth position estimates of simulated runs on the Baltimore track with uniformly distributed 3 m
errors in the flight plan (red gates). Perturbations from the ideal trajectories can be seen when the drone aligns
with expected positions of gates, but quickly has to correct after observing the real position. (C) Uniform position
offsets of 5 m in waypoint location in the flight plan compared to the actual waypoint location (yellow gates).
(D) Uniform yaw perturbation of 20◦. (E) Uniform yaw perturbation of 40◦. (F) Overview of the perturbed flight
plans and the effect on lap completion times.

The variation in lens distortion values within the given drone pool was analyzed and found not
to vary more than a few percent (see Figure 12). Moreover, thanks to the modified PnP which used
the attitude to better condition the triangulation, the variation in distortion caused minimal errors
in the PnP position estimates that used the undistortion parameters. Furthermore, the influence of
errors in extrinsic parameters was studied in simulation. While better calibrations lead to better
results, simulation results show that camera alignment errors of 10◦ in the heading direction would
still result in stable flight finishing the course. A change in focal length up to 10 percent was tested
in simulation and had a direct influence on the scale at which the robot perceived the world and
thus at which speed it flew but even in this case the robot still managed to finish the track. Finally,
simulations were made to assess the influence of improper segmentation of the gate contours by
GateNet. The masks were dilated and eroded with up to 4 pixels. This introduces distance-varying

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1281

Figure 12. The effect of camera calibration. (A) RAW 1200×720 pixel image from the Racer AI showing the
black borders of the camera protection cap and the 720×720 pixel cropped area in red, which was downsized
to 360×360 pixels to enter GateNet, (B) Simulation results of flying the Austin competition track with the
final competition code in the DRL hardware-in-the-loop simulator, but with erroneous focal lengths, varied from
90% to 110% of the correct value. (C) Simulation results of flights with erroneous camera alignment values.
(D) Simulation results of the track with a 2- and 4-pixel eroding or 2- and 4-pixel dilating filter applied to the
GateNet mask. (E) Radial lens distortion as a function of pixel distance from the center point for individual
calibrations of 5 different drones, and the used average value.

scaling errors and inconsistencies between inner and outer gate corners. The erosion did lead to
gates being seen much later, and the robot failed to finish the race in the case of a 4-pixel erosion of
the mask. In all other cases, the robot still reached the final gate, albeit with significant decreases
in performance. This insensitivity to exact calibration played an important role over the season.

4.5. Competition outcome
Figure 13 represents our competition results for the three seasonal races and the championship race
and that of the best opponent. Each race consisted of several “heats” which could use a different

Field Robotics, June, 2022 · 2:1263–1290

1282 · De Wagter et al.

Figure 13. Overview of our performance through the 2019 AIRR competition. (A) Top view of the estimated
executed path with the rough map of each track received by the organizers. (B) Estimated speed profile at the
championship race. Our drone flew with an average speed of 6.75 m/s and reached a top speed of 9.19 m/s. (C)
Our blue MAVLab autonomous drone taking off at the championship race, before finishing the 74-meter course
in 12 seconds (Picture credit: DRL) (D) Leader-board of the championship race, indicating the time it took for
each team to reach their farthest waypoint on the track. (DNF = “did not finish”). (E) Completion times at the
different tracks.

version of the code. This allowed teams to ensure completion of the track with a steady speed in
the initial heats and setting best finish times in the later heats. Figure 13A shows the trajectories
flown by our best run during all races while Figures 14–16 give extra details. Since there was no
ground-truth position measurement system, we show the onboard position estimates (marked in
green).

The first race of the season in Orlando was won by team KAIST from South Korea, who were
able to fly through two gates of the track. Our drone was not able to pass any gate primarily due
to unanticipated enormous differences in illumination between testing and competition. The second
race took place in Washington DC and our team was the first to fully finish any track. Since then,
our racing speed increased over the seasonal races. The championship race held at Austin was a
tight competition as multiple teams were finishing the track during their training and qualification
runs. The best performance of the finalists is shown in Figure 13D. Our finish time of 12 seconds
with an average velocity of 6.75 m/s and maximum velocity of 9.19 m/s was the prize-winning run.

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1283

Figure 14. Logs from the winning flight in the Austin race. (Left) Attitude commands and estimates. (Middle)
World frame velocity estimates. (Right) World frame position estimates.

After winning the AI v/s AI challenge, our drone was staged against the DRL champion GAB707
in a Human v/s AI challenge. In this race where we were not allowed to change any parameter, our
first deployment led to a crash into the first gate, due to a change in starting position of more than
50% of the distance to the gate. Both other heats against the human also started from unanticipated
podiums but were within the robustness of the system and finished with the same 12 second lap
time.

An overview of the best tracks flown at the different locations is given in Figure 15 and movie
S2. Attitude, velocity, and position data in the world frame as a function of time are given for the
winning flight in Figure 14. The timing of sensor data is depicted in Figure 16. The log files of the
winning flight of the Austin championship are given in De Wagter et al. (2021).

5. Conclusion
We presented our approach to the AIRR competition, which led to winning two out of three seasonal
races, the championship race, and the title of “AIRR World Champion 2019.” Our approach was
human-inspired in the sense that the developed AI focuses on the drone racing gates, which serve
as waypoints for the race trajectory, relies a lot on model-based odometry, and accelerates as much
as possible when the situation is safe. The approach successfully dealt with the scarcity of data and
was highly computationally efficient, allowing for a very fast perception and action cycle. By having
a deep neural network vision front end, our approach proved to be particularly resilient to frequent
changes in the environment. The only occasion that the changes proved to be too much was during
the first season race where all training was done in ambient light conditions while the race took
place in showbiz illumination conditions that over-exposed the gates.

The constraints of the event drove the current implementation to make several simplifications.
First of all the vertical, lateral, and longitudinal dynamics are decoupled in the controller and the

Field Robotics, June, 2022 · 2:1263–1290

1284 · De Wagter et al.

Figure 15. Onboard state estimation of the position and velocity for the best flights of each race of the AIRR
season (arranged chronologically). (Left) World frame state estimates and trajectory of (A) Washington DC, (B)
Baltimore, (C) Littleton, and (D) Austin. (Right) Respective world frame velocities.

estimator. The current model also makes extensive use of the constant altitude properties of the
competition. Finally, the navigation solution is tailored towards detecting specific gates. However,
the light monocular approach opens the road to implementation onboard much lighter and hereby
faster robots. Finally, the approach of merging sparse visual observations with a dynamic model
which is capable of predicting the drone motion for longer distances has shown great results and
allowed record in-competition velocities.

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1285

Figure 16. Quality of threading. Timestamps were collected from the event callback functions from the API
responsible for gathering sensor data onboard the Racer AI: the IMU callback, the CAM callback, Laser, and
command output callbacks. The execution rate, time-stamped with system time upon execution of the callback
function, is observed to be non-deterministic but stays within bounds. In parallel, a control thread was waiting
for and triggered by new IMU data, a vision was running at 100% while nearly keeping up with the image data
rate, and a vision logging thread and RANSAC estimator thread were triggered by computer vision result events.
Except for the vision thread, while running the extra image de-rotation, all threads has spare CPU time on their
respective NVIDIA cores.

6. Discussion
AI purists may raise the question of how much the competition, and our approach, was actually
about AI. In a “pure” AI scenario, the drone’s perception and control would have been learned
from scratch, making use of the provided simulator. Such an approach would, however, have clashed
with the competition setup and timeline. The simulator was ready only a few weeks before the first
race and had a substantial reality gap in terms of the drone’s dynamics and image capturing. For
example, the images in the simulation had a variable delay, going up to 0.5 s (which was worse
than on the real platform). Combined with the extremely scarce access to the drone and outsourced

Field Robotics, June, 2022 · 2:1263–1290

1286 · De Wagter et al.

testing, this would have left very little time for end-to-end training and a successful crossing of the
reality gap.

We strongly believe though that robotics competitions like AIRR reveal highly relevant research
areas for AI. In this case: how can AI best be designed, so that robots need minimal time and data
to reach robust and highly agile flight? A monolithic neural network trained end-to-end purely in
simulation likely requires too many training samples to form the best answer to this question.
And, if we equate the experience accumulated in a simulator with the evolutionary experience
before the birth of an animal, this is not the strategy that we observe in animals either. Animals
“even from the same species” are all different physically, and their intelligence is set up in such a
way as to deal effectively with these differences. Whereas humans need a long development time
before becoming operational, many flying insects can almost immediately fly and perform successful
behaviors. The reason for this is that evolution has put in place various mechanisms to deal with,
e.g., the physical differences between members of the same species, ranging from adaptation to
various learning mechanisms. This means that true AI will require not only reinforcement learning
(Sutton and Barto, 2018), but also, various types of self-supervised learning (Thrun et al., 2006),
unsupervised learning (Kohonen, 1982), and lower-level adaptations as used for instance in adaptive
control (Åström and Wittenmark, 2013; Johnson and Kannan, 2005). This last level of learning,
arguably at the lowest level, is hugely important for crossing the reality gap in robotics (Scheper
and de Croon, 2016).

7. Future directions
To make our approach work in time and robustly enough for the competition, the employed AI
still relied quite a lot on us as human system designers. We learned the drone’s model based on
flight data, used supervised learning with human labeling of 2336 images for training GateNet, and
designed an active vision algorithm for finding corners in the segmented images. In the future, the
generation of large amounts of training data from simulation could reduce this manual work, but in
this event, the qualification round forced teams to label large amounts of images to at least assess
the quality of their detector (see Figure 4 first column). Using this data for training resulted in
a DNN that segmented so well that it was only complemented with actual flight data. For state
estimation and control, we predominantly used human-engineered solutions that most would classify
as being part of the field of control system theory and were adjusted by experts when the robot for
instance moved to a location with very different air density.

Please note though that we and others are quickly developing deep learning approaches that can
cross the reality gap for performing visual odometry (Sanket et al., 2021), tracking of predetermined
optimal trajectories (Kaufmann et al., 2020; Torrente et al., 2021), or even for full optimal control
(Li et al., 2020b; Foehn et al., 2021). AIRR has already been a driving force to develop AI methods
that will successfully bridge the reality gap, even for robots that are difficult to model in detail
upfront.

However, to beat human pilots in multi-robot races in random complex windy environments with
multiple gate types, a lot of elements still need further development. Game theory on balancing
risks of collisions with the ambition to overtake other drones, detection of randomly shaped gates
after having been shown their appearance only minutes before the race, and adapting to competitor
tactics are just a few of the many additional challenges that future robotics research will need to
face in the competition against human pilots.

Ultimately, reducing the computational load while increasing the speed of algorithms, or in other
words improving the computational efficiency, will play a deciding role in determining how fast
and maneuverable flying robots can become, as power and especially weight spent in computing
adversely influence performance. Facing these robotic challenges will bring the technology closer to
applications for the benefit of the real world. We expect the applications of very fast, agile, and
situation-aware flying robots to range from ambulance drones or package delivery drones swiftly
planning around obstacles in cluttered environments, to search and rescue drones. However, most

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1287

of all, autonomous racing helps develop solutions that sooner or later improve the characteristics of
all flying robots, and we succeed to do this in heavily resource-constrained and time-pressed racing
drones, then it will also generalize to other types of robots and tasks, such as autonomous vacuum
cleaners and self-driving cars.

Acknowledgments
We thank all the worldwide teams participating at the 2019 AIRR Circuit for providing collaboration
and learning throughout the competition. A robotics AI challenge of this scale would not have been
possible without the initiation of Lockheed Martin (LM) and The Drone Racing League (DRL). The
organizing teams at LM and DRL worked tremendously hard, facilitating such a great outcome in
the field of AI and Robotics. We were fortunate to have Jelle Westenberger, Anoosh Hegde, Sameera
Sundaruwan, our entire drone race team since IROS 2016 back in Delft for helping us with the organi-
zation of the dataset and exploring high-level control strategies alongside their constant mentorship.

Author contributions
All authors contributed equally to the writing of the manuscript. The GateNet and Gate-Prior were
mainly developed by F. Parades with help during the training of the deep net from C. De Wagter.
The control was mainly developed by N. Sheth with additions like gate approach line and risk-aware
speed from C. De Wagter. The model-based state prediction was mainly developed by G. de Croon
with the alpha fusion and quality analysis from N. Sheth. The state estimation, implementation,
and writing were done equally by all authors. The team lead was G. de Croon and the competition
lead was C. De Wagter.

ORCID
Christophe De Wagter https://orcid.org/0000-0002-6795-8454
Federico Paredes-Vallés https://orcid.org/0000-0002-9478-7195
Nilay Sheth https://orcid.org/0000-0002-7825-4567
Guido C. H. E. de Croon https://orcid.org/0000-0001-8265-1496

References
Aloimonos, J., Weiss, I., and Bandyopadhyay, A. (1988). Active vision. International Journal of Computer

Vision, 1(4):333–356.
Åström, K. J. and Wittenmark, B. (2013). Adaptive control. Courier Corporation.
Bajcsy, R., Aloimonos, Y., and Tsotsos, J. K. (2018). Revisiting active perception. Autonomous Robots,

42(2):177–196.
Berner, C., Brockman, G., Chan, B., Cheung, V., Dȩbiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,

S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pachocki, J., Petrov, M., d. O. Pinto, H. P., Raiman,
J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F., and Zhang, S.
(2019). Dota 2 with large scale deep reinforcement learning. arxiv.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep blue. Artificial intelligence, 134(1-2):57–83.
Cocoma-Ortega, J. A. and Martinez-Carranza, J. (2019). A cnn based drone localisation approach for

autonomous drone racing. In 11th International Micro Air Vehicle Competition and Conference.
De Wagter, C., Paredes-Vallés, F., Sheth, N., and de Croon, G. C. H. E. (2021). Logfiles of The Artificial

Intelligence behind the winning entry to the 2019 AI Robotic Racing Competition.
Delmerico, J. and Scaramuzza, D. (2018). A benchmark comparison of monocular visual-inertial odometry

algorithms for flying robots. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 2502–2509. IEEE.

Falanga, D., Mueggler, E., Faessler, M., and Scaramuzza, D. (2017). Aggressive quadrotor flight through
narrow gaps with onboard sensing and computing using active vision. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 5774–5781. IEEE.

Field Robotics, June, 2022 · 2:1263–1290

https://orcid.org/0000-0002-6795-8454
https://orcid.org/0000-0002-6795-8454
https://orcid.org/0000-0002-9478-7195
https://orcid.org/0000-0002-9478-7195
https://orcid.org/0000-0002-7825-4567
https://orcid.org/0000-0002-7825-4567
https://orcid.org/0000-0001-8265-1496
https://orcid.org/0000-0001-8265-1496

1288 · De Wagter et al.

Floreano, D. and Wood, R. J. (2015). Science, technology and the future of small autonomous drones.
Nature, 521(7553):460–466.

Foehn, P., Brescianini, D., Kaufmann, E., Cieslewski, T., Gehrig, M., Muglikar, M., and Scaramuzza, D.
(2020). AlphaPilot: Autonomous drone racing. In Robotics: Science and Systems XVI. Robotics: Science
and Systems Foundation.

Foehn, P., Romero, A., and Scaramuzza, D. (2021). Time-optimal planning for quadrotor waypoint flight.
Science Robotics, 6(56).

Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and the reality gap: The use of simulation in
evolutionary robotics. In European Conference on Artificial Life, pages 704–720. Springer.

Johnson, E. N. and Kannan, S. K. (2005). Adaptive Trajectory Control for Autonomous Helicopters. Journal
of Guidance, Control, and Dynamics, 28(3):524–538.

Jung, S., Hwang, S., Shin, H., and Shim, D. H. (2018). Perception, guidance, and navigation for indoor
autonomous drone racing using deep learning. IEEE Robotics and Automation Letters, 3(3):2539–
2544.

Kaufmann, E., Gehrig, M., Foehn, P., Ranftl, R., Dosovitskiy, A., Koltun, V., and Scaramuzza, D. (2019).
Beauty and the beast: Optimal methods meet learning for drone racing. In 2019 International Conference
on Robotics and Automation (ICRA), pages 690–696. IEEE.

Kaufmann, E., Loquercio, A., Ranftl, R., Müller, M., Koltun, V., and Scaramuzza, D. (2020). Deep drone
acrobatics. In Robotics: Science and Systems XVI. Robotics: Science and Systems Foundation.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological cybernetics,
43(1):59–69.

Koos, S., Mouret, J.-B., and Doncieux, S. (2012). The transferability approach: Crossing the reality gap in
evolutionary robotics. IEEE Transactions on Evolutionary Computation, 17(1):122–145.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105.

Li, S., Ozo, M. M., De Wagter, C., and de Croon, G. C. (2020a). Autonomous drone race: A computationally
efficient vision-based navigation and control strategy. Robotics and Autonomous Systems, 133:103621.

Li, S., Öztürk, E., De Wagter, C., de Croon, G. C., and Izzo, D. (2020b). Aggressive online control
of a quadrotor via deep network representations of optimality principles. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 6282–6287. IEEE.

Li, S., van der Horst, E., Duernay, P., De Wagter, C., and de Croon, G. C. (2020c). Visual model-predictive
localization for computationally efficient autonomous racing of a 72-g drone. Journal of Field Robotics.

Loianno, G., Brunner, C., McGrath, G., and Kumar, V. (2016). Estimation, control, and planning for
aggressive flight with a small quadrotor with a single camera and imu. IEEE Robotics and Automation
Letters, 2(2):404–411.

Loquercio, A., Kaufmann, E., Ranftl, R., Dosovitskiy, A., Koltun, V., and Scaramuzza, D. (2019). Deep
drone racing: From simulation to reality with domain randomization. IEEE Transactions on Robotics,
36(1):1–14.

Lupashin, S., Schöllig, A., Sherback, M., and D’Andrea, R. (2010). A simple learning strategy for high-
speed quadrocopter multi-flips. In 2010 IEEE international conference on robotics and automation, pages
1642–1648. IEEE.

Mellinger, D. and Kumar, V. (2011). Minimum snap trajectory generation and control for quadrotors. In
2011 IEEE international conference on robotics and automation, pages 2520–2525. IEEE.

Mellinger, D., Michael, N., and Kumar, V. (2012). Trajectory generation and control for precise aggressive
maneuvers with quadrotors. The International Journal of Robotics Research, 31(5):664–674.

Moon, H., Martinez-Carranza, J., Cieslewski, T., Faessler, M., Falanga, D., Simovic, A., Scaramuzza, D., Li,
S., Ozo, M., De Wagter, C., et al. (2019). Challenges and implemented technologies used in autonomous
drone racing. Intelligent Service Robotics, 12(2):137–148.

Moon, H., Sun, Y., Baltes, J., and Kim, S. J. (2017). The iros 2016 competitions [competitions]. IEEE
Robotics and Automation Magazine, 24(1):20–29.

Morrell, B., Rigter, M., Merewether, G., Reid, R., Thakker, R., Tzanetos, T., Rajur, V., and Chamitoff, G.
(2018). Differential flatness transformations for aggressive quadrotor flight. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1–7. IEEE.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: a versatile and accurate monocular
slam system. IEEE transactions on robotics, 31(5):1147–1163.

Field Robotics, June, 2022 · 2:1263–1290

The sensing, state-estimation, and control behind the winning entry · 1289

Murali, V., Spasojevic, I., Guerra, W., and Karaman, S. (2019). Perception-aware trajectory generation
for aggressive quadrotor flight using differential flatness. In 2019 American Control Conference (ACC),
pages 3936–3943. IEEE.

Rojas-Perez, L. O. and Martinez-Carranza, J. (2020). Deeppilot: A cnn for autonomous drone racing.
Sensors, 20(16):4524.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 9351, pages 234–241. Springer.

Sanket, N. J., Singh, C. D., Fermüller, C., and Aloimonos, Y. (2021). PRGFlow: Unified SWAP-aware deep
global optical flow for aerial robot navigation. Electronics Letters, 57(16):614–617.

Sanket, N. J., Singh, C. D., Ganguly, K., Fermuller, C., and Aloimonos, Y. (2018). GapFlyt: Active vision
based minimalist structure-less gap detection for quadrotor flight. IEEE Robotics and Automation Letters,
3(4):2799–2806.

Scheper, K. Y. and de Croon, G. C. (2016). Abstraction as a mechanism to cross the reality gap in
evolutionary robotics. In International Conference on Simulation of Adaptive Behavior, pages 280–292.
Springer.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61:85–117.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,

Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny,

M., Hoffmann, G., et al. (2006). Stanley: The robot that won the darpa grand challenge. Journal of field
Robotics, 23(9):661–692.

Torrente, G., Kaufmann, E., Fohn, P., and Scaramuzza, D. (2021). Data-driven MPC for quadrotors. IEEE
Robotics and Automation Letters, 6(2):3769–3776.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354.

Yang, G.-Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., Jacobstein, N., Kumar, V.,
McNutt, M., Merrifield, R., et al. (2018). The grand challenges of science robotics. Science robotics,
3(14):eaar7650.

How to cite this article: De Wagter, C., Paredes-Vallés, F., Sheth, N., & de Croon, G. C. H. E. (2022). The
sensing, state-estimation, and control behind the winning entry to the 2019 artificial intelligence robotic racing
competition. Field Robotics, 2, 1263–1290.

Publisher’s Note: Field Robotics does not accept any legal responsibility for errors, omissions or claims and
does not provide any warranty, express or implied, with respect to information published in this article.

Field Robotics, June, 2022 · 2:1263–1290

1290 · De Wagter et al.

Appendix
Data S1.
Logfile of the winning championship heat is published in De Wagter et al. (2021).

Movie S1
Summary of the approach: https://youtu.be/yN5QVl07F2Q

Movie S2
Full replay of all the best competition entries per race: https://youtu.be/ihfUckB16wU.

Field Robotics, June, 2022 · 2:1263–1290

https://youtu.be/yN5QVl07F2Q
https://youtu.be/ihfUckB16wU

