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Abstract: The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020 posed
diverse challenges for unmanned aerial vehicles (UAVs). We present our four tailored UAVs,
specifically developed for individual aerial-robot tasks of MBZIRC, including custom hardware-
and software components.

In Challenge 1, a target UAV is pursued using a high-efficiency, onboard object detection pipeline
to capture a ball from the target UAV. A second UAV uses a similar detection method to find and
pop balloons scattered throughout the arena.

For Challenge 2, we demonstrate a larger UAV capable of autonomous aerial manipulation: Bricks
are found and tracked from camera images. Subsequently, they are approached, picked, transported,
and placed on a wall.

Finally, in Challenge 3, our UAV autonomously finds fires using LiDAR and thermal cameras. It
extinguishes the fires with an onboard fire extinguisher.

While every robot features task-specific subsystems, all UAVs rely on a standard software stack
developed for this particular and future competitions. We present our mostly open-source software
solutions, including tools for system configuration, monitoring, robust wireless communication, high-
level control, and agile trajectory generation.

For solving the MBZIRC 2020 tasks, we advanced the state of the art in multiple research areas
like machine vision and trajectory generation. We present our scientific contributions that constitute
the foundation for our algorithms and systems and analyze the results from the MBZIRC competition
2020 in Abu Dhabi, where our systems reached second place in the Grand Challenge. Furthermore,
we discuss lessons learned from our participation in this complex robotic challenge.
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(a) Jelly (b) Chaser (c) Lofty (d) Splasher

Figure 1. Our UAVs in action during the MBZIRC 2020.

1. Introduction
The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) aims to advance the state of
the art in autonomous mobile robotics through robot competitions. Unique to this challenge is the
focus on field robotics and the diversity of tasks that need to be carried out. In the second MBZIRC
competition, participants were required to track, follow, and interact with a target unmanned aerial
vehicle (UAV), find and pop balloons, build walls using a ground/aerial robot fleet, and finally
detect and fight fires in indoor and outdoor environments.

In this paper, we will describe the approach of Team NimbRo to the aerial-robot tasks of the
MBZIRC 2020, detailing the fleet of UAVs that was developed (see Fig. 1). We will focus on the
three subchallenges individually, highlighting the specific solutions found for the complex problems
they posed, but also discuss our overall approach and identify lessons learned from our successful
participation in the competition—Team NimbRo reached second place in Challenge 2 (wall building)
and second place in the combined Grand Challenge.

In addition to the overall system integration, our contributions include:

• custom-tailored UAV hardware designs for the individual challenges;
• a common software stack for mission control and system monitoring, including a hardened FSM

framework with accompanying design and visualization tools, robust network communication
and remote supervision tools, as well as a universal model predictive controller;

• real-time onboard target perception and trajectory control for Challenge 1 (balloon hunt);
• onboard object detection, 6D pose estimation, and aerial manipulation control for Challenge 2

(wall building), and
• fully autonomous fire detection and extinguishing for Challenge 3 (fire fighting).

Many of the employed algorithms are based on state-of-the-art techniques, and their development
advanced their field significantly. Since detailing every approach would go beyond the scope of this
article, we highlight key aspects of our methods and refer to corresponding papers where applicable.

We evaluate our approach with real-robot experiments and report results from the MBZIRC 2020
competition. A description of our unmanned ground vehicle (UGV) approaches for MBZIRC 2020
can be found in Lenz et al. (2021).

2. Related Work
To our knowledge, no comprehensive analysis or review of the MBZIRC 2020 competition has yet
been published. Still, many of the subproblems that appeared in the individual challenges are highly
active research areas, and we provide an overview of the current state of the art.

Aerial Search and rescue. Michael et al. (2012) report on field experiments with UAVs and
UGVs inside earthquake-damaged buildings. The authors provide details about their collaborative
mapping approach and report results from the experiments in the form of maps generated by the
individual robots and as a team. Rodriguez et al. (2019) use a convolutional neural network (CNN)
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to detect circular and other pre-trained objects in real time. Circular objects can be easily detected
and differentiated from noncircular ones based on the shape of their contour. Yang et al. (2016)
propose an encoder-decoder structure for contour detection of generic foreground objects from the
PascalVOC dataset (Everingham et al., 2010). Maninis et al. (2018) use a CNN architecture to detect
object contours at multiple scales together with their orientations, based on a generic backbone CNN,
like ResNet (He et al., 2016). We follow a similar approach but train our contour detection network
to detect only contours of one class of objects—the balloons (see Sec. 4.3).

Lightweight computer vision models that can be executed efficiently also on mobile or embedded
systems with limited computational power have been of increasing research interest during recent
years. The MobileNet architectures (Howard et al., 2017; Sandler et al., 2018), for example,
significantly reduce the number of parameters in a CNN by replacing standard convolutions with
depthwise-separable convolutions. For our vision system, we employ a standard ResNet architecture
but with very few layers (cf. Sec. 4.3), keeping the number of parameters and the necessary
computational power low. Furthermore, specialized inference accelerators like the Google Edge TPU
can be used for efficient processing with a limited size and energy budget. To make a trained CNN
model compatible with the Edge TPU, weights and activations need to be quantized to 8-bit integer
values, e.g., using the quantization scheme described by Jacob et al. (2018).

Also, fast real-time trajectory generation and control is an active area of research. Specifically,
as a result of the MBZIRC 2017, various groups presented advanced control approaches for UAVs.
Baca et al. (2017) report the approach to landing on a moving platform during the MBZIRC 2017,
employed by their team including the CTU Prague, UPenn and UoL.

Similarly, Cantelli et al. (2017) and Battiato et al. (2017) from the University of Catania report
their systems, including their control approach. Falanga et al. (2017) from the University of Zürich
plan jerk-minimizing trajectories using a fast analytic polynomial generation method similar to
ours. Outside of the MBZIRC, many groups employ polynomial trajectories for UAV control. For a
comparison of these approaches, see the work of Ezair et al. (2014).

Aerial Manipulation. Aerial manipulation has been investigated for some time (Ruggiero et al.,
2018). Complex systems with fully actuated multi-DoF robotic arms have been built (Huber et al.,
2013; Kim et al., 2013). Michael et al. (2011) as well as Tran et al. (2021) demonstrated carrying
large items with multiple UAVs. Lindsey et al. (2012) demonstrated the assembly of structures
with teams of small UAVs. This work relied on an external motion capture system and self-locking
magnetic part connectors. Goessens et al. (2018) present a feasibility study of constructing real-scale
structures with UAVs based on self-aligning Lego-like brick shapes.

Baca et al. (2020) present the UAV system for the MBZIRC 2020 wall building task of the
team from CTU Prague, UPenn, and NYU. The team won the Wall-building as well as the Grand
Challenge. Their approach for the treasure-hunt challenge in MBZIRC 2017 is described in (Loianno
et al., 2018).

Real et al. (2021) demonstrates the approach from the University of Seville (GRVC) together
with Tecnico Lisboa and CATEC. The authors placed 14nd in the Wall-building challenge and 4th
in the Grand Challenge, together with Tecnico Lisboa.

A predecessor of our work is Challenge 3 of the MBZIRC 2017, where a team of UAVs was
supposed to collect discs. Our entry (Beul et al., 2019) was quite successful and reached third place
in this challenge, behind ETH Zürich (Bähnemann et al., 2019) and CTU Prague, UPenn, and UoL
(Spurnỳ et al., 2019).

In contrast, the 2020 edition of the MBZIRC featured much heavier and larger objects, which
could only be grasped on a specific spot and had to be placed in a specified pose. To this end, we
designed a magnetic gripper that is guided using visual servoing and has five passive DoFs that
allow flexibility during grasping but facilitate precise placement.

Krizmancic et al. (2020) describe a planning system for UAV-UGV cooperative wall building.
Their planner allows exploitation of the unique characteristics of each platform. In contrast, our
UAV for wall building uses a simple greedy behavior for selecting the next task—which was sufficient
for MBZIRC 2020 since we only had one UAV and the UAV/UGV walls were separate.
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Fire fighting. Cooperative monitoring and detection of forest and wildfires with autonomous
teams of UAVs (Bailon-Ruiz and Lacroix, 2020) or UGVs (Ghamry et al., 2016) gained significant
attention in recent years (Delmerico et al., 2019). While UGVs are able to carry larger amounts of
extinguishing agents or drag a fire hose (Liu et al., 2016a), payload limitations impede the utility of
UAVs. Aydin et al. (2019) investigated the deployment of fire-extinguishing balls by a UAV. Ando
et al. (2018) developed an aerial hose pipe robot using steerable pressurized water jets for robot
motion and fire extinguishing.

MBZIRC 2020 competitors Spurny et al. (2021); Jindal et al. (2021) from CTU Prague, UPenn
and NYU present their fire-fighting system. Their UAV is capable to autonomously approach and
extinguish fires in GNSS-denied environments after detecting a suitable building entrance. The au-
thors report results from simulations, field tests, and from the MBZIRC 2020 competition where they
(together with UPenn and NYU) placed fourth in the fire-fighting and won the Grand Challenge.

In urban environments, thermal mapping (Cho et al., 2015) is commonly used for building
inspection. It relies on simultaneously captured color and thermal images from different poses and
employs standard photogrammetry pipelines. Schönauer et al. (2013) provide real-time assistance
for firefighters via thermal augmentation of live images within room-scale environments. In contrast,
Borrmann et al. (2013) mounted a terrestrial LiDAR, a thermal camera, and a color camera on a
UGV to obtain colorized point clouds, enabling automated detection of windows and walls (Demisse
et al., 2015). Fritsche et al. (2017) cluster high-temperature points from fused 2D LiDAR and
mechanically pivoting radar to detect and localize heat sources. Similarly, Rosu et al. (2019) acquire
a thermal textured mesh using a UAV equipped with LiDAR and thermal camera and estimate the
3D position and extent of heat sources.

New challenges arise where robots have to operate close to structures. Therefore UAVs are often
equipped with cameras and are remote-controlled by first responders. In contrast, autonomous
execution was the goal for Challenge 3 of the MBZIRC 2020. Team Skyeye (Suarez Fernandez et al.,
2020) used DJI Matrice 600 and DJI Matrice 210 v2 UAVs equipped with color and thermal cameras,
GPS, and LiDAR. A map is prebuilt from LiDAR, IMU, and GPS data to allow online Monte Carlo
localization and path planning with Lazy Theta∗. Fires are detected via thresholding on thermal
images. The fire location is estimated with an information filter from either projected LiDAR range
measurements or the map. A water pump for extinguishing is mounted on a pan-tilt unit on the
UGV while being fixed in place on the UAV.

Although our general approach is similar to team Skyeye, we rely more heavily upon relative
navigation for aiming at the target after initial detection and less on the quality of our map and
localization. In comparison, the protruding nozzle on our UAV allows for a safer distance from fire
and walls while aiming. Furthermore, where distance measurements are unavailable, we use the
known heat source size for target localization. We detect the holes of outdoor facade fires in LiDAR
measurements and fuse these with thermal detections, which allows us to spray precisely on target,
where the surrounding flames would offset thermal-only aiming.

3. Common Hardware and Software
Instead of starting development from scratch, we based our UAVs on our systems built for the
MBZIRC 2017 competition (Beul et al., 2019). We equip commercially available DJI platforms with
specific sensors, actuators, and computing power for their particular task. Depending on the required
payload, we chose a DJI product of suitable size and lift capability, such as the DJI Matrice 100, DJI
Matrice 210 v2, and DJI Matrice 600. Locking into a particular vendor allowed us to share design
resources and necessary equipment such as batteries, chargers, and remote controls. Furthermore,
our trained safety pilots can switch between the different robots without problems, significantly
increasing flexibility during testing and in the actual competition. For detailed descriptions of the
hardware platforms for each challenge, we refer to Sections 4.1, 5, 6.1, and 7.1.

Our software components are also an evolution of our MBZIRC 2017 entry. We built our software
on top of the ROS middleware (Quigley et al., 2009), the de-facto standard framework for robotic
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(a) rosmon terminal interface (b) rosmon GUI with pro-
cess overview

(c) System mon-
itor GUI with
high-level checks

Figure 2. Process and system monitoring interfaces. In all views, the red color indicates process or component
failures.

applications. In addition to the wealth of available components in the ROS ecosystem, we developed
several essential tools and libraries that allowed us to quickly implement robust software for the
competition.

3.1. Robust network communication
A key component in UAV fleets is communication. Robots may communicate with each other about
object detections, goal and task assignments, their current position, and a multitude of other data.
Furthermore, since the robots operate under human supervision, they will send monitoring data to
the supervisors.

ROS offers built-in network transparency, but it is ill-suited to unreliable wireless networks due
to its reliance on TCP and handshaking protocols. Our group has developed the nimbro_network1

package as a robust replacement for ROS network transparency. Our robots are separate ROS
systems (a so-called multimaster approach), which allows them to operate even without a network
connection. The nimbro_network stack creates statically-configured connections between the robots,
which forward the chosen ROS topic over the network connection. It uses forward error correction
(FEC) rather than resending to deal with packet loss, which reduces latency. All robots stream
monitoring data to a central operator station on the ground. The mission specialists then connect
to this operator station through Ethernet using standard ROS network transparency. For a detailed
list detailing the advantages and disadvantages of nimbro_network, see the referenced website.

3.2. Runtime control and supervision
Running a complex robot software stack, especially from remote, is a complicated task. We use a
combination of a local, onboard launch system and remote high-level system monitor. Our launch
system, rosmon,2 is a robust replacement for the standard roslaunch tool, which offers several
useful features for remote robot operation: A ROS interface for process status and process control,
terminal and remote GUIs for process control (see Fig. 2), automatic log, and process core dump
collection in case of failures.

1https://github.com/AIS-Bonn/nimbro_network
2https://github.com/xqms/rosmon/
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While rosmon allows the supervisors to ascertain whether all required processes are still running, it
is impossible to see if the components are running correctly. Does the camera driver produce images?
Is the GPS signal stable? For such questions, we built a flexible monitoring system consisting of a
local ROS node that runs predefined checks every second and a remote GUI component that shows
the results to the user in an intuitive way (see Fig. 2c).

3.3. Finite state machines
Finite state machines are a standard tool for the definition and control of robot behavior. For
relatively constrained tasks such as the ones defined by MBZIRC, they allow fast construction
of behaviors. Instead of working with standard ROS tools such as SMACH, a Python-based FSM
framework, we decided to develop our own nimbro_fsm2 library with a focus on compile-time
verification. Since testing time on the real robots is limited and simulation can only provide a
rough approximation of the real systems, the robot will likely encounter untested situations during a
competition run. We trade the ease-of-use of dynamically typed languages and standard frameworks
against compile-time guarantees to guard against unexpected failures during runtime.

The nimbro_fsm2 library supports FSM definition in C++. The entire state graph (see Fig. 3)
is discovered and verified at compile time using C++ metaprogramming features. nimbro_fsm2 is
open-source.3

Our library also automatically publishes monitoring data so that a human supervisor can see the
current status. An accompanying GUI displays this data and can trigger manual state transitions,
which is highly useful during testing.

Metaprogramming techniques for FSMs, including compile-time optimizations, have been inves-
tigated by, e.g., Juhász et al. (2008). Unfortunately, the authors do not provide an implementation,
and in contrast to our approach, no user interface is provided.

The combination of our tools for multi-robot communication, transparent state execution, and
easy supervision is groundbreaking. Although we developed these tools for the tasks posed in robotic
competitions, their potential use reaches far beyond these demonstrations. With robotic systems
becoming more complex, featuring more degrees of freedom, and robots communicating with each
other, keeping the overview over these systems becomes increasingly difficult. Our monitoring and
communication shaping approaches help to not get lost in complexity and to scale to systems of
systems with a large number of robots.

3.4. Trajectory Generation and Control
Our UAVs need to be fast and agile in order to score competition points. At the same time, they need
to precisely arrive at target positions. Our trajectory generation and control method4 is based on the
method that already reliably worked during MBZIRC 2017 (Beul et al., 2017; Nieuwenhuisen et al.,
2017). For the MBZIRC 2020, we only changed parameters to adapt the behavior to the specific
challenges. The parameters for the horizontal x and y axes and the vertical z axis are presented in
Table 1. Our method is described in detail by Beul and Behnke (2016) with the extensions from
Beul and Behnke (2017). For brevity, in this section, we cover only the most essential aspects of the
algorithm.

Based on a simple triple integrator model, our method analytically generates third-order time-
optimal trajectories that satisfy input (jmin ≤ j ≤ jmax) and state constraints (amin ≤ a ≤ amax,
vmin ≤ v ≤ vmax). Trajectories are computed from the current state (p, v, a)ᵀUAV to the target state
(p, v, a)ᵀtarget. The x, y, and z-axis are synchronized to arrive at the target state at the same time.
By doing so, the UAV flies on a relatively straight path.

3https://github.com/AIS-Bonn/nimbro_fsm2
4https://github.com/AIS-Bonn/TopiCo
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(a) FSM GUI with state-specific information such as robot and brick
poses during picking.

(b) Time-line plot with state activations.

Figure 3. nimbro_fsm2 GUI showing the state machine of our UAV Lofty (see Sec. 6). The currently active
state “Pick” is shown in dark green, while the previous two states are shown in lighter shades of green.

Table 1. Trajectory parameters at MBZIRC 2020.
Parameter Axis Value Parameter Axis Value
vmax X, Y 5.0m/s vmax Z 1.0m/s
amax X, Y 4.0m/s2 amax Z 10.0m/s2

jmax X, Y 5.0m/s3 jmax Z 50.0m/s3

We directly use this trajectory generation method as a model predictive controller (MPC), running
in a closed loop at 50Hz on all UAVs. As stated above, our MPC generates jerk commands, but the
low-level flight controllers expect pitch resp. roll commands. We therefore assume pitch and roll to
directly relate to θ = atan2(ax, g) and φ = atan2(ay, g). Thus we send smooth pitch θ and roll φ
commands for horizontal movement and smooth climb rates vz instead.

Field Robotics, May, 2022 · 2:807–842
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Figure 4. Design of our UAV “Jelly” equipped with four detachable spiked tentacles, an Intel® RealSense™ D415
camera, a Google Edge TPU, a laser height sensor, and a lightweight but powerful onboard computer.

Although an arbitrary number of axes can be controlled by the above-mentioned method, we
do not consider the yaw axis to be synchronized with the x, y, and z axes. For simplicity, we use
proportional control for the yaw axis.

Like our tools for robot communication and supervision, also our universal MPC contributed to
making the effort of operating multiple very diverse UAVs tractable. Due to its inherent dynamic
model independence, we used it on all UAVs without having to keep track of individual parameter
sets like PID gains. It also reduced the control system complexity since we didn’t have to model
challenge-specific dynamics like UAVs’ changing weight when dropping a brick.

We see our MPC as a prime example of how the scientific contribution of a novel method leads
to added value in the real world. By releasing our tools as open-source to the public, we transfer
this value to the robotics community and, therefore, advance the entire field which adds value to
our own systems in turn.

4. Balloon Hunt
The first task of the MBZIRC 2020 Challenge 1 required teams to find and pop balloons in an outdoor
arena of size 90×40 m. Five green balloons with approximately 60 cm diameter were randomly placed
inside on top of 2.5-m-long poles. Although the total challenge time was set to 15 min, the task had
to be completed much faster and autonomously to receive a high score.

The task mainly promoted the development of advanced (visual) perception methods, multi-UAV
planning, and aerial manipulation capabilities that are beneficial for real-world applications like e.g.,
crop dusting.

Up to three UAVs could be used to complete the challenge, but we found it sufficient to use
only one UAV. While global navigation satellite system (GNSS) positioning was available, the use
of differential GNSS was penalized. For this task, we designed the UAV “Jelly” including fast
TPU-based perception, robust filtering of sensor data, and fast trajectory generation and control
(Beul et al., 2020).

4.1. Hardware
Jelly, shown in Fig. 4, is based on the DJI Matrice 100 platform. We equipped it with a small
but fast Gigabyte GB-BSi7T-6500 onboard PC with an Intel® Core™ i7-6500U CPU running at
2.5/3.1 GHz and 16 GB RAM. Balloons are perceived by an Intel® RealSense™ D415 depth camera
with the assistance of a Google Edge TPU USB accelerator. For precise height estimation, Jelly
uses a downward-facing LIDAR-Lite v3.

Balloons are punctured with four detachable spiked 1.4m long tentacles mounted on a horizontal
bar and spaced out at a distance of 30 cm, as shown in Fig. 5. When a force of more than 2N is
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Figure 5. Detachable spiked tentacles of our UAV “Jelly.”

Figure 6. Structure of our software stack. Green boxes represent external inputs like sensors, blue boxes represent
software modules, and the red box indicates the UAV flight control. Position, velocity, acceleration, and yaw are
allocentric.

applied to a tentacle (e.g., by entangling with the poles), it detaches, preventing Jelly from crashing.
On each cable, we mounted four needle-spiked hemispheres with a 15 cm distance. Using flexible
popping hardware, Jelly complied with the size restrictions of 1.2 × 1.2 × 0.5 m, still offering a
forgiving popping system that does not require centimeter-level precision.

For allocentric localization and state estimation, we employ the filter onboard the DJI flight
control that incorporates GNSS and IMU data. To make all components easily transferable between
the test area at our lab and also different arenas on-site, we defined all coordinates (x, y, z, yaw) in
a field-centric coordinate system. The center and orientation of the current field were broadcasted
by a base station PC to the UAV. In contrast to other teams, we did not use advanced satellite-
based localization methods like real-time kinematic positioning (RTK-GPS) that need multiple GPS
antennas on the UAV. Figure 6 gives an overview of the information flow in our system.

Field Robotics, May, 2022 · 2:807–842
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Figure 7. Flowchart of our state machine for balloon popping.

4.2. Mission control state machine
Jelly’s behavior is controlled by a state machine that serves as a generator for waypoints and headings
for the subsequent control layers. It also ensures that Jelly does not exceed arena limits and stays
within a defined altitude corridor so that it always stays above the balloon mounting poles and
below the 5 m minimum altitude of the other subchallenge’s UAVs. Figure 7 shows a flowchart of
our state machine, which consists of two alternating parts: Search and Pop. In search mode, Jelly
flies a repeating creeping-line pattern along the field’s long axis, thereby scanning the entire arena.
In Pop mode, Jelly flies a trajectory that drags the tentacles through detected balloons.

Jelly’s velocity in search mode is tuned to 5.0 m/s, and the altitude is 4.0 m so that balloons can
be reliably searched from a safe height. Our balloon detector produces reliable position estimates
at ranges over 30 m. During the Grand Challenge, the search pattern comprised two search lanes,
spaced at 10 m from the arena limits, which proved sufficient. As depicted in Fig. 6, all balloon
detections are filtered as described in Sec. 4.4 before being processed by the state machine. The
filter provides a list of verified balloon positions within the arena limits, including those currently
out of view. Once the state machine receives at least one detection, it proceeds to approach the
closest target. Jelly does not consider observation waypoints for the detection but only searches for
balloons while flying from one waypoint to the next. Jelly does not stop at the waypoints since when
it reaches the current waypoint (within a certain radius), the transition is triggered, and the next
waypoint is set active.

In Pop mode, we compute a straight-line trajectory, such that the center of the tentacles passes
through the balloon center at a nonzero velocity. The tentacles’ upward-facing needles are dragged
into the balloon surface, effectively puncturing it. As the forward-facing camera cannot perceive
the balloon all the way, it is assumed to be popped once Jelly passes over the estimated center of
the balloon instance within a 0.5 m radius. Should the balloon still be intact due to unsuccessful
puncturing or missing the intercept point, it will be tackled again later as the search pattern repeats,
and the balloon will inevitably be re-detected. If the target is lost during the approach, e.g., because
the filter discarded a false positive, the attempt is canceled. As an addition, in the Grand Challenge,
after each attempt to pop a balloon, Jelly returns to the center of the field to prevent flying into the
scaffolding protruding the arena. This method of handling the field’s nonconvexity is simple, but it
introduces additional flying time compared to real obstacle avoidance. On the other hand, it is easy
to implement and reliable. After returning to the center, Jelly targets the subsequent closest balloon
provided by the filter or resumes with the search pattern if there are no viable balloon hypotheses.

4.3. Balloon perception
Our approach for detecting balloons in images is based on deep learning methods and split into
an inference and a postprocessing step. During the inference step, we employ a neural network for
semantic segmentation. Since we aim to detect multiple balloons, we perform a binary segmentation
of the raw input image and extract the balloon outlines, as shown in Fig. 10. The balloon detection
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Figure 8. Synthetic training frames for balloon detection.
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Figure 9. Balloon segmentation CNN network architecture.

itself is carried out in the postprocessing step, which provides information like the number of
balloons, their confidence values, and their positions in camera coordinates.

Balloon Outline Segmentation Network. The neural network structure is based on the first three
blocks of ResNet-18 (He et al., 2016). See Fig. 9 for a visualization of our network. The network
outputs a binary segmentation consisting of background and balloon outline classes. For training, the
network is initialized from ResNet-18 pre-trained with ImageNet. We use a dataset consisting of 10 k
synthetic and 300 real images. The synthetic images were generated by a lightweight physically-based
renderer5 (Rosu and Behnke, 2020). A 60 cm diameter sphere is randomly placed in different HDR
environments, as shown in Fig. 8. The images also include spherical shapes that are not green and do
not correspond to a balloon to reduce the number of false positives. The real images were recorded
with the same Intel® RealSense™ D415 camera, which we used during the competition. To enhance
the network’s robustness even further, we added noise to the synthetic data as described by Carlson
et al. (2019). We trained the network with an image size of 960× 540 px.

Postprocessing. The postprocessing step aims to detect balloons in the binary segmentation output,
as shown in Fig. 10. The binary segmentation provides contours of the balloons, which can still be
noisy or could be false positives on the background. The valid balloon detections are extracted from
the segmentation output based on a connected component analysis. In the first step, connected

5https://github.com/RaduAlexandru/easy_pbr
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(a) Input image. (b) Balloon detections.

Figure 10. Balloon perception. The detected balloon outlines are drawn with black lines, and the centers are
marked with gray points. All visible balloons are detected correctly, even at large distances.

components are extracted, and valid components are filtered by a minimum number of pixels. Then,
for each valid component, a circle is fitted based on N points sampled equally distributed from the
connected component. Detections are filtered by a size threshold and a threshold on the residuals of
the fitted circle, which give a measure for the quality of the estimated circle. A 3D position estimate
can be calculated based on the detected balloon radius. The resulting 3D balloon center points are
then further processed by an allocentric filter (cf. Sec. 4.4).

The entire pipeline is very time efficient and runs with an average processing time of 45ms per
frame on the onboard CPU with TPU acceleration. The quantization of the network for processing
on the Edge TPU did not lead to a decrease in prediction quality. Finetuning during the competition
resulted in a significant decrease in background noise and enhanced the network’s balloon outline
detection. Consequently, parameters like residual threshold and minimum connected component size
in postprocessing were adapted so that we archived stable balloon detections even at large distances
of up to 50 m.

4.4. Allocentric balloon filter
For each image frame, the balloon perception (Sec. 4.3) outputs a list of current balloon detections
di

1, . . . , d
i
n, described as egocentric 3D positions in camera coordinates. These are processed by a

filter to reject outliers and to aggregate them into a list of hypothesesH of possible balloon positions.
Each hypothesis Hi ∈ H consists of

• a history Di := (di
1, . . . , d

i
8) of the last eight detections that were assigned to it,

• an estimate of the balloon position Pi := 1
|Di|

∑
d∈Di

d, calculated as the running average over
the detection history, and

• a counter for missed detections.

All hypotheses with at least eight detections are sorted with increasing distance to the current UAV
position and forwarded to the state machine.

We transform the egocentric detections of the balloon detector into allocentric field coordinates.
Since the height of the balloons was predefined to be at 2.5 m, all detections outside a height corridor
from 1.5 to 5.0 m are discarded. For each remaining detection d, we determine the closest hypothesis
Hi∗ by minimizing the distance between the detection and all position estimates, i.e., choosing
i∗ = arg mini{dist(d, Pi)}. If the distance is smaller than a threshold of 2.0 m, we assign d to Hi∗ .
Otherwise, we create a new hypothesis. Finally, hypotheses are merged when their estimated balloon
positions come closer than 2.0 m.

The choice of the distance measure dist(·) is important to reduce the influence of detection
noise and thus to achieve accurate assignments. Since the center height of all balloons is fixed to
2.5 m+ 0.6 m

2 = 2.8m, dist(·) can be chosen as the Euclidean distance on the ground plane to eliminate
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(a) Euclidean distance on ground plane. Exemplarily,
the Euclidean distance of a detection is shown in yellow.
It exceeds the threshold and, thus, a new hypothesis is
created.

(b) Distance to detection ray metric. The distance
(yellow) to the detection ray (blue) is smaller and does
not exceed the threshold. Thus no new hypothesis is
created.

Figure 11. Evaluation of different distance metrics. Detections are shown as blue dots. Hypotheses are shown
as spheres, colored green if at least eight detections are assigned to them and red otherwise. The ray metric (b)
better reflects the characteristics of our balloon detection pipeline.

noisy height measurements. However, due to the noisy depth estimation of the egocentric detections,
this may result in multiple different hypotheses for the same balloon (Fig. 11a). Instead, we cast
a ray τ in the detection direction and define dist(·) as the distance between the estimated balloon
position and τ . The latter distance metric better reflects our balloon detector’s characteristics since
it has a high accuracy in the image plane but is relatively inaccurate in the depth dimension. This
change results in more accurate hypotheses assignments, as shown in Fig. 11b.

Once Jelly reaches a position above an estimated balloon, we assume the balloon to be popped
and remove the corresponding hypothesis. If popping was not successful, the balloon is detected
again later, and thus a new hypothesis for this balloon will be added (cf. Sec. 4.2).

4.5. Laser height filter
Precise height estimation can make the critical difference between popping a balloon, missing a
balloon, or hitting a pole. We therefore use measurements of a downward-facing LIDAR-Lite v3 as
the primary height source. The laser height filter determines whether the laser measurements are
valid (i.e., within expected boundaries) and thus can be used as height estimation. However, when
the laser measurements are assumed invalid, we extrapolate the latest height estimate using the
change in the fused GNSS and barometric height. As soon as the laser measurement is assumed
valid again, we immediately correct our height estimate to the laser height or—if the extrapolated
height drifted too much—linearly interpolate, allowing a maximum slope of 1.5m/s. Figure 12
depicts height measurements and the filtered height estimates during Run 2. During takeoff, height
estimation is based on barometer data since laser measurements are unreliable for too close distances.
Once Jelly reaches an estimated height of 1.0 m, height estimation is based on filtered laser data.
Above 5.0m, the laser becomes unreliable in the bright outdoor conditions, and the height estimate
is extrapolated using the change in barometric height measurements.

4.6. Evaluation
We operated Jelly for balloon popping in three competition runs during MBZIRC 2020. A video
showcasing our Grand Challenge Run can be found on our website.6

6https://www.ais.uni-bonn.de/videos/fr_2021_mbzirc
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Figure 12. Laser height estimation during Run 2. The estimated height (black) is either based on barometer
data (blue) or laser measurements (red).

(a) Number of detections com-
pared to number of visible bal-
loons per frame.

(b) Number of detections compared to distance
to closest ground truth balloon position.

(c) Number of detections
compared to pixel radius of
detection.

Figure 13. Histograms for the number of balloon detections.

To evaluate the performance of our balloon perception (cf. Sec. 4.3), we manually check the
balloon detections for the Grand Challenge Run, during which a total of 1662 image frames have
been processed by our vision pipeline. In total, 1460 balloons occur in these images, of which 949, i.e.,
64%, are correctly detected, while there are only five false detections. Figure 13a shows histograms of
the number of balloon detections per frame. Frames where no balloon is visible are correctly classified
in 99.6% of all cases. If a single balloon is visible, we achieve an accuracy of 92.3%. However, frames
with more than one balloon often contain more distant balloons, which are more difficult to detect.
Thus detections are missed more frequently in these cases.

To analyze for which distances our vision pipeline works reliably, we plot the number of detections
against the distance to the corresponding balloon (see Fig. 13b). As ground truth, we use the last
filtered position estimate immediately before the balloon is punctured. We reliably detect balloons up
to a distance of 24 m, but can even detect balloons at a distance of up to 44.5m. The corresponding
pixel sizes are shown in Fig. 13c.

The number of detections at distances of 25–40 m is still sufficient to generate valid hypothesis
with our allocentric detection filter (cf. Sec. 4.4). Thus balloon hypotheses were added to the world
model shortly after takeoff during all runs. During the second run, all five balloons were known to
the filter only 15 s after takeoff. In the other runs, only a fraction of the balloons was inside the
field of view directly after takeoff. The known target hypotheses are approached right away; Jelly
then flies on a search pattern for a short time only until it detects the remaining targets. During
the Grand Challenge run, 95.3% of all detections could be successfully assigned to one of the five
balloons. The corresponding numbers are reported in Table 2.
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Table 2. Assignments of all balloon detections to the different balloon hypothesis during Run 3.
Balloon 1 Balloon 2 Balloon 3 Balloon 4 Balloon 5 No Assignment

#Assignments 58 229 117 252 248 45

Table 3. Time and number of tries needed to puncture the individual balloons.
Balloon 1 Balloon 2 Balloon 3 Balloon 4 Balloon 5

Time Tries Time Tries Time Tries Time Tries Time Tries
Run 1∗ 23 s 1 30 s 2 9min 4 s 1 9min 11 s 1 9 min 28 s 1
Run 2 17 s 1 23 s 1 51 s 1 1min 15 s 2 1min 40 s 2
Run 3 11 s 1 27 s 1 56 s 1 1min 8 s 1 1min 21 s 1

(∗) 8min reset time between 2nd and 3rd balloon.

During the three different competition runs, we successfully punctured 15 balloons using only 18
tries. The times at which the respective balloons were punctured and the corresponding number of
attempts are given in Table 3. In the first run, two balloons were popped after 30 s. Then a reset
occurred for 8 min, as Jelly had gotten stuck in the net at the arena borders due to an error in the
GNSS-based geofencing. The challenge was completed after 9 min 28 s, but only 1min 28 s flight time.
In the second run, the first two balloons were punctured immediately. Then, however, two balloons
were missed—the puncturing did not work due to a suboptimal flight pattern (see Fig. 14a). By
repeating the search pattern and re-approaching the missed targets, in this run, all balloons were
punctured after a total duration of 1min 40 s. In the final run during the Grand Challenge, all
balloons were punctured in the first attempt. The time between two consecutive balloons was
very similar (12–15 s). Between balloons 2 and 3, Jelly flew a search pattern to discover the
remaining ones, explaining the longer time interval. The challenge was completed after a total time of
1 min 21 s.

During the first and second run, Jelly always chose the direct path between two consecutive
balloons. In the ideal case, this results in the shortest duration between two consecutive balloons
(e.g., 6 s between the first and second balloon in Run 2). However, this can lead to Jelly flying
dangerously close to the arena borders. It could even have led to a crash during Run 2 if the controller
had chosen to pierce Balloons 3 and 4 in direct sequence. Our simple GNSS-based geofencing system,
which restricts the allowed flying area to a single rectangle, could not correctly model the arena’s
nonconvex shape (see Fig. 14a).

An additional waypoint was added in the middle of the arena after each balloon for the final run.
This results in a star-shaped flight pattern (see Fig. 14b) and the balloons being passed in a straight
line without turning above them. Consequently, each balloon was pierced in the first attempt. The
time between two consecutive balloons is slightly higher than it was before in the ideal case but
almost constant for each target, as no misses occur. Moreover, the star-shaped flight pattern avoids
trajectories close to the arena borders and leads to safe flight paths despite the nonconvex arena
outline without any additional obstacle avoidance system (cf. Sec. 4.2).

See Fig. 15 for an exemplary balloon popping sequence. Overall, we placed fifth in Challenge 1,
including the Ball Interception Challenge, and second in the Grand Challenge, including five other
subchallenges.

5. Moving target interception
The second task of the MBZIRC 2020 Challenge 1 required a robot to intercept a moving target
UAV in an outdoor arena of size 90 × 40 m. A yellow ball with approximately 13 cm diameter was
attached below the target UAV, which moved with up to 10m/s on a 3D figure-eight trajectory in
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(a) Run 2: The UAV chooses the direct path between
consecutive balloons. In some cases, it turns directly
above the balloons, which prevents the piercing tenta-
cles from working correctly. Balloons 4 and 5 need to
be passed two resp. three times.

(b) Run 3: The UAV passes through the arena cen-
ter after each balloon. It moves straight through the
balloons, which leads to them being pierced reliably
at the first attempt. Paths close to the boundaries are
avoided by this strategy.

Figure 14. Comparison of flight paths between Runs 2 and 3 (colored by time). Solid line: Pop mode, dashed
line: Search mode. The allowed flying area is shaded in red; the physical arena boundaries are marked with a
dashed black line. Balloon hypotheses are displayed as green circles.

Figure 15. Image sequence of popping the first balloon in the Grand Challenge. Jelly (marked with the red
circle) (1) takes off to 4.0m. (2) After detecting the first balloon, the robot targets a position 2.0m behind and
0.7m above balloon’s center. (3) It further accelerates to pass through the balloon with significant velocity. (4)
It successfully pops the balloon. The entire shown process only takes 4.9 s.

the arena. The teams had to track the target, detach the ball without damaging the target UAV,
and finally deliver it to a drop-off zone.

The task mainly promoted the development of advanced (visual) perception methods, fast
and precise UAV control, and aerial manipulation capabilities that are beneficial for real-world
applications like e.g., drone defense.

Our plan was to command our UAV to wait on a corner point of the figure-eight with the camera
directed towards the field center and search for the ball. After the target UAV passes from behind
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Figure 16. Design of our UAV “Chaser” equipped with a foldable net to capture the target, a fast onboard
computer, an Intel® RealSense™ D415 camera and a Google Edge TPU.

and the ball is detected, our UAV pitches to the maximum allowed magnitude of 35° to gain speed
on the figure-eight’s diagonal to intercept the ball.

5.1. Hardware
For this task, we designed our integrated UAV “Chaser” shown in Fig. 1b, which is based on the DJI
Matrice 210 v2 platform. It is equipped with a compact, but fast onboard PC (Intel® NUC), an Intel®
RealSense™ D415 depth camera for visual perception, and a Google Edge TPU USB accelerator for
visual inference. The target ball is detached and caught by a foldable net, which, in a folded state,
respects the required maximum takeoff size and, after takeoff, automatically extends by a spring
release to offer a large volume for catching the target ball. The overall mechanism is shown in Fig. 16
and attaches on top of our UAV. Once the ball is caught by the net, it will drop onto the funnel-like
contraption with radial struts and roll towards the center where multiple omnidirectional switches
were installed. The switch consists of spring steel wire within a metal tube. Upon contact, the wire
pushes against the tube and closes the circuit and an Arduino Nano micro controller will signal the
onboard computer. To ensure safe interaction with the ball’s attachment cable, the struts connect
outwards to a round prop-guard steering the cable away from the propeller. Additional connections
between the contraption and the landing gear improves stability and prevents oscillation of the
flexible construction. The outer net struts can rotate backwards and together with the hinge in the
middle of the central strut; the net becomes foldable. A spring at the central strut tensions and
unfolds these struts. We prevent unfolding with a small chord from the strut to below the landing
gear. During takeoff, the chord releases automatically and the spring unfolds and tensions the net.
Zip ties attach the net to its frame while zip tie pairs at the bottom frame pointed upwards prevent
the net from being dragged into the rotors before unfolding. Initially, we mounted the D415 at
the rear-end on the funnel below the net, but moved it to the front due to USB interfering with
the GNSS and the contraption being partially visible in the camera image. Since onboard GNSS
remained unusable, we added in the middle a separate DJI N3 flight controller with protruding
antenna and extra shielding below.

5.2. Target detection
We employ a deep learning-based vision pipeline for the perception of the moving target. RGB images
of the RealSense™ camera are processed by a detector based on the lightweight SSD architecture (Liu
et al., 2016b) using an efficient MobileNetV2 (Sandler et al., 2018) backbone and provides bounding
box detections for the yellow ball and the drone (see Fig. 18). The network input resolution is
set to 848 × 480 px, processing cropped regions of the camera images of 1280 × 720 px resolution.
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Figure 17. Synthetic training images for target detection of drone and yellow ball.

The region of interest to pass to the detector is determined based on the currently tracked detection
from the previous frame. When no hypothesis is known, the entire image is analyzed in four separate
tiles.

The detector was trained before the competition on synthetic images of the target UAV and
the ball, and fine-tuned with a few background images from the real arena on site. To prevent the
network from learning to only detect dark patches in the sky, like cranes, we added negative training
examples of objects like tea pots, submarines and lamps with an attached yellow ball. In total, we
used approximately 20 k synthetic and 1000 real images. Some examples are depicted in Fig. 17.

The vision model runs in 8-bit quantized mode on the Edge TPU USB accelerator, achieving
the full camera frame rate of 30 Hz, thus sufficient for fast and reactive flight control based on the
detections. The distance towards the detected UAV and ball is estimated by fusing the depth reading
from the RealSense™ RGB-D camera with the distance estimated from the known diameter of the
target ball and the camera parameters.

We want to stress that although we use our detection pipelines for detecting objects relevant to
the MBZIRC 2020, our practical method and the theoretical contribution it is based on are not
limited to these demonstrations. In contrast to classic computer vision approaches that are often
custom-tailored for detecting specific patterns like the landing pattern during MBZIRC 2017 (Beul
et al., 2019), our pipeline makes no assumption about the specific object it detects. Here again,
scientific contributions transfer to real-life applications that result in added value.

5.3. Allocentric detection filter
The vision model outputs lists of copter and ball detections for each image frame. As already
discussed for the Balloon Hunt challenge (cf. Sec. 4.4), the depth estimation of the visual perception
model can be noisy. However, precise allocentric position information and additional velocity
estimates are necessary to successfully intercept the target. Thus we process our detections with an
allocentric filter before forwarding them to the mission control module. Our filter module consists
of two steps. First, the most probable ball and copter detections are selected from the detection list
based on the previous estimates. Afterwards, an Extended Kalman filter (EKF) is applied to the
position information of the detections to generate velocity estimates.

When selecting the most probable ball and copter detections, we first remove outliers by only
considering copter detections if they are within a distance of 5 m around the previous estimate. From
those, we choose the one with highest confidence score as provided by the detector. Afterwards, we
process the ball detections in a similar way but utilize the fact that the ball has to be close to the
target copter. Thus, if a valid copter detection for the current frame was found, we consider all ball
detections within a distance of 5 m around the current copter detection. Otherwise, we search for
a ball detection close to the previous estimated ball position. If multiple valid detections exist, we
select the one with highest confidence score.

Differentiating the yellow ball from the green balloons of the first Challenge 1 task (cf. Sec. 4)
is very challenging for our vision pipeline. Thus we additionally search for all ball detections that
might actually correspond to balloons. We estimate the distance between camera and each ball
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Table 4. Evaluation of the vision pipeline for the moving target interception task.
#Frames #True #False #No #Frames #No #False
Visible Detection Detection Detection Invisible Detection Detection

Copter 566 456 15 95 738 707 31
Ball 557 450 15 92 747 718 29

Table 5. Evaluation of the filter accuracy for distinguishing ball and balloon
detections.
True Label # Classified as “Balloon” # Classified as “No Balloon”
“Balloon” 43 8
“No Balloon” 8 490

Figure 18. Detections of the target UAV (green bounding box) and ball (red bounding box) in the RGB image,
with detection probabilities. The yellow bounding box shows the detection of the tracked ball from the previous
frame, used to determine the cropped region of the current frame passed to the detector.

detection using the size of the bounding box and the known balloon diameter. If the projection into
allocentric 3D coordinates results in a feasible balloon position, i.e., if the height is within a corridor
from 1.5 to 5.0 m, we probably misclassified a balloon as ball, and thus discard the detection.

The selected detections are processed by two independent instances of an EKF, one for ball and
copter detections, respectively. Here, we utilize the implementation from the robot_localization
library (Moore and Stouch (2014)). The EKF output is forwarded to the Mission Control module.
Additionally, the current estimates are used by our vision pipeline to crop a region of interest from
the camera images, as described in Sec. 5.2.

5.4. Evaluation
To evaluate the performance of our perception pipeline, we manually check the detections for a
portion of an autonomous flight during one challenge run. The analyzed sequence has a duration of
43 s and 1304 frames. It starts with the moment when Chaser reaches the initial search pose and
ends when Chaser aborts the first chase by breaking on the end of the figure eight’s diagonal. If
multiple detections for the same frame exist, we only consider the one with highest confidence score.
The performance is similar for copter and ball detections (see Table 4). The perception pipeline
works robustly and detects the moving target in about 80% of all cases where it is visible. Only in
about 3.5% of all analyzed frames does the most confident detection not correspond to the target
copter or ball. Some example images, where the moving target is detected at a considerable distance
even in front of cluttered backgrounds, are shown in Fig. 18.

Distinguishing the yellow target ball from the green balloons of the other Challenge 1 task was
challenging under the harsh sunlight. During the analyzed sequence, our vision pipeline reports 594
ball detections, of which 51 actually correspond to balloons. However, our allocentric filter (Sec. 5.3)
is able to detect those wrong classifications in most of the cases, as shown in Table 5. For both,
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Figure 19. Tracked trajectory of target UAV (red) and ball (yellow), flight path of our UAV (dashed line),
GNSS-based geofencing (gray). After takeoff, our UAV ascends to the search height and flies towards a waiting
point (dark-blue dashed line). After the first detection of the target UAV and ball (bottom right), our UAV turns
and follows the targets. The chase is abandoned at the top-right corner, as our UAV needs to brake before the
turn. The three-dimensional figure-eight shape of the target’s trajectory is clearly discernible.

precision and recall the filter achieves scores of 84%. Note, that in contrast to Table 4, we count all
ball detections per frame and not only the most confident one.

Based on the filtered detections, the target’s figure-eight trajectory could be tracked in 3D space,
and flight trajectories were generated to follow the target UAV and accelerate below it to detach the
target ball (see Fig. 19). Unfortunately, in all trials, the acceleration was insufficient to gain enough
speed until Chaser had to break to prevent flying into the net on the end of the diagonal. In multiple
tries, Chaser reliably achieved velocities exceeding the 10 m/s of the target UAV and also came close
to it but never managed to intercept the ball before breaking. With 6.2 kg and 1.1× 1.1× 1.0 m size
and due to the wind resistance of the large netting construction on top, Chaser was simply not agile
enough for the proposed task.

3 min before the end of our run, we decided to abort the autonomous attempts and salvage points
by manually approaching the target. For this, we prepared a bare DJI Matrice 100 in advance and
removed all unnecessary hardware to reduce weight and increase agility. Although the UAV featured
no catching hardware, the intention was to at least detach the ball from the target UAV, which would
yield at least partial points.

With the stripped-down UAV, our trained safety pilot was able to manually detach the ball with
only 8 s flight time, securing a 5th place in Challenge 1 together with the balloon-hunting task.

6. Wall Construction
In Challenge 2, participants were required to build walls out of supplied bricks, both with a UGV
and a team of up to three UAVs. The task setting was particularly interesting because it required
complete autonomy, robustness under real-world outdoor conditions with harsh sunlight and wind,
and independence from any external reference system besides the globally available GPS.

In the following, we will describe our UAV “Lofty”. For more detailed information about Lofty,
we refer to Lenz et al. (2020).

Since the initial rules specified a shared wall where UAVs and UGV could collaborate, we
concentrated our efforts on the UGV design. In a late rule revision, UAV and UGV walls were
separated, making it clear to us that UAV points had to be scored in order to win. Thus our UAV
design focused on a minimal solution that could achieve almost full points: We decided to ignore
the orange bricks of 1.8 m length, intended to be carried by two UAVs. We designed our system to
only support the red (0.3m), green (0.6m), and blue (1.2 m) bricks.
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(a) Full assembly (b) Magnetic gripper with passive compliance

Figure 20. Wall building UAV hardware design. The four telescopic rods are shown in the fully extended
configuration.

6.1. Hardware design
Because of the weight of the larger bricks and their size, we decided to use a large UAV, the DJI
Matrice 600, for this task. The DJI Matrice 600 offers sufficient payload and battery life (roughly
20 min in our configuration).

A key component for aerial manipulation is the robotic gripper. UAVs pose unique constraints
when compared with ground-based manipulation. The gripper has to be lightweight in order to
fit inside the payload constraints. Furthermore, a certain flexibility and mechanical compliance is
desired for two reasons: First, this allows a grasp to succeed even if the approach was not fully
precise. Secondly, a rigid connection between the UAV and the ground can be perilous since UAVs
usually tightly and dynamically control their attitude to hold position. One can easily imagine
situations where the UAV has to drastically change attitude in response to wind gusts, and of
course, hindrance by the gripper system should be limited. However, during the placement phase of
the pick-and-place operation, we require exact control of the target object. Here—at least while the
target object is still in the air—we want a rigid attachment to the UAV. To resolve these seemingly
contradicting goals, we designed the gripper system to be rigid only while load is applied, i.e., the
brick is hanging below Lofty.

Our gripper design (see Fig. 20) consists of four carbon fiber telescopic rods, which hold the
magnetic gripper plate below Lofty. When the rods are fully extended, the gripper plate is in a
fixed pose and can only move upwards. The more the gripper plate is pressed upwards (e.g., due to
contact with a brick), the more it can move sideways and rotate due to the gained movement range
in each rod. The gripper is equipped with a switch to detect successful grasping.

Since the standard foldable landing legs on the DJI Matrice 600 would interfere with the gripper,
we replaced them with fixed landing legs (see Fig. 20).

6.2. Brick perception
The competition task involves two perception challenges: finding and precisely localizing the bricks
and localizing with respect to the target wall. Similar to the gripper system, the UAV places unique
constraints on the perception system. Since the gripper is mounted directly beneath Lofty, any
brick observation close to the gripper must be conducted from the side. The necessary off-center
mounting of the sensors severely limits the sensor weight. We chose the Intel® RealSense™ D435
RGB-D camera as a primary sensor for its low weight and its capability to work in sunlight. To
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Figure 21. Camera-based UAV brick perception pipeline. (a) Input frames from all cameras. (b) White patch
segmentation. (c) Patch corner extraction & pose estimation. Patch contours in orange (verified) and blue
(wrong shape). Brick type is indicated by a colored center point. The gripper is overlaid in yellow. (d) Tracking
of detections from all three cameras in GPS frame. Detections are shown as bricks, while tracked hypotheses are
shown as coordinate axes.

achieve good coverage of the terrain below Lofty and to be able to observe large parts of the wall
during the placement process, we mounted three D435 sensors (see Figs. 20 and 21).

The gripper is visible in all camera images and would lead to confusion with bricks. For this
reason, we mounted an ArUco marker (Romero-Ramirez et al., 2018) on it. The marker pose can be
efficiently estimated in each of the three cameras and is low-pass filtered to obtain a robust estimate
of the gripper pose below Lofty. We exclude pixels in the immediate vicinity of the detected gripper
from further processing.

Since the white patches on the bricks are quite distinctive (see Fig. 21), we use them to detect the
bricks and estimate their pose. In a first step, we convert the input image (resolution 1280×720 px)
to the HSV color space. To detect high-saturation pixels (the colored bricks) in the neighborhood,
we downsample the input image to half resolution and run a box filter with kernel size 290× 290 px
to obtain a local saturation average S̄ and local value average V̄ . A pixel p is classified as a patch
if S(p) < S̄(p) − λS ∧ V (p) > V̄ (p) + λV , or, in other words, the saturation is less than the local
average and the value (brightness) is larger than the local average by user-specified thresholds. This
simple segmentation method is modeled after the ones used for detecting chessboard patterns and
leads to highly robust performance (see Fig. 21).

Contours with exactly four corners (after contour simplification) are processed further. We check
that each corner has a patch pixel on the inside and a high-saturation pixel on the outside at a
specified distance of d = 4 px. The high-saturation pixels on the outside are independently classified
into the four possible colors. If all agree, the brick is detected. Finally, a PnP solver is used to
determine the 6D pose of the brick from the recovered 2D-3D correspondences. Here, we assume
that the longer side in the 2D image corresponds to the longer brick side in 3D—an assumption,
which is only violated at extreme viewing angles. To fuse the detections from all three cameras and
track bricks over time, we apply a basic multi-hypothesis tracking (MHT) method with one Kalman
filter per hypothesis.

6.3. Brick placement
Since not much was known about the target wall for brick placement prior to the competition apart
from its shape, we decided to use only the wall geometry for detection and localization. Since there
is no larger structure in the vicinity of the wall, we felt this would be sufficient. Of course, the bright
yellow mesh grids on top of the wall (see Fig. 22) would have been a good feature as well, but these
were not known to the participants beforehand.

Our wall perception module estimates the height above ground from the depth image of the
downward-facing camera. 3D points measured from each camera are then filtered so that only points
above 1.0 m and below 1.7m remain. We then project the data to 2D, where we extract lines using
RANSAC. Each line, if fit correctly, corresponds to a side view of one wall segment (see Fig. 22).
The system is initialized with a user-specified initial wall pose relative to the starting pose, which
serves as the search pose. The wall pose is updated any time two parallel line segments of valid
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(a) RGB images from all three cameras. (b) Top-down view of detected wall points
per camera (green, blue, purple) and detected
wall segments (red lines).

Figure 22. Wall localization.

length with 4 m distance are found. Under the assumption that the wall did not rotate 180° relative
to the initialization, this is unambiguous. Carrying a brick, Lofty targets a specific pose on one of
the wall segments to place the brick as indicated by the wall plan given by the challenge organizers.
During close approach, the detected segment closest to the expected segment pose is identified, and
the goal position is projected onto this segment.

6.4. High-level control
The high-level control module is implemented in an FSM framework. It is supplied with the target
wall pattern as defined by the organizers of the competition. The basic cycle of events is designed
as follows.

1. Fly to the last known pile pose and fly a search pattern until the next brick requested by the
pattern is found.

2. Grasp the brick and lift it.
3. Fly to the target position (relative to the last known wall pose) and look for a wall segment.
4. Approach the projected position on the wall segment and place the brick.

Similar to our MBZIRC 2017 approach (Beul et al., 2019), we utilize a “cone of descent” during
grasping and placement, in which Lofty is allowed to descend towards the target pose. If it drifts
outside of the cone, it has to stay at that height until the disturbance is countered. The cone angle
is 10° with a hysteresis of 3° to prevent oscillations. The cone was shifted such that at the target
height, it had a radius of 9 cm, which we determined as the maximum allowable deviation that would
still allow successful magnetic grasping.

6.5. Evaluation
During the MBZIRC 2020, Lofty performed in six arena runs: three rehearsal runs, two Challenge 2
runs, and the final Grand Challenge run. A video showcasing the evaluation can be found on our
website7.

We used the rehearsal runs to get used to the conditions in Abu Dhabi and continuously improved
our pick success rate (see Fig. 23). During our first Challenge 2 run, we only picked one red and one

7https://www.ais.uni-bonn.de/videos/fr_2021_mbzirc
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(a) Pick success rate over the du-
ration of the competition.

(b) Histogram of failed pick dura-
tions. The average successful pick
is shown in green.

(c) Placement results.

Figure 23. Challenge 2: Pick & place robustness.

green brick due to difficulties with our magnetic gripper. Both bricks were dropped close to but not
on the wall due to wall tracking problems. The wall tracking module had not been tested until this
point due to short development time and lack of suitable testing opportunities at the competition.

After improving our gripper overnight, we managed to pick four red bricks and one green brick
and placed two red bricks successfully during our second Challenge 2 run. The other bricks were
sadly dropped right next to the wall due to another wall tracking problem. This run was scored
as 1.33 points, which secured a second place in Challenge 2, next only to the Prague-UPenn-NYU
team.

In the Grand Challenge, Lofty managed to pick a red brick but placed it a bit too high,
and it fell off the wall. After a long pause to allow our Challenge 1 UAV to operate, it started
again and picked up a green brick. Sadly, it falsely detected a W-shaped wall behind the Arena
netting. Due to a rushed setup sequence, both wall search pose and the geofencing was not set
up correctly and did not prevent the false detection nor Lofty from flying into the net. After a
short, unsuccessful rescue attempt during a reset, we had to leave it there for the rest of the Grand
Challenge.

Overall, Lofty executed 132 pick attempts in Abu Dhabi, of which 22 were successful, which gives
a success rate of 16.7%. Since a failed attempt took 12 s on average, this limited the number of
attempts we had for placing bricks on the wall. The number of pick attempts increased throughout
the competition (see Fig. 23) as the rest of the system became more robust. There are two peaks in
the duration histogram for failed picks: One at roughly three seconds which corresponds to tracking
failures during the initial approach, and a larger one around 10 s, which corresponds to misaligned
picks or magnet failures.

While we cannot provide a detailed accuracy analysis of the brick pose estimator due to missing
ground truth, we can draw some conclusions regarding the perception module. In 57% of the pick
attempts, the gripper made contact with a brick. This establishes a lower bound on the detection
performance. Out of these, 29% resulted in a successful pick, which indicates sufficient precision for
magnetic gripping. Of course, other failure causes such as insufficient magnet power or wind gusts
will also have reduced this fraction.

We also show placement results in Fig. 23. In our best run, our second Challenge 2 run, Lofty
attempted ten placements, out of which 2 succeeded. The most prevalent failure reason was slightly
off-center placement, which resulted in the placed brick being blown off the wall by Lofty’s rotor
wash.

7. Fire-fighting
Challenge 3 of the MBZIRC 2020 targeted an urban fire-fighting scenario for autonomous robots
to foster and advance the state of the art in perception, navigation, and mobile manipulation.
Participants had to detect, approach, and extinguish multiple simulated fires around and inside a
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Figure 24. Hard- and software design of our fire-fighting UAV “Splasher”.

building with up to 3 UAVs and one UGV. Each fire provided a 15 cm circular opening with a heated
plate recessed 10 cm on the inside. Holes on the outside facade were surrounded by a propane fire
ring, while indoor fires had a moving silk flame behind the heating element. For these tasks, we
developed our UAV “Splasher”, described in the following.

7.1. Hardware design
Figure 24 shows the setup of Splasher. It is based on a DJI Matrice 210 v2 and is equipped with an
Intel® Bean Canyon NUC8i7BEH with a Core™ i7-8559U processor and 32 GB RAM. We combine
an Ouster OS1-64 LiDAR and a FLIR Lepton 3.5 thermal camera with 160× 120 px resolution for
perception and localization of the fires. The DJI Matrice 210 v2 provides GNSS-based ego-motion
estimates. We deactivated the obstacle avoidance of the DJI Matrice 210 v2 in the forward direction
to get close enough to fires for extinguishing.

The water supply is stored in two downward-facing 1.5 l PET-bottles attached between the
rear frame arms and the landing gear. The screw caps are connected via a flexible hose to a
windscreen washer pump. We mounted a carbon tube on top of Splasher as an extended nozzle. It
is supported by two additional carbon struts from the landing gear. The high location compensates
for the height difference in the water jet parabola, allows to perceive the fire with the sensors
below, and prevents the water from flowing out on its own during flight maneuvers. We chose a
10° downturn for the nozzle, LiDAR, and thermal camera to fly above the fire while maintaining
observability.

7.2. Laser localization
GNSS-based localization is subject to local position drift and is unreliable close to structures. The
usage of RTK-/D-GPS was allowed but penalized. Hence, we localize Splasher with respect to the
building using LiDAR. In a test run, we collected data to generate a Multi-Resolution Surfel Map
(MRSMap) of the arena with the approach from Droeschel and Behnke (2018). During localization,
we register the current LiDAR point cloud against the map. The DJI Matrice 210 v2 provides an
estimate of its ego-motion from onboard sensors, which we use to update the initial pose. After
registration, we update an offset transformation that compensates for the local position drift of the
GPS. The translation between consecutive offset updates is bounded to 30 cm to prevent potential
jumps from incorrect registration.
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Figure 25. Detected hole (red disk) inside a point cloud and points projected into the virtual camera after
morphological transformation and the detected circle.

7.3. Hole and thermal detection
The water jet exiting the nozzle is very narrow, so precise aiming is required in order to successfully
extinguish a fire with a limited amount of water. We apply a hole detection algorithm on the
LiDAR point clouds to use for relative navigation (see Fig. 25). First, planes are extracted using
RANSAC. For each plane, we project the contained points into a virtual camera perpendicular to
it. Morphological transformations are applied to the resulting image in order to close gaps between
projected points. Shape detection is used on the image to find potential holes. After re-projecting
the circles into 3D, we discard overly large or small holes, as the scenario specifies a constant 150mm
diameter for all target holes.

Our thermal detector applies lower (23000) and upper bounds (65535) to threshold8 the intensity.
We find contours in the thresholded image. For each contour, we compute the area, bounding box,
center of intensity, as well as min, max, and mean intensity for further processing. We only retain
contours of a specific size. After that, we project the LiDAR point cloud into the thermal image and
filter points outside of the detected bounding box. Finally, we calculate the centroid and normal
direction of the remaining points.

The thermal and the hole detector both output lists of detections di = (pi, ni), each consisting
of a position pi and a normal ni. A filtering module processes these detections to reject outliers
and combines both detection types into an estimate of the position and orientation of the currently
tracked fire. To do this, we keep track of a history H = ((p1, n1), . . . , (p10, n10)) of ten recent valid
detections and estimate the target position as running averages over the detection history.

Mind that the detection history may contain both thermal and hole detections. Thermal
detections are necessary to determine which of the possible targets is currently on fire. However, we
found that hole detections give a more precise estimation of the target position and especially of
its orientation. Hence, we use thermal detections to initialize the target estimate and subsequently
update it using hole detections if available. Since the detection history contains both types of
detections, they are implicitly fused by the filter. If one of the detection systems fails and, thus,
outputs no detections, the history is only filled with the other type of detection. During regular
operation, however, the filtered fire position comprises both detections.

Although we keep track of the most recent thermal detection, we only add it to the detection
history H if there has not been a valid hole detection within the last second. Thus we ensure that
we can still estimate target positions if the hole detector fails, but otherwise only use the more
precise information from hole detections. In the case of multiple holes close to the target position,
the estimate might drift away from the target if we only use hole detections. Furthermore, we have
to recover if initial heat detections are wrong or if the fire was extinguished in the meantime. To
address these issues, we only add hole detections to the detection history H if there has been a heat

8The intensity thresholds are unitless.

Field Robotics, May, 2022 · 2:807–842



Target Chase, Wall Building, and Fire Fighting · 833

Figure 26. Splasher extinguishing a fire during the MBZIRC 2020.

Figure 27. Flowchart of Splasher’s state machine.

detection within the last second and the detected hole position lies within a radius of 1.0 m around
the latest heat detection.

One might think that the open fire (Fig. 26) would negatively affect LiDAR performance due to
smoke and heat. To the contrary, a thorough investigation of the LiDAR scans after the competition
trials yielded no significant impact on LiDAR performance.

7.4. Fire-fighting control
The high-level control of Splasher is performed by a Finite state machine (FSM). The FSM uses
inputs from components described above to produce navigation waypoints to locate and approach
fires, as well as to control the water spraying during extinguishing. It also ensures that Splasher
stays within the arena limits and altitude corridor. The diagram of the FSM is shown in Fig. 27.

Search state. Splasher flies around the building in order to detect and localize a fire on all
sidewalls. The route around the building is manually defined as a linked list of waypoints specified in
the building frame, obtained from laser localization. While moving between waypoints, the detection
and filter pipeline collects data. Some waypoints are marked as Observation waypoints. Upon arrival
at an Observation waypoint, located in front of the known hole locations, Splasher hovers for a
predefined duration of 2 s, looking for fires. Splasher switches into the Extinguish state if a detection
was observed at least five times in a row and it is within the allowed height and angle boundaries.

Extinguish state. The purpose of this state is to arrive at the extinguishing position without
losing the detected fire on the way. We do so by steering the robot relative to the detected fire (i.e.,
visual servoing to the target position). To do so, we first transform the egocentric fire detection into
an allocentric frame. Based on the allocentric fire detection, we derive an extinguishing waypoint
that lies relative to the detection (horizontal offset: 2.1m, vertical offset: 0.35m), which Splasher
targets. Once Splasher reaches the goal pose, the pump is started. It is stopped as soon as Splasher
deviates from the current goal pose more than a predefined threshold for either position or heading.
Splasher keeps track of the fire and updates the goal pose accordingly. If Splasher did not lose the
target during extinguishing, the pump is stopped after all water has been sprayed and we enter the
Refilling state.
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(a) Fire detection and UAV localization during manual fire
extinguishing of the windy ground-level facade fire during the
second challenge day. The trajectory is color-coded by time,
yellow to blue.

(b) Incorrect GNSS-based UAV localization dur-
ing the Grand Challenge. The laser localization
shows the trajectory before crashing into the
building.

Figure 28. UAV localization.

Refilling state. We do not directly measure water content but measure the time the pump is
active. Once the water reserve is depleted, Splasher flies back to the starting position and hovers
there awaiting manual landing and refueling of the water storage.

7.5. Evaluation
In the first scored challenge run, software issues and wrong predefined search poses prevented
Splasher from detecting any fire. On the second challenge day, we experienced incorrect height
estimates. We attribute this to the ultrasonic sensor measuring the building wall rather than the
ground, thus estimating the height too low. In hindsight, we believe that a height sensor with a
smaller opening angle (like employed in Challenge 1) could have solved this problem, but we were
not aware of the problem’s severity during the competition.

We noticed that during all trials Splasher flew too high to detect the fire. We then switched to
manual mode and were able to fill the container of the windy ground-level facade fire with 322ml
of water near the end of the second challenge run. The manually flown trajectory and localized
detections of the fire are shown in Fig. 28. After the Grand Challenge, we found out that our
LiDAR-based localization was disabled the whole time.

As described in Sec. 3.2, we employ tools that should catch errors like disabled components.
Unfortunately, we did not include the laser localization in our supervision system since we never
expected such a core component to be subject to human error.

Shortly after the Grand Challenge started, a series of unfortunate circumstances led to Splasher
crashing into the building, as shown in Fig. 28. The laser localization was disabled due to human
error, and position estimates relied solely on the GNSS-based ego-motion estimates. To compensate
for position drift, we added a static offset to the GPS poses, which was calculated as the difference
between the predefined start position and the GPS pose when the challenge started. However, the
GPS signal strongly drifted while computing the offset. Thus a large offset was added to the GPS
pose, resulting in an initial localization error of approximately 20 m. Moreover, it continued to drift
afterwards. The canyon-like starting position between the building and the operator booth, as well
as interference with our UGV, might be responsible for the drift.
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(a) World model of the scene. (b) Bird’s-eye view. (c) Onboard ther-
mal camera.

(d) Onboard
RGB-camera.

Figure 29. Autonomous fire extinguishing on mockup target with heating element. Red line segments indicate
the UAV’s heading at various numbered waypoints (orange). The waypoints are targeted in ascending order on
the colored trajectory. (1) The UAV starts. [(2) and (3)] It searches for the heat source. (4) It found the heat
source. (5) It approaches the wall and extinguishes the fire.

(a) Error histogram. (b) Error over distance.

Figure 30. Evaluation of distance for thermal detections with depth obtained by projecting LiDAR on the
mockup target against ground truth from plane estimation. The error histogram shows sufficient accuracy to
approach the target while the error increases at close range by partially measuring the backside through the hole.

After repair, we performed further lab tests to showcase Splasher’s abilities on a mockup target
(Fig. 29). After lift-off, Splasher flies towards multiple predefined search waypoints (Fig. 29a, poses 1–
3). The heat source is first detected at Waypoint 3. Now Splasher begins to navigate only relative to
the detection and turns towards it before flying closer (Pose 4) and extinguishing the fire (Fig. 29b–
29d). A video showcasing the evaluation can be found on our website.9 We repeated the experiment
on the mockup seven times. In all cases, the target was first detected on Pose 3. It took on average
1.01 s from first detection to a stable filter estimate and already 4.96–6.60 s later the target was
reached and the pump started spraying water for on average 14.57 s. The mean GPS drift from first
detection until spraying stops was 0.68 m while our UAV remained in a stable position relative to
the heat source. This highlights the necessity of relative navigation for such a high-precision task.

In a separate test, we evaluate the accuracy for our estimated distance towards the heat source
from projecting LiDAR into thermal detections at different ranges. We derive ground truth on
the mockup from fitting a plane to its outside wall. The histogram in Fig. 30a shows that the
majority of all estimates has an error below 0.05m and less than 90% have more then 0.12 m error.
Counterintuitively, close range measurements were least reliable, as visualized in Fig. 30b. We found
that more projected LiDAR measurements stem from the backside of the mockup and since we fuse

9https://www.ais.uni-bonn.de/videos/fr_2021_mbzirc
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(a) MBZIRC challenge Day 1 and 2. (b) Mockup trials.

Figure 31. Distance histogram for thermal and hole detections combined for MBZIRC. Trial days 1 and 2 (left)
as well as the trials with the mockup target.

measurements within the bounding box, the distance is overestimated and the error increases. In
general, the accuracy is sufficient to approach the target until reliable hole detections are available.

Figure 31 compares the estimated distances of hole and thermal detections. We combined the
trial runs on days 1 and 2 of MBZIRC in Fig. 31a. The thermal detection provided first distance
measures at up to 16.5 m which is four times the maximal distance for the hole detection with
4.07 m. In contrast, during our trials with the mockup target (Fig. 29), both methods provided
detections with a maximum distance of approx. 5 m. We attribute the difference in behavior to
the heat sources and sensor combination. The low thermal sensor resolution allowed us to detect
the mockup’s heating element at a similar range to the hole detection. During the challenge, the
heat source was detectable further away due to the surrounding fire. The apparent difference in
the absolute number of detections in Fig. 31b originates from the higher LiDAR scan frequency.
Furthermore, we attribute for thermal detections the generally larger distance estimates at close
range to measurements on the backside of the mockup.

7.6. Autonomous indoor flight
During the competition, we employed Splasher only for outdoor fire extinguishing and addressed
indoor tasks using our UGV. This allowed us to use a combination of GPS and LiDAR localization.
However, we experienced severe localization errors due to limited GPS visibility and human errors.
Although we later proved the viability of our approach on a mockup on an open field, we decided to
increase the robustness of our localization method such that it can even be applied to challenging
indoor scenarios. Thus we developed a method for LiDAR-based odometry.

We model surfaces within LiDAR scans with normal distributions derived from measured points
on a uniform sparse voxel grid. Our odometry (Quenzel and Behnke, 2021) uses a sliding registration
window to simultaneously register multiple surface element (surfel) maps against a local surfel
map. A continuous-time Lie group B-Spline (Sommer et al., 2020) describes the UAV trajectory
within the sliding registration window. After a certain traveled distance, we add the last scan in a
keyframe-based sliding window approach to the local surfel map.

We exchanged our previous localization method with the new LiDAR-based odometry. An
Extended Kalman Filter fuses the resulting position measurements with IMU data to generate
estimates of the high-dimensional UAV state. Additionally, we use the method of Schleich and
Behnke (2021) to plan a collision-free trajectory instead of manually defining waypoints.

We evaluated our updated system by autonomously exploring the inside of an industrial building.
The UAV started outside and had to enter through a gate to reach a manually defined observation
pose, as depicted in Fig. 32a. There, it rotated to generate an overview of the environment and left
the building again. Figure 32b shows an aggregated point cloud of the environment and a flight
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(a) Initially planned trajectory. (b) Top-down view of an aggregated point cloud
and a trajectory (green) generated using our
LiDAR-based odometry.

Figure 32. Autonomous indoor flight experiment.

(a) Our UAV at the indoor observation pose. (b) Our UAV autonomously exits the building while
being supervised by a safety pilot.

Figure 33. Our UAV during autonomous flight in a GNSS-denied environment.

Table 6. Points (Ranks) at MBZIRC 2020 Grand Challenge.

Team Ch. 1 Ch. 2 Ch. 3 Time left Sum of Ranks GC Rank
CTU Prague & UPenn & and NYU 72.0 (1) 0.0 (8) 12.5 (2) 10 11 1
Team NimbRo (Bonn) 30.0 (4) 0.0 (7) 12.5 (1) 20 12 2
UPM & UPO & PUT & CNRS 40.5 (2) 0.0 (9) 0.1331 (5) 0 16 3

trajectory generated using our LiDAR-based odometry. Additional example images of our UAV
during the flight are shown in Fig. 33.

8. Lessons Learned
To bring our performance in context, we depict the Grand Challenge scores of the best teams in
Table 6. One can see that no team was able to score in the wall-building challenge.10 The rank
was determined as a sum of the individual challenge ranks. While in Challenge 1, no tiebreaker was
needed, our rank (7) in Challenge 2 and Challenge 3 (1) was mainly determined by the time left.

We take the opportunity to identify the key strengths and weaknesses of our system and
development approach. We also want to identify aspects of the competition that could be improved
to increase scientific usefulness in the future.

10Only one of 17 teams was able to score in this subchallenge.
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Our hardware designs proved themselves during the competition after small adaptions to the
conditions at hand. For example, after solving initial problems with our magnets, especially the
passive gripper turned out to be an advantage over other teams, who could not manipulate the
heavier bricks.

The biggest issue shortly before and during the competition was unavailable testing time. Robust
solutions require full-stack testing under competition constraints. Since we postponed many design
decisions until the competition rules were settled, we could not test our intricate design thoroughly.
In hindsight, simpler designs with fewer components, which would have required less thorough
testing, could have been more successful in the short available time frame.

While we tested our UAVs on small mockups in our lab and on an open field, the competition
environment was very different and led to system failures. For example, GPS visibility was severely
limited near the mandatory start position, which led to initialization errors. An initialization-free
or delayed initialization scheme, which we implemented later, or even a GPS drift detection would
have improved robustness. Furthermore, relative navigation enables task fulfillment with unreliable
pose information, and low-level obstacle avoidance is mandatory in such a scenario.

Also, improved visualization of the UAV state and perception could have helped to detect
problems early on. This includes a thorough application of our supervision system for every
component to catch errors like the unintentionally disabled laser localization subsystem.

The competition also placed an enormous strain on the involved personnel. For safe operation,
one safety pilot was required per UAV, plus at least one team member supervising the internal state
of the autonomous systems and being able to reconfigure the system during resets. For example,
in the Grand Challenge, this led to the situation that a safety pilot had to run from one arena to
another depending on which subchallenge was active, unnecessarily delaying the run. While reducing
the number of required human operators per robot is an admirable research goal, this is not possible
in the near future due to safety regulations. We thus feel that future competitions should keep the
required human personnel in mind so that small teams can continue to participate.

What proved to be useful in the context of competitions is to prepare low-effort backup strategies
in advance, like assistance functions for manual mode. Also, reducing high-level control to a bare
minimum, instead of universal strategies, makes the systems easier to test and reduces potential
errors.

For example, in the balloon hunting challenge, our approach could not incorporate the arena’s
nonconvex shape. Instead of using an untested elaborated path planning approach, we used the
low-effort strategy of inserting an intermediate waypoint in the middle of the arena, which required
minimal testing.

This edition of the MBZIRC suffered from overall low team performance, to the extent that the
Grand Challenge price money was not paid out on the jury’s recommendation. This underperfor-
mance of all teams points to systematic issues with the competition. From a participants’ perspective,
we think late changes to the rules have certainly contributed to this situation. A pre-competition
event such as the Testbed in the DARPA Robotics Challenge can help identify critical issues with
rules and material early in the competition timeline.

Another issue was the required effort to participate in all the different subchallenges. The
MBZIRC 2020 defined seven different tasks. Ideally, one would develop specialized solutions for
all of these. Focusing the competition more on general usability, i.e., defining multiple tasks that
can and should be completed by one platform would lower the barrier for participants.

9. Conclusion
We demonstrated successful hardware design, perception and control methods, high-level control,
and system integration for a highly complex robotic challenge. The lessons learned discussed
above in Section 8 already contain hints about individual improvements that can be applied to
subcomponents, team strategy, or competition organization.
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On a more global scale, we firmly believe that robotic competitions such as MBZIRC are key
for our community, as they force researchers to test their algorithms under real-world, integrated
conditions. Public benchmarks are the only way to properly evaluate systems in this direction.
Contrary to comparable challenges, MBZIRC provides very varied and complex challenges. While
this is highly interesting and provides research challenges, it would be good to have similar tasks
from one competition edition to the next to give the community time to learn from their promising
approaches.

Finally, while we made technical contributions to various aspects in each subchallenge, it is clear
that all of them warrant further research to increase flexibility and applicability to other domains.
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