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Abstract: Deploying automated ground vehicles beyond the confines of sunny and dry climes
will require sub-lane-level positioning techniques that use radio waves, rather than near-visible-
light radiation. Like human sight, LiDAR and optical cameras perform poorly in low-visibility
conditions. We present and demonstrate a novel technique for robust, sub-50-cm, urban ground-
vehicle positioning based on all-weather sensors. The technique incorporates a computationally-
efficient, globally-optimal radar scan registration algorithm within a larger estimation pipeline that
fuses data from commercially-available, low-cost, automotive radars, low-cost inertial sensors, vehicle
motion constraints, and, when available, precise GNSS measurements. We evaluate the performance
of the presented technique on an extensive and realistic urban dataset derived from all-weather
sensors. Comparison against ground truth shows that during 60 min of GNSS-denied driving in the
urban center of Austin, TX, the technique maintains 95th-percentile errors below 50 cm in horizontal
position and 0.5◦ in heading.
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1. Introduction
The challenge of developing automated ground vehicles (AGVs) has spurred research in lane-keeping
assistance systems, automated intersection management [Fajardo et al., 2011], tight-formation
platooning, and cooperative sensing [Choi et al., 2016, LaChapelle et al., 2020], all of which, in
an urban environment, demand accurate (e.g., 50-cm) positioning. But the majority of positioning
techniques developed thus far depend on LiDAR or cameras, which perform poorly in low-visibility
conditions, such as snowy whiteout, dense fog, or heavy rain. Adoption of AGVs in many parts of
the world will require all-weather localization techniques.

Radio-wave-based sensing techniques, such as radar and GNSS (global navigation satellite
system) remain operable even in extreme weather conditions (see Section 2), because their longer-
wavelength electromagnetic radiation penetrates snow, fog, and rain. Carrier-phase-differential
GNSS (CDGNSS) has been successfully applied for the past two decades as an all-weather,
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(a) (b) (c) (d)

Figure 1. Panel (a) shows a satellite view of the environment being mapped with automotive radar. Panel (b)
shows the generated radar map point cloud with vehicle pose obtained from a reference localization system. Note
the repeating structure along the road side due to parked vehicles. An overlay of single scans obtained during
localization from three radars on the vehicle is shown in panel (c), along with the red triangle denoting vehicle
location and heading. The scan is sparse and contains significant clutter, making it challenging to register to
the prior map. Panel (d) shows a five-second batch of scans during localization, with the red dots denoting the
vehicle trajectory over the duration of the scans. The batch captures the underlying structure, which can then
be registered to the prior map.

decimeter-accurate localization technique in open-sky conditions. Proprioceptive sensors, such as in-
ertial measurement units (IMUs), also continue to operate regardless of external conditions. Coupling
a CDGNSS receiver with a tactical-grade inertial sensor, as in [Petovello et al., 2004, Scherzinger,
2006,Zhang, 2006,Kennedy et al., 2006], delivers robust, high-accuracy positioning, even during the
extended signal outages common in the urban environment, but such systems are far too expensive
for widespread deployment on AGVs. Recent work has shown that 20-cm-accurate CDGNSS
positioning is possible at low cost, even in dense urban areas, but solution availability remains
below 90%, with occasional long gaps between high-accuracy solutions [Humphreys et al., 2020].
Moreover, the global trend of increasing radio interference in the GNSS bands, whether accidental
or deliberate [Humphreys, 2017], underscores the need for GNSS-independent localization: GNSS
jamming cannot be allowed to paralyze an area’s automated vehicle networks.

Clearly, there is a need for AGV localization that is low cost, accurate at the sub-50-cm level,
robust to low-visibility conditions, and continuously available. Our work is the first to establish that
low-cost inertial- and automotive-radar-based localization can meet these criteria.

Mass-market commercialization has brought the cost of automotive radar down enough that
virtually all current production vehicles are equipped with at least one radar unit, which serves
as the primary sensor for adaptive cruise control and automatic emergency braking. But use of
automotive radar for localization faces the significant challenges of data sparsity and noise: An
automotive radar scan has vastly lower resolution than a camera image or a dense LiDAR scan
and is subject to high rates of false detection (clutter) and missed detection. Thus, it is nearly
impossible to deduce useful semantic information or to extract distinctive environmental features
from an individual radar scan. This situation is clear from Figure 1c, which shows a sparse smattering
of reflections in a single composite scan from three radar units (i.e., single scans from three radars
on the vehicle are overlayed). The key to our localization strategy lies in aggregating sequential
scans into a temporal batch of radar scans, as in Figure 1d, where environmental structure is
clearly evident. Still, data remain so sparse that localization based on conventional machine-vision
feature-extraction and -matching is not promising. Additionally, stable, short-term odometry is a
pre-requisite for aggregating radar scans, which demand itself poses a challenge when dealing with
low-cost inertial sensors.
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1.1. Two-Step Process—Mapping & Localization
Our approach introduces a two-step process for radar-based localization. The first is the mapping
step: creation of a geo-referenced, two-dimensional, aggregated map of all radar targets across an
area of interest. Figure 1b shows such a map, hereafter referred to as a prior map. The full prior map
used throughout this paper, of which Figure 1b is a part, was constructed with the benefit of a highly-
stable, inertial platform. This prior map provides a trustworthy ground truth against which maps
generated by other techniques could be compared. But an expensive inertial system or dedicated
mobile mapping vehicle is not strictly necessary to construct the prior map. Instead, it can be crowd-
sourced from the very user vehicles that will ultimately exploit the map for localization. During
periods of favorable lighting conditions and good visibility, user vehicles can exploit a combination
of low-cost CDGNSS, as in [Humphreys et al., 2020], and GNSS-aided visual SLAM (simultaneous
localization and mapping), as in [Narula et al., 2018b], to achieve the continuous, decimeter-and-sub-
degree-accurate, geo-referenced pose required to lay down an accurate prior map. In other words,
the prior map can be created with visual- and/or LiDAR-aiding when visibility is good, and then
exploited at any later time, such as during times of poor visibility.

Despite aggregation over multiple scans and viewpoints, the sparse and cluttered nature of
automotive radar data is evident from the prior map shown in Figure 1b: The generated point
cloud is much less dense and has a substantially higher fraction of spurious returns than a typical
LiDAR-derived point cloud, thus making automotive-radar-based localization a significantly more
challenging problem.

The second step of our approach is localization. Using a combination of all-weather odometric
techniques such as inertial sensing, radar odometry, and ground-vehicle dynamics constraints, a
sensor fusion filter continually tracks the changes in vehicle pose over time. Over the most recent
batch interval (e.g., 5 s), pose estimates from the filter are used to organize spatially the multiple
radar scans taken over the interval, and generate a batch of scans, or batch for short. Figure 1d
shows the five-second batch terminating at the same location as the single scan in Figure 1c. In
contrast to the single scan, the batch of scans reveals previously invisible environmental structure,
and so enables robust registration to the prior map. Even so, the localization problem remains
challenging due to the dynamic radar environment: Note the absence of parked cars on the left
side of the street during localization. The batch of scans is matched against the prior map of the
surroundings to estimate the pose offset of the batch from the truth. This pose offset is then applied
as a measurement to the sensor fusion filter to correct for odometric drift.

1.2. Contributions
This paper’s overall contribution is a robust pipeline for all-weather, sub-50-cm, urban,
ground-vehicle positioning. This pipeline incorporates a computationally-efficient, correlation-
maximization-based, globally-optimal radar scan-registration algorithm. Scan-registration estimates
a two-dimensional translational and a one-dimensional rotational offset between a batch of scans
and a prior map. Significantly, this registration algorithm can be successfully applied to the highly
sparse and cluttered data produced by commercially-available, low-cost, automotive radars. We
show that maximization of correlation is equivalent to minimization of the L2 distance between the
prior map and the batch probability hypothesis densities. The pipeline supports the construction
of the radar registration estimate and optimally fuses it with inertial measurements, radar range-
rate measurements, ground vehicle dynamics constraints, and, when available, cm-accurate GNSS
measurements. A novel technique for online estimation of the vehicle center of rotation is introduced,
and calibration of various other extrinsic parameters necessary for optimal sensor fusion is described.

We have thoroughly evaluated the pipeline’s performance on the large-scale dataset described
in [Narula et al., 2020b]. Data from automotive sensors are collected over two 1.5 h driving sessions
through the urban center of Austin, TX on two separate days, specifically chosen to provide variety in
traffic and parking patterns. The dataset was collected in clear-weather conditions, but only includes
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data from sensors that are expected to remain unaffected in adverse weather. Comparison with a
post-processed, ground-truth trajectory shows that the developed pipeline maintains 95th-percentile
errors below 35 cm in horizontal position and 0.5◦ in heading during 60 min of GNSS-denied driving.

A preliminary version of this paper, describing the scan-registration algorithm, appeared in
[Narula et al., 2020a]. The current version develops and tests a complete sensor-fusion pipeline
that includes the construction of the batch of scans as a sub-component.

1.3. Organization of the rest of this paper
Section 2 provides a survey of millimeter-wave radar performance in adverse weather. Section 3
establishes the significance of this contribution in view of the prior work in related fields. The radar
batch-based pose estimation technique for the low-cost automotive radar sensor model is developed
in Section 4. Section 5 describes the overall sensor fusion architecture involving inertial sensing,
GNSS, motion constraints, and radar measurements. Implementation details and experimental
results from field evaluation are presented in Section 6, and Section 7 provides concluding remarks.

2. Radar-Based All-Weather Perception
Perception in adverse weather conditions has been recognized as one of the major challenges for
automated driving [Kyle Stock, 2018]. Optical cameras, widely featured as the primary sensors in
AGVs, are limited by the prevailing visibility range during dense fog or heavy rain, and become
inoperative with even slight build up of rain drops, snow, or dust on the camera lens (e.g., see [Hong
et al., 2020, Figure 9]). Moreover, the camera-perceived environment changes drastically during and
after adverse weather events such as a snow storm. These impairments make cameras ill-suited for
all-weather localization.

Several experimental automated driving projects employ LiDARs in addition to camera-based
sensing. LiDARs provide direct depth measurements of the surrounding environment and remain
equally effective at all times of the day. Unfortunately, however, LiDARs do not fare much better than
cameras under adverse weather conditions. The suspended water droplets in fog cause significant
attenuation and backscatter of the 900 nm or 1500 nm laser radiation emitted by LiDARs (e.g.,
see [Bijelic et al., 2018, Figures 1, 5] or [Li et al., 2020, Figure 7]). In addition to the reduced
sensing range, ghost returns due to backscatter from fog are challenging for mapping and localization
systems. Similarly, LiDARs are inoperative during and after severe snow storms as shown in [Jokela
et al., 2019]; LiDARs from five different manufacturers fail to obtain any reflections from a vehicle
20 m in front of the LiDAR due to severe backscatter from the snow dust kicked up by the leading
vehicle.

Millimeter-wave radar performance in adverse weather conditions has been empirically and
theoretically studied for several decades in many different applications [Hong et al., 2020,Yoneda
et al., 2018,Reina et al., 2011,Ryde and Hillier, 2009,Yen et al., 2015,Brooker et al., 2007,Foessel
et al., 1999, Chen, 1975, Kobayashi, 1980, Wallace, 1988, Mohammed et al., 2020, Kutila et al.,
2018,Rasshofer and Gresser, 2005,Zang et al., 2019], ranging from missile guidance and mining to
collision warning systems and vehicular perception. As the survey below suggests, millimeter-wave
radar is remarkably robust in all weather conditions due to its much longer wavelength as compared
to visible-light cameras and LiDARs.

The feasibility of radar-based all-weather mapping and localization has been recently studied
in [Hong et al., 2020] and [Yoneda et al., 2018]. Reference [Yoneda et al., 2018] compares the
accuracy of 76 GHz automotive-radar-based localization in clear weather and snowy conditions.
Reference [Yoneda et al., 2018, Table I] shows that radar-based localization achieves the same
accuracy in clear conditions and in partially-covered snow conditions, while the LiDAR-based
baseline method breaks down in partially-covered snow. Longitudinal accuracy of radar-based
localization begins to degrade in fully-covered snow conditions, while lateral accuracy remains
unaffected. The SLAM system presented in [Hong et al., 2020] uses a mechanically-rotating 77 GHz
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radar, which, although different in the working principle from the phased-array automotive radars,
is identical in terms of signal propagation. Through experiments in rain, fog, and snow, [Hong
et al., 2020] demonstrates the feasibilty of all-weather localization and mapping with millimeter-wave
radar, while camera- and LiDAR-based SLAM failed in the same experiments. Interestingly, [Hong
et al., 2020, Figure 8] reports partial loss of radar returns after a thick layer of ice deposits on the
radar, but the proposed system nevertheless performs adequately.

The SLAM algorithm developed in [Hong et al., 2020] is not directly applicable to the data made
available by low-cost automotive radars, since the SURF feature extraction technique used in [Hong
et al., 2020] cannot operate on scans such as the one shown in Figure 1c. On the other hand, the
results from [Yoneda et al., 2018] are especially interesting for this paper, since the two systems
employ similar radar sensors, as well as a correlation-based registration method. In comparison
to this paper, [Yoneda et al., 2018] provides no probabilistic justification for the correlation-based
approach, assumes perfect, hypothetical odometry information during generation of radar batches,
and only estimates a two-dimensional translational offset with heading assumed to be perfectly
known. Meanwhile, this paper develops a complete sensor fusion pipeline with radar, GNSS, and
IMU, and estimates the full three degrees-of-freedom state of the vehicle.

Beyond localization and mapping, [Reina et al., 2011] evaluates the performance of a 95 GHz radar
for obstacle perception in low-visibility conditions. Reference [Reina et al., 2011, Figures 19, 20]
provides an excellent example of the advantage offered by millimeter-wave radar in a dust storm.
Whereas LiDAR-based perception totally breaks down in a moderate dust storm, the radar output
remains unaffected. Similarly, an empirical study of a 95 GHz radar in [Ryde and Hillier, 2009]
concludes that the radar measurements suffer no perceptible degradation even when tested in
severe rain (50–70 mm/h) and dense dust (10 m visibility). For reference, rainfall more intense than
25 mm/h is rare.

In another study [Yen et al., 2015], a Delphi 77 GHz radar, same as the one used later in this paper,
is deployed in a collision warning system for a snow plow for operation during snow storms in the
Sierra Nevada mountains. The Delphi radar is found to perform adequately for collision warning even
in these extreme operating conditions, except when a thick layer of ice is accumulated on the radar
fascia [Yen et al., 2015, Chap. 4], similar to the observation in [Hong et al., 2020]. Mining is another
application that demands perception through cavities filled with dust and water vapor shortly after
a blast. Reference [Brooker et al., 2007] conducts a theoretical analysis of the expected attenuation
and backscatter for a 77 GHz radar in mining environments, and concludes that an attenuation
of 10 dB/km may be expected in fog with only 4 m visibility, while no perceptible attenuation is
expected from dust. The theoretical analysis suggests neglible backscatter from both dust and water
droplets, and empirical results from successful deployment and long-term testing of millimeter-wave
radar in the worst possible mining environments are shown to support the theoretical models. Simi-
larly, the performance of a 77 GHz radar in blowing snow is presented in [Foessel et al., 1999], where
empirical data collected in Antarctica show robust target measurements during snowfall. These
empirical studies at 77 GHz reaffirm this paper’s claim of all-weather operation of automotive radars.

Millimeter-wave radar has also been deployed for tactical guidance and communications for
several decades. Several measurements of the attenuation of electromagnetic radiation through
adverse weather elements are aggregated in [Chen, 1975], ranging from the RF radiation to the
visible spectrum. The study concludes that haze, fog, and clouds are transparent to the RF
spectrum radiation of millimeter-wave radars. Heavy rain is concluded to be the dominant source of
attenutation in the RF spectrum, but even in severe rain of 50 mm/h, a 77 GHz radar is predicted
to attenuate by no more than 20 dB/km, or about 2 dB over 100 m, which is the typical maximum
operating range necessary for mapping and localization. Similar results and conclusions have been
made in other studies [Kobayashi, 1980,Wallace, 1988], with millimeter-wave attenuation no more
than 15 dB/km in the most intense rain and snow conditions.

Overall, a thorough survey of the existing literature suggests that 77 GHz automotive radar
experiences negligible degradation in adverse weather, except after build up of ice on the radar fascia
itself. The major challenge with low-cost automotive-radar-based positioning is instead dealing with
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the poor angular resolution, as well as the sparse and cluttered point cloud data made available
by these sensors in comparison to the high-resolution images and point clouds generated with
cameras and LiDARs. We present a sensor fusion engine that provides robust sub-lane-level accurate
localization despite the poor automotive radar sensor characteristics.

3. Related Work
This section reviews a wide variety of literature on mapping and localization with radar and radar-
inertial sensing. This includes prior work on point cloud alignment and image registration techniques,
occupancy grid-based mapping and localization, random-finite-set-based mapping and localization,
and inertial-aided mapping and localization.

3.1. Related work in point cloud alignment
A radar-based map can have many different representations. One obvious representation is to store
all the radar measurements as a point cloud. Figure 1b is an example of this representation.
Localization within this map can be performed with point cloud registration techniques like the
iterative closest point (ICP) algorithm. ICP is known to converge to local minima which may occur
due to outlying points that do not have correspondences in the two point clouds being aligned. A
number of variations and generalizations of ICP robust to such outliers have been proposed in the
literature [Chetverikov et al., 2002,Ward and Folkesson, 2016,Holder et al., 2019,Tsin and Kanade,
2004,Jian and Vemuri, 2010,Myronenko and Song, 2010,Gao and Tedrake, 2019]. A few of these have
been applied specifically to automotive radar data [Ward and Folkesson, 2016,Holder et al., 2019].
But the technique in [Ward and Folkesson, 2016] is only evaluated on a 5 min dataset, while [Holder
et al., 2019] performs poorly on datasets larger than 1 km.

Our approach steers away from ICP and its gradient-based variants because automotive radar
data in urban areas exhibit another source of incorrect-but-plausible registration solutions which are
not addressed in the above literature—repetitive structure, e.g., due to a series of parked cars, may
result in multiple locally-optimal solutions within 2–3 m of the globally-optimal solution. Gradient-
based techniques which iteratively estimate correspondences based on the distance between pairs of
points are susceptible to converge to such locally-optimal solutions. Accordingly, the batch-based
pose estimator proposed in this paper is designed to approximate the globally-optimal solution.

In contrast to ICP and its variants, globally-optimal point cloud registration can be achieved by
performing global point correspondence based on distinctive feature descriptors [Cen and Newman,
2018, Cen and Newman, 2019, Barnes and Posner, 2020]. All of these works use a sophisticated
mechanically-rotating radar unit that is not expected to be available on an AGV. Feature description
and matching on the low-cost automotive radars used in this paper is likely to be fragile. Even
when using the mechanically-rotating radar, [Barnes et al., 2019] shows that a correlation-based
approach, such as the one developed in this paper, outperforms other feature-descriptor-based point
cloud methods.

3.2. Related work in image registration and occupancy grid techniques
Occupancy grid mapping and localization techniques have been traditionally applied for LiDAR-
based systems, and recent work in [Schuster et al., 2016, Schoen et al., ] has explored similar
techniques with automotive radar data. In contrast to batch-based pose estimation described in
this paper, both [Schuster et al., 2016] and [Schoen et al., ] perform particle-filter based localization
with individual scans, as is typical for LiDAR-based systems. These methods were only evaluated
on small-scale datasets collected in a parking lot, and even so, the reported meter-level localization
accuracy is not sufficient for lane-level positioning.

Occupancy grid maps are similar to camera-based top-down images, and thus may be aligned with
image registration techniques, that may be visual-descriptor-based [Callmer et al., 2011,Hong et al.,
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2020] or correlation-based [Yoneda et al., 2018]. Reliable extraction and matching of visual features,
e.g., SIFT or SURF, is significantly more challenging with automotive radar data. Correlation-based
registration is more robust [Yoneda et al., 2018,Barnes et al., 2019], and forms the basis of one of
the components in this paper. In contrast to prior work [Yoneda et al., 2018,Barnes et al., 2019], this
paper provides a probabilistic interpretation for the correlation operation. The mechanically-rotating
radar of [Barnes et al., 2019] allows correlation-based pose estimation based on a single scan of radar
data. But for the low-cost automotive radars used in this paper, it becomes necessary to accumulate
radar scans over time, which requires integration with other odometric sensors. We develop and
demonstrate a complete sensor fusion pipeline around radar-based pose estimation and evaluates its
performance on a large urban dataset.

3.3. Related work in random finite set mapping and localization
The occupancy grid representation commonly used in robotics is an approximation to the probability
hypothesis density (PHD) function [Mahler, 2003, Erdinc et al., 2009]: a concept first introduced
in the random finite set (RFS) based target tracking literature. Unsurprisingly, PHD- and RFS-
based mapping and localization have been previously studied in [Mullane et al., 2011,Deusch et al.,
2015, Stübler et al., 2017, Lundgren et al., 2014]. In contrast to occupancy grid-based methods,
techniques in [Mullane et al., 2011,Deusch et al., 2015, Stübler et al., 2017, Lundgren et al., 2014]
make the point target assumption where no target may generate more than one measurement in
a single scan, and no target may occlude another target. However, in reality, planar and extended
targets such as walls and building fronts are commonplace in the urban AGV environment. Mapping
of ellipsoidal extended targets has recently been proposed in [Fatemi et al., 2017], but occlusions
are not modeled and only simulation results are presented.

3.4. Related work in inertial-aided mapping and localization
Our approach couples radar batch-based pose estimation with other all-weather automotive sensors
such as IMU and GNSS. Inertial aiding has been widely applied in visual- and LiDAR-based mapping
and localization [Qin et al., 2018, Mur-Artal and Tardós, 2017, Chiang et al., 2020, Forster et al.,
2013, Steder et al., 2008,Ye et al., 2019, Li et al., 2014]. We extend inertial-aiding to sensors that
can operate under harsh weather conditions. Recently, radar measurements have been applied to
constrain IMU position drift in [Barra et al., 2019]. Radar-inertial odometry for indoor robots has
been proposed in [Almalioglu et al., 2019,Kramer et al., 2020]. This work is the first to integrate
low-cost automotive radars with inertial sensing, GNSS, and ground-vehicle dynamics for lane-level
accurate positioning in challenging urban environments.

4. Radar-Batch-Based Pose Estimation
This section describes the formulation of the scan-batch-based pose estimation method introduced
in this paper. It first details the statistical motivation behind the method, and then develops an
efficient approximation to the globally-optimal estimator. The output of this estimator acts as one
of the measurements provided to the overall localization system presented later in Section 5.

4.1. Pose Estimation using Probability Hypothesis Density
For the purpose of radar-based pose estimation, an AGVs environment can be described as a
collection of arbitrarily shaped radar reflectors in a specific spatial arrangement. Assuming sufficient
temporal permanence of this environment, radar-equipped AGVs make sample measurements of the
underlying structure over time.

4.1.1. The Probability Hypothesis Density Function
A probabilistic description of the radar environment is required to set up radar-based pose estimation
as an optimization problem. This paper chooses the PHD function [Mahler, 2003] representation of
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the radar environment. The PHD at a given location gives the density of the expected number of
radar reflectors at that location. For a static radar environment, the PHD D(x) at a location x ∈ X
can be written as

D(x) = I · p(x)

where X is the set of all locations in the environment, p(x) is a probability density function such
that

∫
p(x)dx = 1, and I, the intensity, is the total number of radar reflectors in the environment.

For a time-varying radar environment, both I and p(x) are functions of time. For A ⊂ X , the
expected number of radar reflectors in A is given as

IA =
∫
A
D(x)dx

4.1.2. Estimating Vehicle State from PHDs
During localization, the vehicle makes a radar scan, or a series of consecutive radar scans. A natural
solution to the pose estimation problem may be stated as the vehicle pose which maximizes the
likelihood of the observed batch of scans, given that the scan was drawn from PHD of the prior
map. This maximum likelihood estimate (MLE) has many desirable properties such as asymptotic
efficiency. However, the MLE solution is known to be sensitive to outliers that may occur if the batch
of scans was sampled from a slightly different PHD, e.g., due to variations in the radar environment
between mapping and localization [Jian and Vemuri, 2010].

A more robust solution to the PHD-based pose estimation problem may be stated as follows.
Let Dm(x) denote the “map” PHD function representing the distribution of radar reflectors in
an environment, estimated as a result of mapping with known vehicle poses. Let Θ denote the
vector of parameters of the rigid or non-rigid transformation T between the vehicle’s prior belief
of its pose, and its true pose. For example, in case of a two-dimensional rigid transformation, Θ =
[∆x,∆y,∆φ]>, where ∆x and ∆y denote a two-dimensional position and ∆φ denotes heading. Also,
let Db(x′) denote a local “batch” PHD function estimated from a batch of scans during localization,
defined over x′ ∈ A ⊂ X . This PHD is represented in the coordinate system consistent with vehicle’s
prior belief, such that x′ = TΘ(x). Estimating the vehicle pose during localization is defined as
estimating Θ such that some distance metric between the PHDs Dm(x) and Db(x′) is minimized.

We choose the L2 distance between Dm(x) and Db(x′) as the distance metric to be minimized.
As compared to the MLE which minimizes Kullback-Leibler divergence, L2 minimization trades off
asymptotic efficiency for robustness to measurement model inaccuracy [Jian and Vemuri, 2010]. For
our purposes, the L2 distance dL2(Θ) to be minimized is

dL2(Θ) =
∫
A

(Dm(x)−Db(TΘ(x)))2dx

For rigid two-dimensional transformations, it can be shown as follows that minimizing the L2

distance between the PHDs is equivalent to maximization of the cross-correlation between the PHDs.

Θ̂ = argmin
Θ′

∫
A

(Dm(x)−Db(TΘ′(x)))2dx

= argmin
Θ′

[∫
A
D2

m(x)dx+
∫
A
D2

b(TΘ′(x))dx− 2
∫
A
Dm(x)Db(TΘ′(x))dx

]
Note that the first term above is fixed during optimization, while the second term is invariant
under rigid transformation. As a result, the above optimization is equivalent to maximizing the
cross-correlation:

Θ̂ = argmax
Θ′

∫
A
Dm(x)Db(TΘ′(x))dx (1)

For differentiable Dm and Db, the above optimization can be solved with gradient-based methods.
However, the cross-correlation maximization problem in the urban AGV environment may have
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locally optimal solutions in the vicinity of the global minimum due to repetitive structure of radar
reflectors. In applications with high integrity requirements, a search for the globally optimal solution
is necessary. This paper notes that if the PHDs in Equation 1 were to be discretized in x, then the
cross-correlation values can be evaluated exhaustively with computationally efficient techniques. Let
xpq denote the location at the (p, q) translational offset in discretized A. Then

Θ̂ = argmax
Θ′

P−1∑
p=0

Q−1∑
q=0

Dm(xpq)Db(bTΘ′(xpq)e)

where b.e denotes the nearest grid point in the discretized space.
The technique developed above relies on the PHDs Dm and Db. The next subsections detail the

recipe for estimating these PHDs from the radar observations.

4.2. Estimating the map PHD from measurements
This section addresses the procedure to estimate the map PHD Dm(x) from radar measurements.
This paper works with an occupancy grid map (OGM) approximation to the continuous PHD
function. In [Erdinc et al., 2009], it has been shown that the PHD representation is a limiting case
of the OGM as the grid cell size becomes vanishingly small. Intuitively, let cpq denote the grid cell
region with center xpq, and let δcpq denote the area of this grid cell, which is small enough such that
no more than one reflector may be found in any cell. Let ppq(O) denote the occupancy probability
of cpq, and let A be defined as the region formed by the union of all cpq whose centers xpq fall within
A. Then, the expected number of radar reflectors E[|A|] in A is given by

E[|A|] =
∑
cpq∈A

ppq(O) =
∑
cpq∈A

ppq(O)
δcpq

δcpq

,
∑
cpq∈A

D̄(xpq)δcpq

=
∫
A
D̄(xpq)dx, as lim

δcpq→0

where D̄(xpq) ≡ ppq(O)
δcpq

can be considered to be an approximation of the PHD D(x) for x ∈ cpq
since its integral over A is equal to the expected number of reflectors in A.

The advantage of working with an OGM approximation of the PHD is two-fold: first, since the
OGM does not attempt to model individual objects, it is straightforward to represent arbitrarily-
shaped objects, and second, in contrast to the “point target” measurement model assumption in
standard PHD filtering, the OGM can straightforwardly model occlusions due to extended objects.

At this point, the task of estimating Dm(x) has been reduced to estimating the occupancy
probability of each grid cell in discretized A. Each grid cell cpq takes up one of two states: occupied
(O) or free (F ). Based on the radar measurement zk at each time k, the Bernoulli probability
distribution of such binary state cells may be recursively updated with the binary Bayes filter. In
particular, let z1:k denote all radar measurements made up to time k, and let

lkpq(O) ≡ log ppq(O | z1:k)
1− ppq(O | z1:k) (2)

denote the log odds ratio of cpq being in state O. Also define l0pq(O) as

l0pq(O) ≡ log ppq(O)
1− ppq(O)
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with ppq(O) being the prior belief on the occupancy state of cpq before any measurements are made.
With these definitions, the binary Bayes filter update is given by [Thrun et al., 2005]

lkpq(O) = log ppq(O | zk)
1− ppq(O | zk) − l

0
pq(O) + lk−1

pq (O)

where ppq(O | zk) is known as the inverse sensor model: it describes the probability of cpq being in
state O, given only the latest radar scan zk.

The required occupancy probability ppq(O | z1:k) is easy to compute from the log odds ratio in
Equation 2. Observe that the inverse sensor model ppq(O | zk), in addition to the prior occupancy
belief ppq(O), completely describes the procedure for estimating the OGM from radar measurements,
and hence approximating the PHD. Adapting ppq(O | zk) to the characteristics of the automotive
radar sensors, however, is not straightforward, and is discussed next.

4.3. Automotive Radar Inverse Sensor Model
This section addresses the challenge of adapting the inverse sensor model ppq(O | zk) to the
measurement characteristics of automotive radar sensors. Figure 2 shows a simplified radar scan
zk of an underlying occupancy grid. For clarity of exposition, four distinct categories of grid cells
in Figure 2 are defined below:

• Type A: Grid cells in the vicinity of a radar range-azimuth return.
• Type B: Grid cells along the path between the radar sensor and Type A grid cells.
• Type C : Grid cells in the “viewshed” of the radar sensor, i.e., within the radar field-of-view

and not shadowed by another object, but not of Type A or Type B.
• Type D: Grid cells outside the field-of-view of the radar (Type D1 ) or shadowed by other objects

closer to the radar (Type D2 ).

The inverse sensor model must choose a ppq(O | zk) value for each of these types of grid cells. In
the following, the subscript pq is dropped for cleaner notation.

4.3.1. Conventional Choices for the Inverse Sensor Model
Since zk provides no additional information on Type D grid cells, the occupancy in these cells is
conditionally independent of zk, that is

pD(O | zk) = p(O)

where p(O) is the prior probability of occupancy defined earlier in Section 4.1.

Type A

Type B

Type C

Type D1

Type D2

Figure 2. Schematic diagram showing four types of grid cells.
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Grid cells of Type B and Type C may be hypothesized to have low occupancy probability, since
these grid cells were scanned by the sensor but no return was obtained. As a result, conventionally

pB(O | zk) ≤ p(O)

and

pC(O | zk) ≤ p(O)

Finally, grid cells of Type A may be hypothesized to have higher occupancy probability, since a
return has been observed in the vicinity of these cells. Conventionally,

pA(O | zk) ≥ p(O)

In the limit, if the OGM grid cell size is comparable to the sensor range and angle uncertainty, or if
the number of scans is large enough such that the uncertainty is captured empirically, only the grid
cells that contain the sensor measurement may be considered to be of Type A.

4.3.2. Automotive Radar Sensor Characteristics
Intense clutter properties and sparsity of the automotive radar data complicate the choice of the
inverse sensor model.

Sparsity. First, sparsity of the radar scan implies that many occupied Type A grid cells in the
radar environment might be incorrectly categorized as free Type C cells. This can be observed in
Figure 1. As evidenced by the batch of scans in Figure 1d, the radar environment is “dense” in
that many grid cells contain radar reflectors. However, any individual radar scan, such as the one
shown in Figure 1c, suggests a much more sparse radar environment. As a result, a grid cell which
is occupied in truth will be incorrectly categorized as Type C in many scans, and correctly as Type
A in a few scans.

The sparsity of radar returns also makes it challenging to distinguish Type C cells from cells of
Type D2. Since many occluding obstacles are not detected in each scan, the occluded cells of Type
D2 are conflated with free cells of Type C.

In context of the inverse sensor model, as the radar scan becomes more sparse

pC(O | zk)→ pD(O | zk)−

where the superscript − denotes a limit approaching from below. Intuitively, approaching pD(O | zk)
implies that the measurement zk is very sparse in comparison to the true occupancy, and thus does
not provide much information on lack of occupancy.

Clutter. Second, there is the matter of clutter. The grid cells in the vicinity of a clutter
measurement may be incorrectly categorized as Type A, and the grid cells along the path between
the radar and clutter measurement may be incorrectly categorized as Type B.

In context of the inverse sensor model, as the radar scan becomes more cluttered

pB(O | zk)→ pD(O | zk)−

pA(O | zk)→ pD(O | zk)+

where the superscript + denotes a limit approaching from above.

4.3.3. A Pessimistic Inverse Sensor Model
The results presented in Section 6 are based on a pessimistic sensor model, such that pB(O | zk) =
pC(O | zk) = pD(O | zk). This model assumes that the radar measurements provide no information
about free space in the radar environment.

In particular, the inverse sensor model assumes

pB(O | zk) = pC(O | zk) = pD(O | zk) = p(O) = 0.1

and

pA(O | zk) = 0.2
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4.4. Estimating the batch PHD from measurements
The procedure for generating an approximation to Db(x′) from a batch of scans is identical to the
procedure for generating Dm(x) from mapping vehicle data, except that precise, absolute location
and orientation data is not available during localization. Instead, pose estimates from the sensor
fusion filter described in Section 5 are used to estimate the relative locations and orientations of
each radar scan in the batch, and the scans are transformed into a common coordinate frame before
updating the occupancy state of grid cells.

Once the map and batch PHDs have been approximated from radar measurements, the
correlation-maximization technique developed in Section 4.1 can be applied to obtain the estimate
Θ̂. This estimate is handed back to the sensor fusion filter as a pose offset measurement to constrain
the odometric drift during absence of other sources of absolute localization, e.g., GNSS.

5. State Estimation with Sensor Fusion
Thus far, Section 4 has developed the theory and implementation of the scan batch correlation
measurement, which provides an estimate Θ̂ of the 3-DoF (degrees-of-freedom) pose offset relative
to the prior map. This section details a localization pipeline that incorporates the batch measurement
update along with an array of other automotive all-weather sensing modalities to track the full 6-DoF
vehicle pose trajectory. The high-rate pose estimates from this pipeline are also used to spatially
organize individual scans to form the batch of scans used in the batch correlation update.

The choice of sensors available for all-weather localization is limited to radio-frequency sensors
such as GNSS and automotive radars, and to proprioceptive sensors such as IMUs and wheel
encoders. Any additional domain knowledge, such as properties of ground-vehicle dynamics, may
also be combined with these sensor measurements.

The localization pipeline in this paper is developed around a low-cost MEMS IMU. Figure 3
shows a block diagram of the overall pipeline. The error-state multiplicative extended Kalman filter
(EKF) makes use of cm-accurate CDGNSS position measurements whenever such measurements
are available, e.g., in clear-sky GNSS environments. Radial velocity and bearing measurements from
low-cost automotive radars are combined with nearly-zero sideslip and vertical speed constraints of
a ground-vehicle to continually track and limit the errors in inertial navigation. Smoothed batches
of scans are correlated with a prior map to limit odometric position drift during CDGNSS outages.
The following subsections outline the formulation of the estimator, the nonlinear state dynamics,
the various measurement models, and the necessary calibration procedures.

IMU CDGNSS Vehicle Dynamics Radar i Prior Map

Propagation Update

Error-State Multiplicative-EKF

Batch Smoother Batch Correlation

zb
a zb

ω

zn
a0

zn
a1 zv

nhc zv
zupt ṙijθij θijrij

zb
a , z

b
ω

xnom, δ̂x, Pδx

Dm

Db

Θ̂

Figure 3. Block diagram of the localization pipeline. A low-cost MEMS IMU provides high-rate specific force
and angular rate measurements. The error-state multiplicative extended Kalman filter (EKF) makes use of cm-
accurate CDGNSS position measurements whenever such measurements are available, e.g., in clear-sky GNSS
environments. Radial velocity and bearing measurements from low-cost automotive radars are combined with
nearly-zero sideslip and vertical speed constraints of a ground-vehicle to continually track and limit the errors in
inertial navigation. Smoothed batches of scans are correlated with a prior map to limit odometric position drift
during CDGNSS outages.
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Figure 4: The University of Texas Sensorium is an integrated platform for automated and connected vehicle percep-
tion research. It includes three automotive radar units, one electronically-scanning radar (ESR) and two short-range
radars (SRR2s); stereo visible light cameras; automotive- and industrial-grade inertial measurement units (IMUs); a
dual-antenna, multi-frequency software-defined GNSS receiver; and an internal computer. An iXblue ATLANS-C
CDGNSS-disciplined inertial navigation system (INS) (not shown) is mounted at the rear of the platform to provide
the ground truth trajectory. The vehicle frame v is located approximately at the center of the line connecting the rear
axles.

bearing to a number of targets.

The vehicle frame, denoted v, is characterized by the direction in which the vehicle travels when the commanded

steering angle is zero. This direction defines the y-axis of v, as shown in Figure 4. The origin of v is located at the

center of rotation of the vehicle.

The Sensorium frame, denoted s, is defined by the physical structure of the Sensorium. It is essentially a convenience

reference frame in which the nominal lever arm and orientation between different sensors are available per the me-

chanical specifications of the Sensorium. The origin of s is arbitrarily chosen to be co-located with one of the GNSS

antennas.

5.2 Error-State Filtering

The localization system of Figure 3 estimates the following 16-element state vector:

xk =
[
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k
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k
>, qnb
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Figure 4. The University of Texas Sensorium is an integrated platform for automated and connected vehicle
perception research. It includes three automotive radar units, one electronically-scanning radar (ESR) and two
short-range radars (SRR2s); stereo visible light cameras; automotive- and industrial-grade inertial measurement
units (IMUs); a dual-antenna, multi-frequency software-defined GNSS receiver; and an internal computer. An
iXblue ATLANS-C CDGNSS-disciplined inertial navigation system (INS) (not shown) is mounted at the rear of
the platform to provide the ground truth trajectory. The vehicle frame v is located approximately at the center
of the line connecting the rear axles.

5.1. Sensor Platform & Coordinate Frames
To facilitate the discussion on measurement models and calibration, the sensor-instrumented vehicle
and a few related coordinate frames are introduced here. An integrated perception platform called
the Sensorium, shown schematically in Figure 4, brings together the various low-cost automotive
sensors considered in this paper. Many of these sensors provide measurements in their respective
local frames, leading to a number of different coordinate frames that must be considered.

The IMU body frame, denoted b, is the frame defined by the IMU’s accelerometer triad.
The navigation frame, denoted n, is a local geographical reference frame, e.g., an ENU frame.

The estimator wishes to track the pose trajectory of b with respect to n.
The radar frames, denoted ri for the ith radar, are local frames in which the radar sensors report

range, range-rate, and bearing to a number of targets.
The vehicle frame, denoted v, is characterized by the direction in which the vehicle travels when

the commanded steering angle is zero. This direction defines the y-axis of v, as shown in Figure 4.
The origin of v is located at the center of rotation of the vehicle.

The Sensorium frame, denoted s, is defined by the physical structure of the Sensorium. It is
essentially a convenience reference frame in which the nominal lever arm and orientation between
different sensors are available per the mechanical specifications of the Sensorium. The origin of s is
arbitrarily chosen to be co-located with one of the GNSS antennas.

5.2. Error-State Filtering
The localization system of Figure 3 estimates the following 16-element state vector:

xk =
[
pn
k
>,vn

k
>, qnb

k

>
, bb
a,k

>
, bb
ω,k

>]>
where pn

k is the 3 × 1 vector from n to b at time k expressed in n, vn
k is the 3 × 1 velocity of b

relative to n at time k expressed in the n frame, qnb
k is the 4 × 1 unit quaternion that rotates a

vector from b to n at time k, and bb
a,k and bb

ω,k are the 3× 1 accelerometer and gyroscope biases of
the IMU at time k, expressed in b.
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Note that the vehicle orientation only has three effective degrees-of-freedom since qnb
k is con-

strained to be a unit quaternion. Enforcing such a constraint may result in a singular covariance
matrix. This issue is typically dealt with an error-state filter [Sola, 2017] where the true state is
split into a nominal-state vector

xnom,k =
[
p̃n
k
>, ṽn

k
>, q̃nb

k

>
, b̃b
a,k

>
, b̃b
ω,k

>]>
and an error-state vector δxk, related by the generalized addition operator ⊕ as follows:

xk = xnom,k ⊕ δxk

where the error-state vector δxk is the minimal 15-element state representation denoted component-
wise as follows:

δxk =
[
δpn

k
>, δvn

k
>,ηn

k
>, δbb

a,k

>
, δbb

ω,k

>]>
The ⊕ operator corresponds to usual vector addition for the position, velocity, and bias states.

For the orientation state, ⊕ is defined as

qnb
k = q̃nb

k ⊕ ηn
k

= expq
(
ηn
k

2

)
� q̃nb

k

where expq denotes the exponential map from so(3) to SO(3) [Kok et al., 2017], represented as a
quaternion, and � denotes quaternion multiplication. Note that ηn

k is parametrized as an orientation
deviation in n. A similar formulation may be derived with the orientation deviation expressed in
b [Sola, 2017].

The nonlinear error-state is tracked with an error-state EKF. Owing to the multiplicative orien-
tation dynamics and update, this filter is sometimes referred to as the multiplicative-EKF [Crassidis
et al., 2007].

5.3. State Dynamics
Inertial measurements, collectively denoted uk, are interpreted as control inputs during the state
propagation step. The true-state dynamics function fk(xk,uk,wk) is modeled as

pn
k+1 = pn

k + Tvn
k + T 2

2
(
Rnb
k

(
zb
a,k − bb

a,k −wb
a,k

)
+ gn)

vn
k+1 = vn

k + T
(
Rnb
k

(
zb
a,k − bb

a,k −wb
a,k

)
+ gn)

qnb
k+1 = qnb

k � expq
(
T

2
(
zb
ω,k − bb

ω,k −Rbn
k ω

n
e −wb

ω,k

))
bb
a,k+1 = bb

a,k +wb
ba,k

bb
ω,k+1 = bb

ω,k +wb
bω,k

where T is the propagation duration, Rnb
k is the rotation matrix representation of qnb

k , zb
a,k and zb

ω,k

are the IMU specific force and angular rate measurements, respectively, wa,k and wω,k are the IMU
specific force and angular rate white noise, respectively, gn ≈

[
0, 0,−9.8 m/s2] is the acceleration

due to gravity after compensation for the centripetal force due to earth’s rotation, and ωn
e is the

angular rate of the earth with respect to an inertial frame. The accelerometer and gyroscope biases
are modeled as random walk processes driven by white noise wb

ba,k
and wb

bω,k
, respectively, whose

variances are derived from the IMU bias instability parameters [Woodman, 2007].
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The nominal-state dynamics function fnom,k(xnom,k,uk,wk) is similar to fk(xk,uk,wk):

p̃n
k+1 = p̃n

k + T ṽn
k + T 2

2
(
R̃nb
k

(
zb
a,k − b̃b

a,k

)
+ gn)

ṽn
k+1 = ṽn

k + T
(
R̃nb
k

(
zb
a,k − b̃b

a,k

)
+ gn)

q̃nb
k+1 = q̃nb

k � expq
(
T

2
(
zb
ω,k − b̃b

ω,k − R̃bn
k ω

n
e
))

b̃b
a,k+1 = b̃b

a,k

b̃b
ω,k+1 = b̃b

ω,k

The error-state dynamics function ferr,k(δxk,uk,wk), is straightforwardly defined as

ferr,k , fk 	 fnom,k

where 	 denotes a generalized subtraction operator similar to ⊕ defined earlier.
The linearized covariance propagation step of the EKF requires computation of the following

Jacobians.

Fk = ∂ferr,k(δxk,uk,wk)
∂δxk

∣∣∣δxk=0
wk=0

(3)

Gk = ∂ferr,k(δxk,uk,wk)
∂wk

∣∣∣δxk=0
wk=0

(4)

This involves calculus of rotations. The interested reader is referred to [Sola, 2017, Kok et al.,
2017] for further details. The nontrivial sub-blocks of Fk and Gk are documented in Appendix A.

5.4. Measurement Models & Calibration
This section details the measurement models for the various measurements applied to the error-state
EKF, along with the calibration procedures necessary for the application of these measurements.

5.4.1. Inertial Measurements
IMUs measure the specific force and angular rate experienced by b relative to an inertial frame. If
the centripetal force due to earth’s rotation is absorbed in gn, then the accelerometer and gyroscope
measurements zb

a,k and zb
ω,k, respectively, are modeled as

zb
a,k = Rbn

k (an
k − gn) + bb

a,k +wb
a,k

zb
ω,k = ωb

k +Rbn
k ω

n
e + bb

ω,k +wb
ω,k

where an
k is the true acceleration of the IMU in the n frame, which double-integrates to position

deviation, and ωb
k is the true angular rate of the IMU in the n frame, which integrates to orientation

deviation. For low-quality IMUs, accelerometer and gyroscope scale factors may also need to be
modeled. For the MEMS IMU used in this work, it was observed that modeling the scale factors
did not yield any performance benefit.

The stochastic models for IMU white noise and random walk process are derived from the IMU
specifications. In addition to such intrinsic calibration, extrinsic calibration of the IMU with respect
to s is necessary for the application of other measurements expressed in s. The vector ps

sb from s
to b is taken to be known from the mechanical specification since this is not strongly observable
from the available measurements. It is, however, important to estimate any deviations from the
mechanically specified orientation q̄sb between b and s, since even sub-degree errors in the IMU
orientation relative to s may lead to substantial errors when multiplied with the lever arm to another
sensor.
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The orientation deviation of q̄sb from truth, denoted ηs
sb, can be effectively estimated when

CDGNSS measurements from multiple antennas are available to the EKF, as will be discussed in
Section 5.4.2. Accordingly, the state vector δxk is augmented with ηs

sb during clear-sky periods. It
must be noted, however, that since the IMU is mounted near the line connecting the Sensorium’s
two GNSS antennas, only two of the three elements in ηs

sb are strongly observable. Any orientation
deviation about the vector joining the two antennas is poorly unobservable, and must be constrained
by construction. Also note that estimation of ηs

sb only need be performed once as long as all sensors
are rigidly mounted, and may not even be necessary if the mechanical tolerances are acceptably
small.

5.4.2. CDGNSS Measurements
CDGNSS offers cm-accurate position measurements under all weather conditions, but typically
offers reduced solution availability in deep urban environments. This paper takes the approach of
incorporating CDGNSS measurements in the localization engine whenever they are available, while
being capable of maintaining the required lane-level accuracy over long CDGNSS outages in deep
urban canyons. In essence, the approach developed in this paper leverages CDGNSS for periodic or
one-time intrinsic and extrinsic calibration of other on-board sensors, and relies on these sensors for
accurate localization when CDGNSS is unavailable.

Signals captured from the two GNSS antennas on the Sensorium are processed together with
those from a nearby reference station to provide nearly-independent three-dimensional position
measurements of the antennas in the n frame. The position measurement for antenna ai, i ∈ {0, 1}
is modeled as

zn
ai,k = pn

k +Rnb
k Rbsps

bai
+ eai,k (5)

where eai,k is the CDGNSS measurement noise. The vector ps
bai

from b to the antenna ai, expressed
in s, is available from the mechanical specification. As discussed above, Rbs may be taken to be
the same as R̄bs from the mechanical specification, or may be further calibrated by augmenting the
state with ηs

sb.
Additionally, the error-state EKF requires the Jacobian of the measurement model with respect

to the error state:

Hai,k ,
∂zn

ai,k

∂δxk

∣∣∣ δxk=0
eai,k=0

=
∂zn

ai,k

∂xk

∣∣∣xk=xnom,k

eai,k=0
· ∂xk
∂δxk

∣∣∣ δxk=0
eai,k=0

The nontrivial sub-blocks of Hai,k are documented in Appendix A.

5.4.3. Radar Range Rate & Bearing Measurements
The range-rate and bearing measurements from automotive radars provide a valuable velocity
constraint for inertial navigation. Importantly, the frequency modulated continuous wave (FMCW)
signal used in automotive radars provides instantaneous range-rate measurements to the detected
targets, i.e., target tracking and/or matching across cluttered radar scans is not necessary to obtain
and apply this measurement.

The relative velocity of a stationary target with respect to ri is given by the negative of the
velocity with respect to n of the ith radar, expressed in ri, written −vri

ri,k
, as shown in Figure 5.

Assuming that the radar only detects targets in the two-dimensional plane of the linear phased
array, the range-rate measurement is modeled as

ṙij,k =

 sin θij,k
− cos θij,k

0

>RrisRsb(Rbn
k v

n
k +

(
ωb
k ×Rbsps

bri

))
(6)

where the vector ps
bri

and the radar orientation Rris may be taken from the mechanical specifi-
cations. Note that unlike typical measurement models where the right-hand side is composed of
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Figure 5. A visual description of the radar range-rate measurement model. Quantities labeled in green are
measured by the radar. The relative velocity of a stationary target with respect to ri is the negative of the
velocity with respect to n of the ith radar, expressed in ri , written −v ri

ri ,k . The measured radial velocity ṙi j of the
jth stationary target is the projection of −v ri

ri ,k onto the line-of-sight direction between the ith radar and the jth
target.

quantities that are either known or are being estimated, Equation 6 has measured quantities θij,k
on the right-hand side of the equation. This implies that any errors in the bearing measurements
will not be accounted for if the range-rate measurements are modeled in the EKF as shown.

The application of range-rate constraints comes with two major challenges. First, individual
radar scans contain a number of spurious targets as discussed in Section 1. Second, automotive
phased-array radars exhibit poor bearing resolution and accuracy, and this is further exacerbated by
the unusual range-rate measurement model described above. Both of these challenges are addressed
by pre-processing the range-rate and bearing measurements with a RANSAC routine that estimates
a best-fit two-dimensional radar velocity model to the radar measurements. In particular, with N
detected targets, the RANSAC operation finds a robust solution to the following system of equations: ṙi0...
ṙiN

 =

 sin θi0 − cos θi0
...

...
sin θiN − cos θiN

[vri
ri,x

vri
ri,y

]
(7)

while eliminating the (ṙij , θij) pairs that may be outliers. Example results from the RANSAC
procedure are shown in Figure 6. Ultimately, the solution to Equation 7 is applied as a measurement
to the EKF with the following measurement model:

zri

ri,k
,

[
vri
ri,x

vri
ri,y

]
k

=
[
RrisRsb(Rbn

k v
n
k +

(
ωb
k ×Rbsps

bri

))]
[0,1] + eri,k

where the subscript [0, 1] denotes the first two elements of the three-element vector. Parts of
the Jacobian of this measurement model with respect to the EKF error-state are documented in
Appendix A.

5.4.4. Ground Vehicle Dynamics Constraints
Under nominal driving conditions, a ground-vehicle respects dynamical constraints which can be
leveraged as measurements to the EKF. This paper incorporates near-zero sideslip and vertical

Field Robotics, May, 2022 · 2:525–556



542 · Narula et al.

75 50 25 0 25 50 75
Bearing ( )

10

8

6

4

2

0

2

4

R
ad

ia
l V

el
oc

ity
 (m

/s
)

RANSAC fit
Outliers
Inliers

Figure 6. Example results of the RANSAC operation on radar range-rate and bearing measurements. The two
yellow sinusoidal curves represent the RANSAC-predicted radial velocities for the port and starboard radars from
Figure 4 as a function of the bearing. With a threshold of 0.2m/s, RANSAC considers violet dots as inliers and
magenta dots as outliers. Note that the radial velocity magnitude is maximized at −30◦ and +30◦ for the port
and starboard radars, respectively, in agreement with the mounting angles of these radars on the vehicle.

velocity constraints, commonly referred to as nonholonomic constraints (NHC), as well as zero-speed
updates (ZUPT). The measurement models for these constraints are described below.

Nonholonomic Constraints (NHC). Nonholonomic constraints have been previously studied for
limiting IMU drift during GNSS outages, e.g., in [Dissanayake et al., 2001]. Typically, however,
the near-zero sideslip and vertical velocity constraints are applied to the IMU body b frame. This
works well when the vehicle drives on straight-aways. During turns, however, the lateral velocity
of the IMU cannot be assumed to be zero unless the IMU is serendipitously located at the vehicle
center of rotation. This paper introduces a novel technique for online estimation of the vehicle
center of rotation by taking advantage of periods of precise GNSS availability, as described below.
Subsequently, the NHC are applied to this estimated center of rotation rather than at the IMU
position, making the constraints valid during straight-aways as well as turns.

The application of NHC is based on the following assumptions:

1. There exists a fixed center of rotation, taken to be the origin of v, about which the vehicle
rotates when a steering control input is applied.

2. When a zero steering input is applied, the vehicle only moves in the vy direction. This holds
by definition of v.

3. The vehicle does not slip sideways or leave the surface of the road.

When the above assumptions hold, it follows that the velocity of the vehicle, when expressed in
v, is zero in the vx and vz directions at all times. In practice, however, these assumptions only
hold approximately. Accordingly, the zero sideslip and vertical velocity constraints are applied as
soft constraints in the form of measurements with an associated measurement error covariance. The
NHC is modeled as

02×1 , zv
nhc,k (8)

= [vv
k ][0,2] + enhc,k

=
[
RvsRsb(Rbn

k v
n
k +

(
ωb
k ×Rbsps

bv
))]

[0,2] + enhc,k (9)

where ps
bv = ps

bs + ps
sv and Rvs are parts of the extrinsic calibration between v and s. Precise

manual measurement of ps
sv and Rvs is challenging. First, it is not obvious where the origin of v

lies, though the center of line connecting the two rear axles might be a reasonable guess. Second, it
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would be challenging to measure, for example, the pitch of the Sensorium relative to the plane of the
vehicle chassis. Accordingly, this paper takes a data-driven approach to extrinsic calibration of v.

Once again, the extrinsic calibration technique relies on clear-sky periods with good CDGNSS
availability, such that the nominal state estimates of vn

k , qnb
k , and bb

ω,k are close to their true values.
Furthermore, calibration begins with coarse initial guesses of Rvs and ps

sv, denoted R̄vs and p̄s
sv,

respectively, and attempts to estimate the orientation deviation ηs
vs and lever arm deviation δps

sv
with respect to these. With other quantities assumed known, Equation 9 may be rewritten as

enhc,k =
[(
R̄vs ⊕ ηs

vs
)
(vs
k + (ωs

k × (p̄s
bv + δps

bv)))
]

[0,2]

, hnhc,k(ηs
vs, δp

s
bv)

This model is nonlinear in ηs
vs, and may be solved as a nonlinear least squares problem, e.g., with

the Gauss-Newton method. The Jacobian of hnhc,k evaluated at ηs
vs = 0 and δps

bv = 0 is composed
of

∂hnhc,k

∂ηs
vs

=
[
(vs
k + ωs

k × p̄s
bv)> ⊗

[
R̄vs]

[(0,2),(:)]

] [−î]×
[−ĵ]×
[−k̂]×


∂hnhc,k

∂δps
bv

=
[
R̄vs]

[(0,2),(:)][ω
s
k]×

where ⊗ denotes the Kronecker product, subscript [(0, 2), (:)] denotes selection of the first and
third rows of a matrix, [·]× denotes the skew-symmetric cross-product matrix corresponding to
the 3-element argument, and î, ĵ, and k̂ denote the cardinal unit vectors. To make the system
observable, measurements from multiple epochs must be stacked and solved as a batch. Additionally,
the nonlinear problem must be iteratively linearized and solved until convergence.

Zero-Speed Update (ZUPT). The ZUPT constraint is another valuable measurement that limits
odometric drift, especially in situations where the platform makes frequent stops. The measurement
model for ZUPT is trivially written as

03×1 , zv
zupt,k

= RvsRsbRbn
k v

n
k + ezupt,k (10)

The primary challenge of applying ZUPT is detection of epochs where this constraint is valid.
Importantly, this condition must be detected independently from the EKF state estimate, e.g., by
inspection of the raw IMU measurements. In theory, it is not possible to make any claims about
zero speed based on acceleration and/or angular rate data, since IMU measurements of a vehicle
moving with a constant velocity and orientation must be indistinguishable from those of a stationary
vehicle. In practice, however, the IMU measurements exhibit a distinct behavior when the vehicle
is in motion, e.g., due to road roughness and vehicle vibrations. Prior work has made use of these
artifacts to detect stationary periods. This paper follows the angular rate energy method from [Skog
et al., 2010] for ZUPT detection. In practice, if wheel odometry data are available from the vehicle
CAN bus, as is common in most modern vehicles, then ZUPT detection can be performed trivially
and with high reliability.

An observant reader might wonder why ZUPT is not applied directly to vn
k in Equation 10. The

advantage of applying ZUPT in v is that a tighter zero-speed constraint can be reliably applied in
the lateral and vertical directions.

5.5. Batch Smoothing & Update
Real-time estimates of the vehicle pose trajectory obtained from the EKF may be used to string
together individual scans and perform a scan batch measurement update. However, since these data
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are processed batches, it is desirable to perform backward smoothing over the short duration of
the batch. Backward smoothing enforces the dynamics function backwards in time, ironing out any
large jumps that may have occurred in the EKF forward pass.

Accordingly, the batch smoother component in Figure 3 stacks all inertial measurements and
snapshots of the estimator state over the duration of the batch. When the batch is ready to be
processed for correlation, backward smoothing is enforced with the inertial measurements as control
inputs. The smoothing formulation in this case is somewhat more complicated than usual [Särkkä,
2013] due to nonlinear backward dynamics and the error-state formulation. Details on nonlinear
error-state Rauch-Tung-Striebel smoothing are provided in Appendix B.

The correlation peak search region is taken to be ±5 m and ±3◦. The 3-DoF pose offset Θ̂ from
scan batch correlation is applied as horizontal position and heading measurements to the EKF.
Outliers from batch correlation are excluded in the EKF based on a χ2-test on the normalized
innovation squared (NIS) [Bar-Shalom et al., 2001].

6. Experimental Results
We evaluated our radar-inertial positioning system (Figure 3) experimentally using the dataset
described in [Narula et al., 2020b], which corpus was collected during approximately 1.5 h of driving
on two separate days, in and around the urban center of Austin, TX. This section presents the
evaluation results.

6.1. Dataset
Figure 7 shows the route followed by the sensor-instrumented vehicle on Thursday, May 9, 2019
(in blue) and Sunday, May 12, 2019 (in red). The test route traverses every street in the Austin,

Figure 7. Test route through The University of Texas west campus and Austin downtown. These areas are
the most challenging for precise GNSS-based positioning and thus would benefit the most from radar-based
positioning. The route was driven once on a weekday and again on the weekend to evaluate robustness of the
prior map to changes in traffic and parking patterns. Red is the mapping run (May 12), blue is the localization
run (May 9). Note that a short part of the route in the north-west section, as well as the final part of the route in
the north-east section, were different during the mapping and localization runs (i.e., the red and blue trajectories
do not overlap) due to street closures, preventing the use of a map-based positioning approach. These sections
of the test route have been omitted from the evaluation results.
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TX, downtown area, since such environments are the most challenging for CDGNSS-based position-
ing [Humphreys et al., 2020] and would benefit the most from multi-sensor, all-weather positioning.
The route was covered once on a weekday and again on the weekend to evaluate robustness of the
presented map-based approach to changes in the traffic and parking patterns. The reader may refer
to [Narula et al., 2020b, Figure 5] for a visual description of the radar and GNSS environment
navigated in this test route.

It must be noted that these data were collected in clear weather conditions. We nevertheless
expect our results will extend to adverse weather conditions, as detailed in Section 2. Importantly,
this paper does not claim that camera- or LiDAR-based localization would fail in the conditions in
which these data were collected. Instead, the focus of this work is on the development of a system
that is robust to the sparse and cluttered automotive radar measurements, under the assumption
that the radar measurements do not significantly degrade in adverse weather.

6.1.1. Sensors
The Sensorium, shown in Figure 4, features two types of automotive radars: one Delphi
electronically-scanning radar (ESR) in the middle and two Delphi short-range radars (SRR2s) on
the two sides. Both the ESR and the SRR2 are commercial-off-the-shelf sensors; similar radars are
even available on economy-class consumer vehicles. The ESR provides simultaneous sensing in a
narrow (±10◦) long-range (175 m) area and a wider (±45◦) medium-range (60 m) area. The SRR2
units each have a coverage of ±75◦ and 80 m (see [Narula et al., 2020a, Figure 6]). Each SRR2 is
installed facing outward from the center-line at an angle of 30◦. The Sensorium’s onboard computer
timestamps and logs the radar returns from all three radar units.

The LORD MicroStrain 3DM-GX5-25 MEMS IMU is an industrial-grade inertial device that
acts as the core sensor of the localization pipeline. The IMU provides temperature-compensated
accelerometer and gyroscope readings at 100 Hz. Two Antcom G8Ant-3A4TNB1 GNSS patch
antennas pull in signals from all three GNSS frequency bands and include a 40 dB low-noise amplifier.

6.1.2. Ground-Truth Trajectory
The vehicle’s ground-truth position and orientation trajectory are obtained from the iXblue
ATLANS-C, a high-performance, CDGNSS-coupled, fiber-optic gyroscope INS. The post-processed
position solution obtained from the ATLANS-C is decimeter-accurate throughout the dataset.

6.1.3. Dataset Splits
With a limited amount of field data available for development and evaluation, it was critical to
ensure that the developed localization technique did not overfit this particular dataset. Accordingly,
the data we used in developing our algorithms were restricted to a fixed 30 min segment, wherein the
prior map was constructed with radar measurements from May 9 and localization was performed
with radar, inertial, and CDGNSS measurements from May 12. In contrast, during evaluation, we
used the full 62 min of data, and the mapping and localization datasets were inverted, i.e., the prior
map was constructed with radar measurements from May 12, and localization was performed with
all sensor data from May 9. The algorithms have not been modified to maximize the performance
over the evaluation dataset.

6.2. Prior Radar Mapping
The first step to radar-map-based localization is the generation of a prior map point-cloud. Radar
scans from the May 12, 2019 drive were aggregated to create a prior map with the benefit of the
ATLANS-C ground-truth trajectory. In a practical system, a prior map can be generated during
conditions favorable for optical sensors, such as cameras and LiDAR, so that the mapping vehicle can
accurately track its pose. Alternately, the mapping process could be crowd-sourced from consumer
vehicles [Narula et al., 2018a,Narula et al., 2018b]. To facilitate efficient queries during localization,
the point-cloud is stored as a k-d tree.
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Two implementation notes are in order here. First, automotive radar clutter is especially intense
when the vehicle is stationary. Accordingly, radar range measurements obtained when the vehicle
was moving slower than 1 m/s were discarded for both mapping and localization. This constraint
implies that radar correlation measurements were only available during periods when the vehicle
was moving faster than 1 m/s. Second, we observed that radar returns far from the vehicle were
mostly clutter and had negligible resemblance to the surrounding structure. We therefore discarded
radar returns of range greater than 50 m for both the map and batch PHDs. It is noted that we
did not optimize these two threshold parameters to produce the smallest estimation errors; instead
they have been fixed based on visual inspection.

6.3. Offline Calibration
Extrinsic calibration among the IMU frame b, the Sensorium frame s, and the vehicle frame v
was performed offline with 125 s of sensor data with CDGNSS availability. While it is possible to
estimate these calibration parameters online, it is not desirable to do so since these do not change
over time.

The orientation deviation ηs
sb between the IMU body frame and the Sensorium frame was

calibrated for the localization dataset, as described in Section 5.4.1. With two GNSS antennas,
only two out of the three DoFs in ηs

sb are observable. Accordingly, the orientation deviation around
bx, which is mostly unobservable, was tightly constrained to the initial guess of zero. The deviations
around by and bz rapidly converged to sub-degree offsets from the mechanical specification.

Extrinsic calibration between v and s was similarly estimated over the 125 s period as detailed
in Section 5.4.4.

The commercial automotive radars on the Sensorium do not offer any mechanism to synchronize
their scans with an external reference clock. Analysis of the radar range-rate residuals in the EKF
showed clear evidence of latency between the data-logging timestamp and the true scan times.
Accordingly, radar latency calibration was performed offline with a best-fit approach.

6.4. Implementation Notes
6.4.1. CDGNSS Measurements & Outages
The CDGNSS position measurements used in this evaluation are, in fact, the output of the post-
processed ground-truth system; that is, these measurements have not been obtained from an unaided
CDGNSS receiver. While this is not ideal for realistic evaluation, the evaluation results presented
herein do not mislead because, first, CDGNSS measurements are only applied for a 125 s period
for initial calibration, and second, any commercial CDGNSS receiver would be able to generate
similar cm-accurate position solutions in the clear-sky region where the CDGNSS measurements
were applied.

6.4.2. Measurement Noise Correlation
Observations from the field data revealed that the measurement noise in the radar range-rate
readings between consecutive scans are not independent. This correlation is problematic, since the
EKF applied assumes each measurement to have errors that are uncorrelated in time. Accordingly,
the radar range-rate measurements were decimated to 1 Hz, so that the readings were separated
by roughly the noise-decorrelation interval. A more principled approach to this problem would
be to augment the state vector with states to pre-whiten the measurements. But this approach
was empirically observed to not outperform the straightforward measurement decimation, while
introducing additional complexity and tuning parameters.

Similarly, the NHC and ZUPT measurements can in theory be applied at every applicable IMU
epoch. But to prevent correlated errors in these constraints (e.g., due to sideslip experienced while
cornering) from making the EKF inconsistent, they are only applied at 1 Hz.
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Table 1. A List of Parameters Involved in the
Localization Pipeline
Minimum speed for valid radar range 1m/s
Maximum valid radar range 50m
Minimum RANSAC inliers 10
Minimum fraction of RANSAC inliers 0.65
v ri

ri ,x (broadside) standard deviation 0.2m/s
v ri

ri ,y (boresight) standard deviation 0.1m/s
v v

nhc,x (lateral) standard deviation 0.1m/s
v v

nhc,z (vertical) standard deviation 0.2m/s
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Figure 8. This figure shows an interesting example of radar-based urban positioning with the proposed method.
Panel (a) shows the occupancy grid estimated from the prior map point cloud. Panel (b) shows the same for a
5 s batch of scans collected in the same region. For ease of visualization, the batch occupancy grid has already
been aligned with the map occupancy grid. Panel (c) shows the cross-correlation between the batch and map
occupancy grids at 1φ = 0◦. Given that no rotational or translational offset error has been applied to the batch,
the correlation peak should appear at (0, 0). The offset of the peak in panel (c) from (0, 0) is the translational
estimate error of the proposed method. Also note the increased positioning uncertainty in the along-track direction,
and the two local correlation peaks (marked with red squares in panel (c)) due to the repeating periodic pattern
of radar reflectors in the map and the batch (marked with red rectangles in panels (a) and (b)).

6.4.3. Filter-Tuning Parameters
The process noise covariance used in the EKF is derived from the IMU datasheet parameters [Wood-
man, 2007, LORD Sensing MicroStrain, 2019]. The measurement noise covariance associated with
CDGNSS measurements is available directly from the ATLANS-C receiver. A few other measurement
noise standard deviations and tuning parameters are documented in Table 1.

6.5. Localization Results
This section presents empirical error statistics obtained from field evaluation of our approach. The
test scenario evaluated in this section is an extreme one: The vehicle starts off in a clear-sky
environment with 125 s of CDGNSS availability, and, subsequently, all CDGNSS measurements
are cut off for the next 3600 s of driving, during which the system must rely on radar and inertial
sensing along with vehicle dynamical constraints to maintain an accurate estimate of its pose.

Before diving into the quantitative analysis, it is interesting to inspect the example of a scan
batch update shown in Figure 8. For ease of visualization, the batch point cloud to be localized
has already been adjusted for any translational or rotational offset from the ground truth. The
occupancy grid estimated from the 5 s batch of scans is shown in Figure 8b. Similarly, Figure 8a
shows the occupancy grid estimated from the map point cloud retrieved from the map database.
Figure 8c shows the cross-correlation between the batch and map occupancy grids. Given that the
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Figure 9. East and north position error time histories from field evaluation. In the first 125 s of clear-sky
conditions with CDGNSS availability, the east and north position errors with respect to the ground truth are
sub-decimeter, as expected. Over the subsequent 60 min of driving in and around the urban center of the city,
the proposed method maintains sub-35-cm (95%) horizontal position errors. The horizontal position estimation
errors are consistent with the predicted standard deviation from the EKF.

batch is already aligned with ground truth, one should expect the correlation peak to appear at
(0, 0) in Figure 8c. The offset of the peak from (0, 0) in this case would be the translational estimate
error.

Two interesting features of the cross-correlation in Figure 8c are worth noting. First, the
correlation peak decays slower in the along-track direction—in this case approximately aligned
with the south-southwest direction. This is a general feature observed throughout the dataset, since
most of the radar reflectors are aligned along the sides of the streets. Second, there emerge two
local correlation peaks offset by ≈4 m along the direction of travel. These local peaks are due to
the repeating periodic structure of radar reflectors in both the map and the batch occupancy grids.
In other words, shifting the batch occupancy grid forward or backward along the vehicle trajectory
by ≈4 m aligns the periodically-repeating reflectors in an off-by-one manner, leading to another
plausible solution. Importantly, the uncertainty envelope of the initial position estimate can span
several meters, encompassing both the global optimum and one or more local optima. This explains
why gradient-based methods, which seek the nearest optimum, are poorly suited for use in the urban
automotive radar environment.

6.5.1. Performance with 4 s Radar Batches
Figure 9 shows the east and north position error time histories from the test scenario described
above. For the results presented in Figure 9 and 10, we chose a 4 s scan batch duration. In the
first 125 s of clear-sky conditions with CDGNSS availability, the east and north position errors with
respect to the ground truth are sub-decimeter, as expected. Over the subsequent 60 min of driving
in and around the urban center of the city, the proposed method maintains sub-35-cm horizontal
position errors (95%). The horizontal position estimation errors are consistent with the predicted
standard deviation from the EKF. This is a remarkable result which shows that, given a prior radar
map, lane-level-accurate horizontal positioning is achievable under GNSS-denied conditions with
the types of all-weather sensors that are already available on commercial vehicles. Vertical position
errors are not shown in Figure 9 since these are not constrained by the two-dimensional scan batch
correlation update. For ground-vehicle applications, a digital elevation map can effectively constrain
errors in altitude, if necessary.

Vehicle orientation estimation errors for the same scenario are shown in Figure 10. Heading
estimation error, shown in the bottom panel, is most important for ground-vehicle applications.
The proposed technique maintains vehicle heading estimates to within 0.5◦ of the ground truth

Field Robotics, May, 2022 · 2:525–556



All-weather, sub-50-cm, radar-inertial positioning · 549

0.2

0.0

0.2

Pi
tc

h 
(d

eg
)

0.2

0.0

0.2

R
ol

l (
de

g)

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0.5

0.0

0.5
H

ea
di

ng
 (d

eg
)

Figure 10. Vehicle orientation estimation errors from field evaluation. The proposed technique maintains vehicle
heading estimates to within 0.5◦ of the ground truth throughout most of the dataset, and the errors are consistent
with the predicted uncertainty. Roll and pitch estimation errors are smaller and stay within 0.2◦ of the ground
truth.

throughout most of the dataset, and the errors are consistent with the predicted uncertainty. Roll
and pitch estimation errors are smaller and stay within 0.2◦ of the ground truth. Better estimation of
roll and pitch is expected since these are directly observable with the accelerometer measurements.
The same phenomenon explains the substantially shorter decorrelation times for roll and pitch
errors as compared to the heading error. Finally, it is noted that the EKF is mildly inconsistent in
regards to roll and pitch estimation errors. This suggests that the accelerometer white noise and
bias stability characteristics claimed in the IMU datasheet [LORD Sensing MicroStrain, 2019] may
be optimistic in field application.

Of the related work reported in Section 3, results in [Yoneda et al., 2018,Ward and Folkesson,
2016,Lundgren et al., 2014] were reported on a similar scenario to this paper, where a prior radar
map is generated based on a ground-truth pose estimation system, followed by localization within
the prior radar map. While none of the above methods have an open-source implementation for
direct comparison on this paper’s dataset, it is possible to compare the positioning accuracy results
reported in each work. Even though the method in [Yoneda et al., 2018] assumes perfect, hypothetical
local odometry as well as heading to create the scan batches, an RMS horizontal positioning error
of 25 cm is reported in the most favorable conditions, which is worse than the 35 cm 95-percentile
accuracy of the end-to-end sensor fusion pipeline of this paper. Without camera-based lane marking
measurements, [Lundgren et al., 2014, Table II] reports 10 % longitudinal positioning errors larger
than 1 m, and 77 % lateral positioning errors larger than 20 cm, even though [Lundgren et al.,
2014] makes use of GPS, wheel speed sensors, and a gyroscope. Our current design significantly
outperforms [Lundgren et al., 2014] with no GNSS or wheel speed measurements. Similarly, [Ward
and Folkesson, 2016] uses speed and yaw-rate from a ground-truth reference system along with a
prior radar map to achieve RMS logitudinal positioning error of 37.7 cm, which is worse than the
95-percentile horizontal positioning error reported in this paper without any assistance from the
ground-truth reference system.

6.5.2. Choosing a Radar Batch Length
The problem of choosing the duration of a scan batch during localization presents an interesting
trade-off. On the one hand, longer batch durations are preferable because, intuitively, cross-
correlation using a larger patch of the radar environment is more likely to produce a strong and
unambiguous correlation peak. Figure 11 shows results from an empirical test of this intuition. In
this test, scan batches of different durations between 1 s and 8 s were generated with ground-truth
odometry and correlated against a prior map to obtain the estimated offset from the ground-truth
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Figure 11. CCDFs for different batch lengths between 1 s and 8 s. The 50-percentile errors are similar for shorter
and longer batch lengths, but the difference becomes more noticeable at higher percentiles.
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Figure 12. End-to-end effect of different batch lengths on horizontal positioning performance. Other than the
longest batch length of 8 s, most batch lengths appear to perform similarly well, with 95th-percentile horizontal
position errors near 30 cm.

pose. The complementary cumulative distribution function (CCDF) of the horizontal position
estimation errors is shown in 11. It is interesting to note that up to the 70th percentile, errors are
similar for different batch lengths. The difference between the CCDFs becomes more pronounced
at higher percentiles, implying that errors for shorter batch lengths have heavy tails. Recall that
in the overall localization pipeline of Figure 3, these errors will act as measurement errors in Θ̂.
An EKF models measurement errors to be Gaussian, which is not a good model for heavy-tailed
distributions. Accordingly, longer batch durations would appear preferable.

On the other hand, longer batches have several disadvantages. First, longer durations between
batch measurement updates leads to larger odometric drift between updates, as well as poorer
reconstruction of the scan batch itself. Second, some of the worst outliers due to shorter batch
lengths may be rejected in the EKF based on the χ2 NIS test, thus blunting the relative advantage
of longer batches. Shorter batch lengths allow for a larger number of measurement updates to be
performed per unit time, even if a few of those measurements may have to be rejected as outliers.

Figure 12 reveals the end-to-end effect of different batch lengths. For a given batch length, its
measurement error standard deviation was obtained from the corresponding CCDF in Figure 11,
i.e., the Θ̂ measurement standard deviation is smaller for longer batches. Interestingly, other than
the longest batch length of 8 s, most batch lengths appear to perform similarly well, with 95-
percentile horizontal position errors near 30 cm. Given the heavy-tailed nature of measurement
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noise distributions when working with very short batches (from Figure 11), batch lengths from 2 to
4 s may be taken to be a good compromise.

6.5.3. Sensitivity to Map Discrepancies
As it includes mapping and localization data collected on different days—one on a weekday and
the other on a weekend—the dataset processed in this work allows evaluation of the robustness
of the system to discrepancies between the prior map and the scan batch. Note that these data
were collected prior to the COVID-19 pandemic and exhibit significant variation in traffic and
parking patterns between the weekday and weekend collection, especially in the university and
downtown area. Street parking, in particular, is drastically different between the prior map and the
localization data. Even so, as described above, the proposed system exhibits remarkable accuracy
and robustness. It must be noted, however, that the correlation-based approach of this paper assumes
sufficient consistency between the prior map and the current batch such that the cross-correlation is
maximized for the true translation and heading offset within the peak search window. The system
would fail in the extreme case that a preponderance of features in the surrounding environment
changed between mapping and localization.

7. Conclusion
A robust pipeline for all-weather sub-50-cm urban ground-vehicle positioning has been demon-
strated. The positioning engine is based on commercially-available, low-cost, automotive radars,
MEMS IMU, ground-vehicle dynamics constraints, and, when available, precise GNSS measure-
ments. This paper has shown, remarkably, that given a prior radar map, lane-level horizontal
positioning is achievable with all-weather sensors already available on commercial vehicles. In
comparison with a post-processed ground truth trajectory, it has been shown that during 60 min
of GNSS-denied driving in the urban center of Austin, TX, during clear weather, the presented
pipeline delivers 95th-percentile accuracy better 35 cm in horizontal position and 0.5◦ in heading.
Based on several decades of empirical studies of millimeter-wave radar in rain, snow, fog, and dust,
we expect our results will extend, without significant degration, to adverse weather conditions. Our
work represents a significant development in the field of AGV localization, which has traditionally
relied upon sensors such as LiDAR and optical cameras, all of which perform poorly in bad weather
conditions.

Appendix A. Partial Derivatives
A.1. Linearized Forward Dynamics
A few block components of Fk and Gk from Equations 3 and 4 are listed below.
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k+1 with respect to δxk follow similarly.

∂ηn
k+1

∂ηn
k

∣∣∣δxk=0
wk=0

≈ I3×3

∂ηn
k+1

∂δbb
ω,k

∣∣∣δxk=0
wk=0

≈ −TR̃nb
k+1Jr

(
T

2
(
zb
ω,k − b̃b

ω,k − R̃bn
k ω

n
e
))

≈ −TR̃nb
k+1
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where

Jr(θ) = I3×3 −
1− cos ‖θ‖
‖θ‖2 [θ]× + ‖θ‖ − sin ‖θ‖

‖θ‖3 [θ]2×

is the right Jacobian of SO(3) [Sola, 2017].

∂ηn
k+1

∂wω,k

∣∣∣δxk=0
wk=0

≈ TR̃nb
k+1Jr

(
T

2
(
zb
ω,k − b̃b

ω,k − R̃bn
k ω

n
e
))

≈ TR̃nb
k+1

A.2. Linearized Measurement Models
The partial derivative of the measurement zn

ai,k
from Equation 5 can be expressed as

∂zn
ai,k

∂δxk

∣∣∣ δxk=0
eai,k=0

=
∂zn

ai,k

∂xk

∣∣∣ δxk=0
eai,k=0

· ∂xk
∂δxk

∣∣∣ δxk=0
eai,k=0

where the non-trivial block matrices are as follows:

∂zn
ai,k

∂qnb
k

∣∣∣ δxk=0
eai,k=0

=
∂
(
qnb
k �Rbsps

bai
� qbn

k

)
∂qnb

k

∂qnb
k

∂ηn
k

∣∣∣ δxk=0
eai,k=0

= 1
2


−qx −qy −qz
qw qz −qy
−qz qw qx
qy −qx qw


with q̃nb

k = [qw, qx, qy, qz]. The expression for derivative of the rotation with respect to the quaternion
can be found in [Sola, 2017, Section 4.3.2].

For the radar range-rate measurement zri

ri,k

∂zri

ri,k

∂vn
k

=
[
RrisRsbR̃bn

k

]
[(0,1),(:)]

∂zri

ri,k

∂qnb
k

=
[
RrisRsb ∂

(
qbn
k � ṽn

k � qnb
k

)
∂qnb

k

]
[(0,1),(:)]

∂zri

ri,k

∂bb
ω,k

=
[
−RrisRsb[Rbsps

bri

]
×

]
[(0,1),(:)]

where [0, 1][:] denotes the first two rows of the matrix. The partial derivatives of zv
nhc,k and zv

zupt,k
follow similarly.

Appendix B. Nonlinear Error-State Rauch-Tung-Striebel Smoother
The conventional expression for the extended Rauch-Tung-Striebel (RTS) smoother is given
as [Särkkä, 2013, Chap. 9]

x?k = x̂k + Ck
(
x?k+1 − fk(x̂k)

)
P ?k = Pk + Ck

(
P ?k+1 − FkPkF>k −GkQkG>k

)
C>k

with

Ck = PkF
>
k

(
FkPkF

>
k +GkQkG

>
k

)−1
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where ? indicates the smoothed estimate and ˆ indicates the filtered estimate. This expression is
derived by linearizing the dynamics at the filtered state estimate during the backward smoothing
pass.

In contrast, this paper prefers to linearize the dynamics at the predicted smoothed estimate x̄?k
instead

x̄?k , f−1
k

(
x?k+1,uk,0

)
This formulation results in a similar but slightly modified expression for the extended RTS

smoother

x?k = x̂k + C?kF
?
k (x̄?k − x̂k)

P ?k = Pk + C?k
(
P ?k+1 − F ?kPkF ?>k −G?kQkG?>k

)
C?>k

with

C?k = PkF
?>
k

(
F ?kPkF

?>
k +G?kQkG

?>
k

)−1

where F ?k and G?k denote linearized forward dynamics around x̄?k.
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