
Field Robotics, March, 2022 · 2:147–171 · 147

Special Issue: Robotics Collaborative Technology Alliance (RCTA) Program

Regular Article

Semantic keypoint-based pose estimation
from single RGB frames
Karl Schmeckpeper1 , Philip R. Osteen2 , Yufu Wang1 , Georgios Pavlakos3,∗ ,
Kenneth Chaney1 , Wyatt Jordan2 , Xiaowei Zhou4,∗ , Konstantinos G. Derpanis5

and Kostas Daniilidis1
1University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA 19104
2DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, USA 20783
3University of California, Berkeley, 253 Cory Hall, Berkeley, CA 94720
4Zhejiang University, 866 Yuhangtang Rd, Hangzhou, China
5Ryerson University, 350 Victoria Street, Toronto, ON, Canada

Abstract: This paper presents an approach to estimating the continuous 6-DoF pose of an object
from a single RGB image. The approach combines semantic keypoints predicted by a convolutional
network (convnet) with a deformable shape model. Unlike prior investigators, we are agnostic to
whether the object is textured or textureless, as the convnet learns the optimal representation
from the available training-image data. Furthermore, the approach can be applied to instance-
and class-based pose recovery. Additionally, we accompany our main pipeline with a technique
for semi-automatic data generation from unlabeled videos. This procedure allows us to train the
learnable components of our method with minimal manual intervention in the labeling process.
Empirically, we show that our approach can accurately recover the 6-DoF object pose for both
instance- and class-based scenarios even against a cluttered background. We apply our approach both
to several, existing, large-scale datasets - including PASCAL3D+, LineMOD-Occluded, YCB-Video,
and TUD-Light - and, using our labeling pipeline, to a new dataset with novel object classes that
we introduce here. Extensive empirical evaluations show that our approach is able to provide pose
estimation results comparable to the state of the art.

Keywords: computer vision, perception

1. Introduction
This paper addresses the task of estimating an object’s continuous, six degrees-of-freedom (6-DoF)
pose (3D translation and rotation) of an object from a single image. Despite its importance in
a variety of applications, e.g., robotic manipulation, navigation, etc., and its intense study, most
solutions tend to treat objects on a case-by-case basis. For instance, approaches can be distinguished
by whether they apply to “sufficiently” textured objects or apply to textureless objects. In addition,
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Figure 1. Overview of approach. Given a single RGB image of an object (first and third columns), we estimate
its 6-DoF pose. The corresponding CAD model is overlaid on the image (second and fourth columns) using the
estimated pose. Our method deals with both instance-based (left pair) and class-based scenarios (right pair).

(a) (b) (c) (d)

Figure 2. Processing pipeline of our approach. Given a single RGB image of an object (a), we localize a
set of class-specific keypoints using a convnet. The output of this step is a set of heatmaps, one for each
keypoint, which are combined for visualization in (b), sometimes leading to false detections. In (c), green dots
represent the detected keypoints and the corresponding blue dots (connected with an arrow) the groundtruth
locations. For robustness against such localization errors, we solve a fitting problem to enforce global consistency
of the keypoints, where the response of the heatmaps is used as a measure of certainty for each keypoint. The
optimization recovers the full 6-DoF pose of the object (d).

some approaches focus on instance-based object detection, while others address object classes. In
this work we strive for an approach where the admissibility of objects considered is as wide as
possible (examples in Figure 1).

Our approach combines statistical models of appearance and the 3D shape layout of objects for
pose estimation. It consists of two stages that first reason about the 2D projected shape of an object,
as captured by a set of 2D semantic keypoints, then estimates the 3D pose consistent with those
keypoints (Figure 2). In the first stage, we use a high capacity, convolutional network (convnet) to
predict a set of semantic keypoints. Here, the network takes advantage of its ability to aggregate
appearance information over a wide receptive field, as compared to localized part models, e.g., (Gu
and Ren, 2010), to make reliable predictions of the semantic keypoints. In the second stage, the
semantic keypoint predictions are used to reason explicitly about the intra-class shape variability
and the camera pose modeled by a weak- or full-perspective camera model. Pose estimates are
realized by maximizing the geometric consistency between the parametrized, deformable model and
the 2D semantic keypoints. While this work focuses on RGB-based pose estimation, our method can
provide a robust way to initialize the iterative closest point (ICP) algorithm (Besl and McKay, 1992)
to further refine the pose in the case where a corresponding point cloud is provided with the image.

In this paper, we additionally focus on efficiently collecting the data to train the learnable
components of our approach. More specifically, although the convnet used for the detection of the
semantic keypoints requires a relatively small number of images for training, annotation time can
become excessive as all relevant keypoints must be identified. To bypass the manual labor, we propose
a semi-automatic procedure that can greatly accelerate deployment of our algorithm, particularly in
the instance-based scenario. Our method relies on 3D reconstruction of the object from an unlabeled
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input video, and selection of a small number of keypoints on the final 3D surface. Projecting the 3D
keypoints on all the images of the video allows us to generate a large number of training data for the
keypoint localization network. This procedure can be repeated for multiple videos to significantly
increase the quantity of data available for training, capturing multiple backgrounds, poses, and
lighting conditions.

In summary, this paper extends our previous work published in ICRA 2017 (Pavlakos et al.,
2017). Our main contribution lies in presenting an accurate and robust approach for 6-DoF object
pose estimation, both for the class-based and the instance-based cases. Here we extend our previous
workin the following ways.

• We present an approach for semi-automatic data generation which is appropriate to train the
learnable components of the original method

• We release a dataset of outdoor pose estimation challenges labeled with this pipeline
• We carefully evaluate the accuracy of the data labeling and the effect it has on the rest of the

pipeline
• We provide additional comparisons on new datasets between our pose estimation algorithm

and those developed since the release of the original paper, demonstrating that our approach
has withstood the test of time.

2. Related Works
Estimating the 6-DoF pose of an object from a single image has attracted significant study. Given
a rigid 3D object model and a set of 2D-to-3D point correspondences, various solutions have been
explored, e.g., (Fischler and Bolles, 1981; Lepetit et al., 2009). This is commonly referred to as the
Perspective-n-Point problem (PnP). To relax the assumption of known 2D landmarks, a number
of approaches have considered the detection of discriminative image keypoints (Collet et al., 2009;
Collet et al., 2011; Xie et al., 2013), such as SIFT (Lowe, 2004), with highly textured objects. A
drawback with these approaches is that they are inadequate for addressing textureless objects and
their performance is susceptible to scene clutter. An alternative to sparse discriminative keypoints
is offered by dense methods (Brachmann et al., 2014; Brachmann et al., 2016; Doumanoglou et al.,
2016; Michel et al., 2017), where every pixel or patch is voting for the object pose. These approaches
are also applicable for textureless objects, however, the assumption that a corresponding instance-
specific 3D model is available for each object limits their general applicability.

Holistic template-based approaches are one of the earliest approaches considered in the object
detection literature. To accommodate appearance variation due to camera capture viewpoint, a set
of template images of the object instance are captured about the view sphere and are compared to
the input image at runtime. In recent years, template-based methods have received renewed interest
due to the advent of accelerated matching schemes and their ability to detect textureless objects
by way of focusing their model description on the object shape (Muja et al., 2011; Hinterstoisser
et al., 2012; Rios-Cabrera and Tuytelaars, 2013; Xie et al., 2013; Cao et al., 2016). While impressive
results in terms of accuracy and speed have been demonstrated, holistic template-based approaches
are limited to instance-based object detection and are not robust to occlusions. To address class
variability and viewpoint, various approaches have used a collection of 2D appearance-based part
templates trained separately on discretized views (Gu and Ren, 2010; Fidler et al., 2012; Pepik
et al., 2012; Xiang et al., 2014; Zhu et al., 2014).

Convolutional networks or convnets (LeCun et al., 1989; Krizhevsky et al., 2012) have emerged
as the method of choice for a variety of vision problems. Closest to the current work is their
application in camera viewpoint and keypoint prediction. Convnets have been used to predict the
camera’s viewpoint with respect to the object by way of direct regression or casting the problem as
classification into a set discrete views (Massa et al., 2014; Tulsiani and Malik, 2015; Su et al., 2015a).
While these approaches allow for object category pose estimation they do not provide fine-grained
information about the 3D layout of the object. Convnet-based keypoint prediction for human pose
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estimation (e.g., (Toshev and Szegedy, 2014; Zhou et al., 2015b; Newell et al., 2016; Wei et al.,
2016)) has attracted considerable study, while limited attention has been given to their application
with generic object categories (Long et al., 2014; Tulsiani and Malik, 2015). Their success is due
in part to the high discriminative capacity of the network. Furthermore, their ability to aggregate
information over a wide field of view allows for the resolution of ambiguities (e.g., symmetry) and
for localizing occluding joints.

Statistical shape-based models tackle recognition by aligning a shape subspace model to image
features. While originally proposed in the context of 2D shape (Cootes et al., 1995) they have proven
useful for modelling the 3D shape of a host of object classes, e.g., faces (Cao et al., 2013), cars (Zia
et al., 2013; Murthy et al., 2017), and human pose (Ramakrishna et al., 2012). In (Zhu et al., 2015),
data-driven discriminative landmark hypotheses were combined with a 3D deformable shape model
and a weak perspective camera model in a convex optimization framework to globally recover the
shape and pose of an object in a single image. Here, we adapt this approach and extend it with a
perspective camera model, in cases where the camera intrinsics are known.

Since our initial work on pose estimation from semantic keypoints (Pavlakos et al., 2017), several
other works have been inspired by or have used our method. Wang et al. demonstrate the effectiveness
of using learned keypoints for object tracking (Wang et al., 2019). Qin et al. show a pipeline that
learns task specific keypoints for manipulation (Qin et al., 2019). Manuelli et al. use semantic
keypoints as their object representation for manipulation (Manuelli et al., 2019). Peng et al. propose
a refinement of the keypoint detection for pose estimation using pixel-wise voting (Peng et al., 2019).
Hu et al. use object segmentations rather than object bounding boxes to input detected objects into
their semantic keypoint based pose estimation pipeline (Hu et al., 2019). Zhou et al. learn a set of
category agnostic keypoints for object pose estimation (Zhou et al., 2018).

Other works directly use our work or similar approaches. Zuo et al. show that a keypoint based
pose estimation pipeline can be used to track the position of a low cost robotic arm that does
not have its own sensors, enabling cheap manipulation (Zuo et al., 2019). The keypoint-based pose
estimation pipeline was used by (Bowman et al., 2017) as the first step in their semantic SLAM
pipeline. Our pipeline has been used by (Vasilopoulos and Koditschek, 2018; Vasilopoulos et al.,
2020b; Vasilopoulos et al., 2020a) to detect and localize objects for reactive planning for navigation,
and was used by the Robotics Collaborative Techonology Alliance (RCTA) program to rapidly
collect and annotate data for pose estimation for mobile manipulation (Narayanan et al., 2020;
Kessens et al., 2020).

RGB-based instance-level pose estimation has also made improvements since our method was
initially proposed, largely due to deep network based pipelines (Kehl et al., 2017; Xiang et al., 2017;
Mousavian et al., 2017; Kehl et al., 2017; Tekin et al., 2018; Tremblay et al., 2018; Do et al., 2018; Li
et al., 2018; Montserrat et al., 2019; Labbé et al., 2020; Ke et al., 2020; Hou et al., 2020) and higher
quality training data (Zeng et al., 2017; Hodaň et al., 2018; Hodaň et al., 2020; Sundermeyer et al.,
2020; Wang et al., 2020). Interestingly, while several single-shot methods have focused on speed (Kehl
et al., 2017; Tekin et al., 2018; Hou et al., 2020), many state of the art approaches still follow the two-
stage approach, where 2D-3D correspondences are detected with a deep network in the first stage,
and 6D pose is solved in the second stage with PnP methods. Different intermediate representations
have been explored to establish correspondences, such as 3D bounding box corners (Rad and Lepetit,
2017), dense object coordinates (Park et al., 2019), dense fragments (Hodan et al., 2020), pixel-
wise voting (Peng et al., 2019) and their hybrids (Song et al., 2020). We will show through new
experiments in Section 6.2 that our simple semantic keypoint based representation is still effective
and competitive, even in challenging occluded cases.

3. Pose estimation from Semantic Keypoints
Our pipeline includes object detection, keypoint localization, and pose optimization. As object
detection has been a well studied problem, we assume that a bounding box around the object has
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been provided by an off-the-shelf object detector, e.g., Faster R-CNN (Ren et al., 2015), and focus
on the later two processes.

3.1. Pose optimization
Given the keypoint locations on the 3D model as well as their correspondences in the 2D image,
one naive approach is to simply apply an existing PnP algorithm to solve for the 6-DoF pose.
This approach is problematic because the keypoint predictions can be rendered imprecise due to
occlusions and false detections in the background. Moreover, the exact 3D model of the object
instance in the testing image is often unavailable. To address these difficulties, we fit a deformable
shape model to the 2D detections while considering the uncertainty in keypoint predictions. This
approach additionally allows the optimzation to include the uncertainty of the detections, making
it better able to handle false or imprecise detections.

We build a deformable shape model for each object category using 3D CAD models with annotated
keypoints. More specifically, the p keypoint locations on a 3D object model are denoted by S ∈ R3×p

and

S = B0 +
k∑
i=1

ciBi, (1)

where B0 is the mean shape of the given 3D model and B1, . . . ,Bk are several modes of possible
shape variability computed by Principal Component Analysis (PCA).

Given detected keypoints in an image, which are denoted by W ∈ R2×p, the goal is to estimate
the rotation R ∈ R3×3 and translation T ∈ R3×1 between the object and camera frames as well as
the coefficients of the shape deformation c = [c1, · · · , ck]>.

The inference is formulated as the following optimization problem:

min
θ

1
2

∥∥∥ξ(θ)D 1
2

∥∥∥2

F
+ λ

2 ‖c‖
2
2, (2)

where θ is the set of unknowns, ξ(θ) denotes the fitting residuals dependent on θ, and the Tikhonov
regularizer ‖c‖2

2 is introduced to penalize large deviations from the mean shape.
To incorporate the uncertainty in 2D keypoint predictions, a diagonal weighting matrix D ∈ Rp×p

is introduced:

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dp

 , (3)

where di indicates the localization confidence of the ith keypoint in the image. In our implementation,
di is assigned the peak value in the heatmap corresponding to the ith keypoint. As shown previously
(Newell et al., 2016), the peak intensity of the heatmap provides a good indicator for the visibility
of a keypoint in the image.

The fitting residuals, ξ(θ), measure the differences between the given 2D keypoints, provided by
the previous processing stage, and the projections of 3D keypoints. Two camera models are next
considered.

3.1.1. Weak perspective model
If the camera intrinsic parameters are unknown, the weak perspective camera model is adopted,
which is usually a good approximation to the full perspective case when the camera is relatively far
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away from the object. In this case, the reprojection error is written as

ξ(θ) = W − sR̄

(
B0 +

k∑
i=1

ciBi

)
− T̄ 1>, (4)

where s is a scalar, R̄ ∈ R2×3 and T̄ ∈ R2 denote the first two rows of R and T , respectively, and
θ = {s, c, R̄, T̄ }.

The problem in (2) is continuous and in principal can be locally solved by any gradient-based
method. We solve it with a block coordinate descent scheme because of its fast convergence and the
simplicity in implementation. We alternately update each of the variables while fixing the others.
The updates of s, c and T̄ are simply solved using closed-form least squares solutions. The update of
R̄ should consider the SO(3) constraint. Here, the Manopt toolbox (Boumal et al., 2014) is used to
optimize R̄ over the Stiefel manifold. As the problem in (2) is non-convex, we further adopt a convex
relaxation approach (Zhou et al., 2015a) to initialize the optimization. More specifically, we only
estimate the pose parameters while fixing the 3D model as the mean shape in the initialization stage.
By setting c = 0 and replacing the orthogonality constraint on R̄ by the spectral norm regularizer,
the problem in (2) can be converted to a convex program and solved with global optimality (Zhou
et al., 2015a).

3.1.2. Full perspective model
If the camera intrinsic parameters are known, the full perspective camera model is used, and the
residuals are defined as

ξ(θ) = W̃ Z −R

(
B0 +

k∑
i=1

ciBi

)
− T 1>, (5)

where W̃ ∈ R3×p represents the normalized homogeneous coordinates of the 2D keypoints and Z
is a diagonal matrix:

Z =


z1 0 · · · 0
0 z2 · · · 0
...

...
. . .

...
0 0 · · · zp

 , (6)

where zi is the depth for the ith keypoint in 3D. Intuitively, the distances from the 3D points to
the rays crossing the corresponding 2D points are minimized. In this case, the unknown parameter
set θ is given by {Z, c,R,T }.

The optimization here is similar to the alternating scheme in the weak perspective case. The
update of Z also admits a closed-form solution and the update of R can be analytically solved by
the orthogonal Procrustes analysis. To avoid local minima, the optimization is initialized by the
weak perspective solution.

3.2. Keypoint localization
The keypoint localization step employs the “stacked hourglass” network architecture (Newell et al.,
2016) that has been shown to be particularly effective for 2D human pose estimation. Motivated by
this success, we use the same network design and train the network for object keypoint localization.

Network architecture. A high level overview of the main network components is presented in
Figure 3. The network takes as input an RGB image, and outputs a set of heatmaps, one per
keypoint, with the intensity of the heatmap indicating the confidence of the respective keypoint
to be located at this position. The network consists of two hourglass components, where each
component can be further subdivided into two main processing stages. In the first stage, a series
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Image Intermediate heatmaps Output heatmaps

Figure 3. Overview of the stacked hourglass architecture (Newell et al., 2016). Here, two hourglass modules
are stacked together. The symmetric nature of the design allows for bottom-up processing (from high to low
resolution) in the first half of the module, and top-down processing (from low to high resolution) in the second
half. Intermediate supervision is applied after the first module. The heatmap responses of the second module
represent the final output of the network that is used for keypoint localization.

of convolutional and max-pooling layers are applied to the input. After each max-pooling layer,
the resolution of the feature maps decreases by a factor of two, allowing the next convolutional
layer to process the features at a coarser scale. This sequence of processing continues until reaching
the lowest resolution (4 × 4 feature maps), which is illustrated by the smallest layer in the middle
of each module in Figure 3. Following these downsampling layers, the processing continues with a
series of convolutional and nearest-neighbor upsampling layers. Each upsampling layer increases the
resolution by a factor of two. This process culminates with a set of heatmaps at the same resolution
as the input of the hourglass module. A second hourglass component is stacked at the end of the
first one to refine the output heatmaps. The groundtruth labels used to supervise the training are
synthesized heatmaps based on a 2D Gaussian centered at each keypoint with a standard deviation
set to one. The `2 loss is minimized during training. Additionally, intermediate supervision is applied
at the end of the first module, which provides a richer gradient signal to the network and guides
the learning procedure towards a better optimum (Lee et al., 2015). We evenly weight the the loss
from the intermediate heatmaps with the heatmaps from the last module. We train the model using
the RMSProp optimizer (Tieleman and Hinton, 2012). The heatmap responses of the last module
are considered as the final output of the network and the peak in each heatmap indicates the most
likely location for the corresponding keypoint. For more details of our architecture, please see our
official implementation.1

Design benefits. The most critical design element of the hourglass network is the symmetric
combination of bottom-up and top-down processing that each hourglass module performs. Given the
large appearance changes of objects due to in-class and viewpoint variation, both local and global
cues are needed to effectively decide the locations of the keypoints in the image. The consolidation
of features across different scales in the hourglass architecture allows the network to successfully
integrate both local and global appearance information, and commit to a keypoint location only
after this information has been made available to the network. Moreover, the stacking of hourglass
modules provides a form of iterative processing that has been shown to be effective with several
other recent network designs (Carreira et al., 2016; Wei et al., 2016) and offers additional refinement
of the network estimates. Additionally, the application of intermediate supervision at the end of each
module has been validated as an effective training strategy, particularly ameliorating the practical

1 Our implementation of the keypoint detector network is available at https://github.com/kschmeckpeper/keypoint-
detection
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issue of vanishing gradients when training a deep neural network (Lee et al., 2015). Finally, residual
layers are introduced (He et al., 2016), which have achieved state-of-the-art results for many visual
tasks, including object classification (He et al., 2016), instance segmentation (Dai et al., 2016), and
2D human pose estimation (Newell et al., 2016).

4. Data Collection and Annotation
With most modern machine learning frameworks, the data quantity and quality is as important, if
not more so, than details of a particular learning algorithm. While unlabeled data can be rapidly
obtained, high quality labeled data is time consuming and costly to acquire. Recent efforts (Castrejon
et al., 2017; Sohn et al., 2020; Xie et al., 2019) leverage machine learning to assist with manual
annotation or to provide semi-supervised labels from unlabeled data. Similarly, (Hua et al., 2016)
and (Marion et al., 2018) leverage multi-view scene reconstructions to efficiently annotate 3D objects,
then reproject the annotation masks to individual frames based on estimated camera viewpoints.
(Osteen et al., 2019) combined geometric reconstructions with hierarchical metric segmentations
as well as learned object-segmentation proposals to annotate 3D scene objects, reprojecting label
masks to individual frames. Here, we extend this work to add rapid keypoint annotation with
depth-based keypoint refinement to enable downstream applications such as object pose estimation
from color images. The work is most closely related to (Marion et al., 2018), which also uses object
reconstructions to annotate objects and their poses. While their work requires 3D meshes of the
objects as a prerequisite to using the annotation tool, we assume no existing models and emphasize
the scenario of needing to rapidly annotate a completely unknown object. In addition, our tool
specifically produces annotations for training keypoint detectors, while the alternative tool does
not. As a result, we can leverage the structure of the object given by the 3D keypoint annotations to
perform automatic keypoint refinement with no additional human work beyond keypoint labeling.

To label a new object class with keypoint annotations, we collect sequences of streaming data from
different viewpoints, environments, and lighting conditions using an RGB-D sensor. We annotate
the resulting images by performing 3D reconstruction, manually annotating the resulting models,
projecting the keypoints into the image frame, and refining the resulting keypoints.

4.1. 3D Reconstruction
We leverage state-of-the-art scene reconstruction from RGB-D sequences (Whelan et al., 2016) as
well as surface generation algorithms (Kazhdan and Hoppe, 2013) to pre-process the collected data.
In previous work (Osteen et al., 2019), we evaluated the performance of modern scene reconstruction
algorithms, specifically Elastic Fusion (Whelan et al., 2016), Elastic Reconstruction (Choi et al.,
2015), and Kintinuous (Whelan et al., 2015). Kintinuous is an extension to the original KinectFusion
reconstruction algorithm (Izadi et al., 2011) which supports operation over larger scales with loop
closure. Kintinuous was designed for corridor-like motion with infrequent loop closures over large
distances, rather than the potentially frequent loop-closures that can arise from the context of
overlapping camera motion for object reconstruction (Whelan et al., 2016). Elastic Reconstruction
is an offline reconstruction algorithm that constructs sets of scene fragments (or sub-models), each
consisting of a small number (50) of integrated sequential RGB-D frames, and then globally registers
the fragments and optimizes the associated sensor poses for a final reconstruction.

In contrast to these algorithms, Elastic Fusion does not perform pose-graph optimization. Instead,
Elastic Fusion is designed with a focus on the quality of the reconstructed model, formulating the
problem using a deformation graph. A surfel map is used to model the environment, where surfels
store properties such as color, normal, radius, etc. Frame-to-model sensor tracking is performed
using the portion of the model that has been recently observed (active), while global loop-closure
candidates are determined by attempting to register new data with portions of the model that have
not been recently observed (inactive). During loop closure, the model is non-rigidly deformed to

Field Robotics, March, 2022 · 2:147–171



Semantic keypoint-based pose estimation from single RGB frames · 155

align surfels in the deformation graph, in contrast to pose-graph optimization approaches which do
not perform non-rigid deformation of the data, instead optimizing the sensor trajectory given the
measured data and associated uncertainty. After deforming sets of matching surfels according to
surface correspondences, the camera poses are updated by applying the relative transform which
brings the surfaces into alignment.

The evaluation from (Osteen et al., 2019) on sequences from five classes of the Redwood dataset
(Choi et al., 2016) found that the reconstructions of Elastic Fusion were comparable in terms of
accuracy to the offline Elastic Reconstruction approach at a fraction of the runtime. Therefore, for
this work we use Elastic Fusion to create scene models, though the annotation system is agnostic
to the choice of reconstruction algorithm.

Once reconstruction has taken place, the resulting 3D model as well as the estimated camera
poses from each frame are input to the annotation tool. The only phase of the process that requires
human input is the placement of keypoints on the surface of the 3D reconstruction, after which
keypoint annotations are automatically projected back to the original input image stream.

4.2. Annotation Refinement
An ideal reconstruction system would correctly estimate the camera poses for each frame of a
sequence, such that the generated depth images match corresponding real depth images for all
frames. In practice, pose-graph based SLAM techniques such as Elastic Reconstruction as well as
deformation techniques such as Elastic Fusion attempt to minimize accumulated pose or model
errors across the sequence. While this is optimal for the purposes of estimating sensor trajectory
over a sequence, the global pose estimate for a given frame depends the accuracy of the estimates
of other poses in the sequence.

While we only annotate sequences for which qualitatively good reconstructions are produced, we
observe the presence of drift in the camera pose estimates over the course of a sequence. In many
cases, this drift is mitigated by loop closure in the reconstruction algorithm, but we still develop
techniques to account for potentially inaccurate camera pose estimates at any given frame.

Specifically, we use the 3D model and camera trajectory to generate depth images at each camera
pose, then perform data association between the generated depth images and the corresponding true
depth images from the sensor. This technique ensures that the reconstruction results, integrated over
the course of an entire sequence, are updated to align with the real data at each individual frame.
While we could also compare input color images with their generated counterparts, we choose to
focus on depth comparisons on the assumption that 3D reconstructions preserve object shape better
than object appearance for any given viewpoint and lighting condition. Therefore we use the depth
images to refine annotations, and we compare two alternative approaches to refining annotations:
those that update keypoints individually versus those that update all keypoints together.

4.2.1. Keypoint-level Refinement
The most noticeable artifact of keypoint projection with camera trajectory drift is pixels which
project to the background rather than the object of interest. More subtly, visible keypoints may
project to the correct object but be a few pixels away from the correct location, which may also be
obvious to the observer depending on the choice of keypoint location.

To address the issues of keypoints projecting to background objects ("jump-edge" pixels), as well
as keypoints that are visible but not correctly located, we create an approach to refine individual
keypoint locations. In order to determine if a keypoint is eligible for refinement, we first determine
whether it is occluded or not for the current camera pose TF

C in fixed frame F . Given N keypoints
specified for an object, the set of object keypoints is defined as K = {Fk0,

Fk1, ..,
FkN}.

For each Cki ∈ R3 in K, transformed from fixed frame F to camera frame C by Cki = TF
C
Fki, the

occlusion test is performed by comparing the depth of the predicted 3D keypoint location Cki with
the depth value of the generated depth image at the pixel which the keypoint projects to, effectively
performing a z-buffer test to identify which keypoints are occluded. Also, with knowledge of the
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3D object geometry, local normals for each keypoint Cni are compared to the camera viewpoint Cv,
where Cv ∈ R3 represents a unit vector along the principal axis of the camera, and keypoints are
identified as occluded if their local normals are nearly orthogonal to or face away from the camera.
More specifically, a keypoint is determined to be occluded if Cv ·Cni > τ , where τ is an approximate
orthogonality threshold that is set to -0.15 radians for this evaluation.

The following keypoint-level refinement methods are mutually exclusive, such that no two
refinements will be applied to the same keypoint.

Jump-edge adjustment. Often, corners and edges of objects are good candidates for keypoint
locations. For even small camera pose estimation errors, the projected keypoint location can jump
past the object of interest to the background. This is addressed by an adjustment approach that
takes advantage of the fact that our 3D keypoint positions are known for each estimated camera
pose, and that we can easily compare the depth values of the generated depth image and real depth
image at the keypoint’s projected pixel location to identify jump-edges. Specifically, we use our
reconstructed model to project the keypoints into the estimated camera frame. Any keypoint where
the projected depth is less than the measured depth at its projected pixel coordinates is deemed a
jump edge. If a jump edge is detected, the refined keypoint location is updated to be the projection
of the closest point in the real depth image to the estimated 3D keypoint location.

Feature matching. For keypoints that correctly project to the desired object, 3D feature matching
is employed to improve the keypoint location estimate. If a keypoint is clearly visible for the given
camera pose, then a 3D descriptor is extracted from the generated depth image and compared
to descriptors extracted in the true depth image around the estimated keypoint location. For this
study, we use the FPFH feature descriptor (Rusu et al., 2009), which was shown by (Choi et al.,
2015) to be highly effective at geometric pairwise registration, but have also tested with the SHOT
descriptor (Salti et al., 2014). The updated keypoint is defined by a weighted sum of the Euclidean
distance and the matched feature vector distances(with weight values of 0.7 and 0.3, respectively)
between the real and generated depth images. The closest match in the real depth image is then
chosen as the refined keypoint location.

4.2.2. Object-level Refinement
Since the goal of annotation refinement is to maximize the alignment of the annotated model and
an individual frame, regardless of any other camera pose estimates in the trajectory, we perform
iterative closest point (ICP) on the generated and real depth images to ensure the model is best
aligned with each depth frame. For this work, our primary concern is to align points belonging to
the object of interest, so we limit our ICP refinement to the bounding volumes that contain the
annotated objects. We use the volume that minimally bounds the annotated keypoints to define the
volume in the generated image, and since there may be error in the pose estimate, the volume is
dilated for the real depth image. Then, point-to-plane ICP (Chen and Medioni, 1992) is performed
on the cropped points from the generated and real point clouds derived from the respective depth
images. The camera pose estimate is adjusted based on the ICP alignment, and all keypoints are
transformed accordingly. This means that all keypoints undergo the same rigid transformation,
which preserves the relative poses of the keypoints, and allows us to refine the positions of both
visible and occluded keypoints.

5. RCTA Object Keypoints Dataset
While large scale datasets such as PASCAL3D+ contain many types of objects, there are still many
objects and environments for which there is no corresponding dataset. This is especially true for the
Robotics Collaborative Technology Alliance (RCTA) program, which is a consortium of government,
industry, and academic researchers focusing on fielding embodied autonomous systems in challenging
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Table 1. Number of keypoints for each class in the RCTA Object Keypoints Dataset
Class Barrel Barrier Crate Gas Can Hedgehog Robot

Number of Keypoints 6 9 12 10 6 11

Table 2. Number of keypoints for each class in PASCAL3D+
Class aero bike bottle bus car chair sofa train TV monitor boat

Number of Keypoints 8 11 7 12 12 10 10 8 4 6

and unstructured environments. The scope of the work includes many unique objects that are not
well-represented in existing datasets, such as the Czech Hedgehog.

As part of this work, we have therefore created a dataset containing 101 sequences split across six
of the objects used by the RCTA (Narayanan et al., 2020) in both indoor and outdoor environments:
barrel, barrier, crate, gas can, Czech Hedgehog, and robot. The number of keypoints for each object
class are shown in Table 1.

We collected many data sequences for each object, not knowing ahead of time how many would
yield accurate 3D reconstructions. Indeed, many reconstructions did fail or were not accurate enough
to include in the analysis. To avoid adding the burden to a user of filtering poor reconstructions
manually, we defer the determination of reconstruction viability to the actual annotation process and
allow the annotator to trivially skip a poor reconstruction. In total, we collected 283 sequences across
the six object classes, and determined that 101 were suitable for annotation, some of which are shown
in Figure 4. For each object class, a random subset of sequences and frames were annotated by hand.
The total number of frames analyzed for this work is 10281; of those, 951 were manually annotated.

With the public release of this dataset, we hope to increase diversity in the types of environments
and objects used for keypoint annotation. Furthermore, we release the raw data collection sequences
as well as the reconstructed models, with the hope of testing new reconstruction algorithms as they
are released.

The full dataset is available for download at https://sites.google.com/view/rcta-object-keypoints-
dataset.

6. Results
We present an analysis of our architecture on existing benchmark datasets as well as custom data
collections. In both qualitative and quantitative output, we show the effectiveness of the approach,
and demonstrate the challenges of acquiring accurate manual annotations for occluded keypoints.

6.1. Class-based pose recovery: PASCAL3D+
We demonstrate the full strength of our approach using the large-scale PASCAL3D+ dataset (Xiang
et al., 2014). The stacked hourglass network was trained from scratch with the training set of
PASCAL3D+. Instead of training separate models for different object classes, a single network was
trained to output heatmap predictions for all of the 88 keypoints from all classes. The number of
keypoints for each class are shown in Table 2. Using a single network for all keypoints allows us
to share features across the available classes and significantly decreases the number of parameters
needed for the network. At test time, given the class of the test object, the heatmaps corresponding
to the keypoints belonging to this class were extracted. For pose optimization, two cases were tested:
(i) the CAD model for the test image was known; and (ii) the CAD model was unknown and the
pose was estimated with a deformable model whose basis was learned by PCA on all CAD models
for each class in the dataset. Two principal components were used (k = 2) for each class, which
was sufficient to explain greater than 95% of the shape variation. The 3D model was fit to the 2D
keypoints with a weak-perspective model, as the camera intrinsic parameters were not available.
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(a) Barrel (b) Barrier

(c) Crate (d) Gas Can

(e) Hedgehog (f) Robot

Figure 4. Example 3D reconstructions of the objects in the RCTA dataset.

Semantic correspondences. A crucial component of our approach is the powerful learning procedure
that is particularly successful at establishing correspondences between the semantically related
keypoints across different instances of an object class. To demonstrate this network property, in
Figure 5 we present a subset of the keypoints for each class, along with the localizations of these
keypoints, in a randomly-selected set of images among those with the top 50 responses. It is
interesting to note that, despite the large appearance differences due to extreme viewpoint and
intra-class variability, the predictions are very consistent and preserve the semantic relation across
various class instances.

Pose estimation. The quantitative evaluation for pose estimation on PASCAL3D+ is presented in
Table 3. We only report rotation errors, as the 3D translation cannot be determined in the weak
perspective case nor is the ground truth available. Following work from (Tulsiani and Malik, 2015),
we use the geodesic distance in Equation 7 to calculate the rotational error between a pose estimate,
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Figure 5. Localization results for diverse keypoint categories. We visualize eight images per category in each row
selected randomly from the top 50 responses for each keypoint. The keypoint localization network is particularly
successful at establishing semantic correspondences across the instances of a class, despite the significant intra-
class variation and wide ranging camera viewpoints.

Table 3. Viewpoint estimation median error (degrees) on PASCAL3D+.
Approach aero bike bottle bus car chair sofa train TV monitor boat

Tulsiani and Malik (Tulsiani and Malik, 2015) 13.8 17.7 12.9 5.8 9.1 14.8 15.2 8.7 15.4 21.3
Deep3DBox (Mousavian et al., 2017) 13.6 12.5 8.3 3.1 5.8 11.9 12.8 6.3 11.9 22.8

RenderForCNN (Su et al., 2015b) 15.4 14.8 9.3 3.6 6.0 9.7 9.5 6.1 12.6 25.6
ours - PCA basis 11.2 15.2 13.1 4.7 6.9 12.7 21.7 9.1 38.5 37.9
ours - CAD basis 8.0 13.4 11.7 2.0 5.5 10.4 9.6 8.3 32.9 40.7

ours - uniform weights 16.3 17.8 14.1 11.7 30.7 17.6 32.4 20.8 25.0 72.0

R1, and the groundtruth, R2.

∆(R1,R2) = ‖ log(R1
TR2)‖F√
2

. (7)

where ‖x‖F denotes the Frobenius norm of x. Our method shows improvement across several
categories with respect to the state-of-the-art. The best results are achieved in the case where the
instance subclass for the object is known and there exists an accurate CAD model correspondence.
Our method with uniform weights for all keypoints is also compared as a baseline, which is worse
than considering the confidences during model fitting. The worst results occur on object classes that
were labeled with few semantic keypoints per instance. The numbers of keypoints for each class in
the dataset are shown in Table 2. The two classes which performed worst for our method, the TV
Monitor and the boat, had four and six keypoints respectively, while the remaining classes averaged
just under ten keypoints each. A subset of results of our method are visualized in Figure 6. While our
approach applies to both instance- and category-level pose estimation, it yields comparable results
to other leading, but more limited methods.

Category-level pose is useful for robotic applications. In (Kessens et al., 2020), the authors demon-
strated a system for mobile manipulation, wherein our keypoint-based pose estimation algorithm
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Figure 6. Example results of our approach on PASCAL3D+. For each example from left-to-right: the RGB
image of the object, heatmap responses for the keypoints of the specific class, the CAD model projected to 2D
after pose estimation, and the CAD model visualized in 3D.

was used to position the mobile manipulator relative to the object. First, the mobile manipulator
approached the target object and oriented itself to grasp an object of that object class. Then a second
algorithm used a short-range depth sensor to select grasp locations from the generated pointcloud.
This approach is applicable, despite variation within an object class, as long as the variation between
grasp locations in a class is smaller than the size of the robot’s reachable workspace.

Category-level pose estimation has also been used for semantic SLAM (Bowman et al., 2017),
in which application the ability to localize a wide variety of objects within a class is critical to
populating the generated map with sufficient density. In the context of semantic SLAM, being able
to locate the surface of an object precisely is less important than being able to estimate consistent
and accurate poses for every encountered object of the target classes. Thus keypoint-based methods
that provide category level pose can perform well while methods that densely reconstruct the surface
of an object are not required.

6.2. Instance-based pose recovery: Benchmark for 6-DoF Object Pose Estimation
Our method is equally applicable in estimating object-level pose when the 3D object model and the
camera intrinsic are known. This is the classic 6-DoF pose task, and fits well with many robotics
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applications, where recognizing 6-DoF pose allows better interactions with a known object. We
demonstrate the effectiveness of our method on this task by comparing its performance to state-of-
the-art methods on three object pose datasets.

To apply our method, we first set ci = 0 for all i in Equation 2. We derive B0 by choosing
recognizable landmarks on the 3D model. For symmetric objects as defined by the BOP benchmark,
we place landmarks on geometries or surface texture that break the symmetries. As a result,
our pose solution is more accurate than the minimum required. No additional step is taken to
handle symmetries. For each training image having a ground truth, 6-DoF pose, we reproject
these 3D landmarks to generate 2D keypoints, from which the keypoint detector can be trained.
The optimization procedure is the same as in category-level estimation but with c fixed at zero.
Additionally, we fine-tune a Faster-RCNN (Ren et al., 2015) object detector for each dataset to
provide cropping bounding boxes for our method following standard practice (Hodaň et al., 2020).

The three object-pose datasets we use are LineMOD-Occluded (Brachmann et al., 2014), YCB-
Video (Calli et al., 2015) and TUD-Light (Hodaň et al., 2018). More specifically, we use the train-test
split provided by the new BOP benchmark on these three datasets (Hodaň et al., 2020). Using a
standard split allows us to compare our method with other state-of-the-art methods while minimizing
the performance difference that stems from using different data-generation techniques. The training
set comprises synthetic data from physically-based rendering, and real data is added when it is
available for that dataset.

Evaluation metrics. On each dataset we evaluate our method with the three metrics used in
the BOP19/20 challenge.

• Visible Surface Discrepancy (VSD) calculates the average 3D distance between the estimated
and the ground-truth objects on the visible part of the object

• Maximum Symmetry-Aware Surface Distance (MSSD) computes the maximum 3D distance
between the estimated and the ground-truth objects. MSSD is similar to the classical 6-DoF
pose metric used to compute average distance, but Hodan et al. (Hodaň et al., 2018) argue
that MSSD is less sensitive to object geometry

• Maximum Symmetry-Aware Projection Distance (MSPD) computes the maximum 2D distance
between projections of the estimated and the ground-truth objects, and is more useful for
application in virtual reality, where reprojection accuracy is more important

Additionally, for symmetric objects, we computed MSSD and MSPD over all global symmetric
transforms of the object and retaining the lowest error. For each of the three metrics, average recall
(AR) is calculated over different thresholds, above which an estimation is considered correct.

We show extensive comparisons in Tables 4, 5, 6. On the overall benchmark, CosyPose (Labbé
et al., 2020) achieves state-of-the-art results and outperforms the other methods in most of the
metrics. Our method, despite its broader scope, is competitive with the other methods in the 2020
BOP benchmark. In fact, for the YCB-V dataset, our method outperforms all other methods except
CosyPose.

Table 4. Quantitative evaluation on LineMOD-Occluded (Brachmann et al., 2014). Comparison to RGB-
based 6-DoF pose estimation methods. Statistics are taken from the BOP benchmark (Hodaň et al., 2020).

Method test input Avg. ARms pd ARmssd ARvsd

SSD-6D w/o ref (Kehl et al., 2017) rgb 0.139 0.285 0.083 0.047
Pix2Pose (Park et al., 2019) rgb 0.363 0.550 0.307 0.233
Leaping from 2D to 6D (Liu et al., 2020) rgb 0.525 0.781 0.444 0.350
CDPN (Li et al., 2019) rgb 0.624 0.815 0.612 0.445
CosyPose (Labbé et al., 2020) rgb 0.633 0.812 0.606 0.480
Ours rgb 0.612 0.795 0.581 0.459
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Table 5. Quantitative evaluation on YCB-Video (Calli et al., 2015). Comparison to RGB-based 6-DoF pose
estimation methods. Statistics are taken from the BOP benchmark (Hodaň et al., 2020).

Method test input Avg. ARms pd ARmssd ARvsd

Pix2Pose (Park et al., 2019) rgb 0.457 0.571 0.429 0.372
CDPN (Li et al., 2019) rgb 0.532 0.631 0.570 0.396
Leaping from 2D to 6D (Liu et al., 2020) rgb 0.543 0.687 0.499 0.443
CosyPose (Labbé et al., 2020) rgb 0.821 0.850 0.842 0.772
Ours rgb 0.618 0.700 0.605 0.549

Table 6. Quantitative evaluation on TUD-Light (Hodaň et al., 2018). Comparison to RGB-based 6-DoF
pose estimation methods. Statistics are taken from the BOP benchmark (Hodaň et al., 2020).

Method test input Avg. ARms pd ARmssd ARvsd

Pix2Pose (Park et al., 2019) rgb 0.420 0.641 0.364 0.255
Leaping from 2D to 6D (Liu et al., 2020) rgb 0.751 0.922 0.716 0.614
CDPN (Li et al., 2019) rgb 0.772 0.925 0.793 0.597
CosyPose (Labbé et al., 2020) rgb 0.823 0.973 0.807 0.689
Ours rgb 0.784 0.950 0.777 0.622

Notably, our method has the second-highest VSD score across the three datasets. VSD calculates
discrepancy on only the visible part of the objects. Because our optimization procedure weights the
predicted keypoints by their confidence, and occluded keypoints often have lower confidence, our
method favors poses that better match visible object-parts.

6.3. Semi-Automated Data Labeling
To apply keypoint-based pose estimation to new object classes, we must be able to rapidly collect
images and annotate them with keypoints. We demonstrate a significant reduction to the required
labeling effort with our projection based labeling tool.

To show the utility of our labeling tool, we answer several questions:

1. How well do the keypoints generated by the labeling tool match the keypoints labeled by
human annotators?

2. Do keypoint localization models trained with the annotations from the tool achieve good
performance?

3. Does the tool reduce the effort to label a set of images?
4. How does the keypoint-based refinement method compare with the model-based refinement

method?

To answer these questions, a subset of the collected data was labeled by human annotators using a
traditional annotation tool, whereby the user is prompted to select all object keypoints in randomly
selected images. Histograms of the pixel-wise distances between manual and projected keypoint
annotations for each class are given in Figure 10, showing approximately zero-mean distributions
with different deviations for different objects. These differences are a function of both the accuracy
of the reconstruction and camera pose estimation, as well as the accuracy of the manual annotations,
which are not always reliable as ground truth surrogates, particularly in the case of occluded
keypoints as illustrated in Figure 7.

Table 7 compares the performance of the keypoint-level refinement and the object-level refinement
against manually-annotated keypoints. For the visible case, where manual annotation is a better
ground truth proxy, the object-level refinement outperforms the keypoint-level refinement. Therefore,
we use the object-level refinement as the only refinement step for subsequent analysis, so following
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Table 7. Evaluation of our refinement techniques, keypoint-level (feature matching with jump edge refinement)
and object-level refinement (ICP). Error is measured as the `2 distances in pixels for the refinement methods
with respect to manual annotations. The object-level context used by ICP to refine all keypoints performs better
than the per-keypoint adjustment of feature matching with jump edge refinement, so we adopt the object-level
method as our default refinement technique.

All Visible Occluded
Keypoint Object Keypoint Object Keypoint Object

Barrel 11.26 ± 0.3 11.05 ± 0.3 11.04 ± 0.3 10.77 ± 0.3 12.78 ± 1.0 12.96 ± 1.0
Barrier 11.90 ± 0.2 11.92 ± 0.2 9.33 ± 0.2 9.47 ± 0.2 14.14 ± 0.4 14.07 ± 0.4
Crate 11.16 ± 0.2 11.14 ± 0.2 9.27 ± 0.2 9.07 ± 0.1 14.66 ± 0.4 14.98 ± 0.4

Gas Can 12.58 ± 0.2 12.19 ± 0.2 11.06 ± 0.3 10.42 ± 0.3 14.73 ± 0.4 14.67 ± 0.4
Hedgehog 11.64 ± 0.2 11.75 ± 0.2 11.64 ± 0.2 11.71 ± 0.2 11.79 ± 1.1 13.20 ± 1.2

Robot 10.43 ± 0.2 10.02 ± 0.2 8.48 ± 0.2 7.96 ± 0.2 14.67 ± 0.6 14.52 ± 0.6

Table 8. Visible versus occluded disparities for manual annotations. `2 distances in pixels for both the semi-
automated keypoint projection method as well as object-level refinement are given with respect to manual
annotations. We show the difference for all the keypoints, for only the keypoints that are visible to the camera,
and for only the keypoints that are occluded because they are on the far side of the object. There is a clear
difference between the offsets for visible versus occluded keypoints, demonstrating the difficulty of accurately
annotating occluded keypoints by hand.

All Visible Occluded
Projected Refined Projected Refined Projected Refined

Barrel 11.29 ± 0.3 11.05 ± 0.3 11.07 ± 0.3 10.77 ± 0.3 12.78 ± 1.0 12.96 ± 1.0
Barrier 12.07 ± 0.2 11.92 ± 0.2 9.71 ± 0.2 9.47 ± 0.2 14.14 ± 0.4 14.07 ± 0.4
Crate 10.87 ± 0.2 11.14 ± 0.2 8.82 ± 0.1 9.07 ± 0.1 14.66 ± 0.4 14.98 ± 0.4

Gas Can 12.44 ± 0.2 12.19 ± 0.2 10.82 ± 0.3 10.42 ± 0.3 14.73 ± 0.4 14.67 ± 0.4
Hedgehog 11.60 ± 0.2 11.75 ± 0.2 11.59 ± 0.2 11.71 ± 0.2 11.79 ± 1.1 13.20 ± 1.2

Robot 9.90 ± 0.2 10.02 ± 0.2 7.72 ± 0.2 7.96 ± 0.2 14.67 ± 0.6 14.52 ± 0.6

mentions of the process refer only to object-level refinement. Table 8 compares the performance
of naive projection to keypoint refinement, again using the projected pixel distance to manual
annotations as an error metric. The results indicate that keypoint refinement may not be necessary
for sequences with very good reconstructions, although we have identified some sequences that clearly
benefit from refinement, such as shown in Figure 8. Table 7 and Table 8 also demonstrate the impact
of visible versus occluded keypoints on manual annotation accuracy, with occluded keypoints always
having higher distances between projected and manual annotations. While manual annotations for
clearly visible keypoints, user error notwithstanding, can be considered as approximate ground truth,
manual keypoints for occluded keypoints cannot.

For asymmetric objects, we ensured that each data collection contained a full loop around the
object of interest, made up of a continuous sequence of images capturing the object from all angles;
however for symmetric objects (hedgehog and barrel), pose estimation is ambiguous about the axis
of symmetry. Therefore, for such classes, each data sequence contains data for only one side of the
object. As a consequence, these sequences have very few occluded keypoints, which results in similar
distance results for both visible and occluded keypoints. Details on the distribution of occluded
versus visible keypoints in the full dataset are shown in Figure 9a, and the distribution of data used
to compare manual and semi-automated annotations are shown in Figure 9b.

Next, we analyzed the performance of the keypoint localization model trained with keypoints from
different sources. We trained three keypoint localization models for each class: (i) with the manual
annotations, (ii) with the semi-automated annotations, and (iii) with the refined annotations. We
then evaluate the performance of these models on a held-out set of images with manually labeled
keypoints, as shown in Table 9. Keypoint localization models trained with our refined keypoints
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Input Image Reconstructed Image Projected Keypoints Refined Keypoints

Figure 7. Reconstructed images and semi-automated keypoint projection. Keypoints are visualized as manual
(blue dot), projected and visible (green dot), or projected and occluded (yellow dot). Red lines show the distances
between manual keypoints and corresponding projected/refined keypoints.

consistently achieved performance comparable to the model trained with the manually labeled
keypoints, and had a lower error on four out of six object classes. The model trained with our
refined keypoints perform worse only on the barrel and the hedgehog, the only two objects with
rotational symmetry.
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(a) (b)

Figure 8. Demonstration of object-level refinement. Yellow circles indicate that a keypoint is occluded, green
circles indicate visible keypoints, and blue circles indicate the manual annotations. For sequences with errors in
sensor-trajectory estimation, in this case due to rapid camera motion with few available background features,
naive projection from model to image frame, Figure 8a, exhibits poor alignment to manual annotations. After
object-level refinement, Figure 8b, the keypoints are substantially improved.

(a) (b)

Figure 9. Total number of visible versus occluded keypoints in the our dataset for all projected frames 9a and
manually annotated frames 9b (note difference in scale between the plots). As a result of not performing full loops
around symmetric objects such as the Barrel and Hedgehog, the number of occluded keypoints for symmetric
objects is much smaller than for other objects.

We conclude with an analysis of annotation effort required. Measurements of the required time
are shown in Figure 11. As expected, using semi-automated projection allows the user to label an
order of magnitude more frames, within the same quantity of time, as they would be able to label
with a standard annotation tool. The annotations for each object class, with approximately 100 total
frames per class labeled using standard image annotation, take about the same time as it takes to
annotate a 3D reconstructed model, which we project to label thousands of images per class. For
this analysis, we subsampled the number of projected frames by a factor of 10; therefore the true
number of potentially annotated frames using our method is even higher than shown. We chose to
subsample the output frames to reduce the total projection time as well as to avoid training with
essentially redundant camera angles.
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Figure 10. Pixel-wise distance between manual annotations and projected keypoints. The distance is a function
of both the scene reconstruction pipeline accuracy as well as the manual annotation accuracy.

Table 9. Keypoint prediction performance on test data. `2 Distance of predicted
keypoints locations in pixel space from manually labeled test set. The models trained
with data from the refined labeling pipeline outperform the models trained with the
manually labeled data at predicting the locations of manually labeled keypoints on
four out of six object classes, while requiring less labeling effort.

Manual Projected Refined
Barrel 6.7 ± 0.7 7.0 ± 0.8 8.9 ± 0.9
Barrier 14.7 ± 1.0 15.1 ± 1.1 14.1 ± 1.1
Crate 6.5 ± 0.6 22.9 ± 0.96 5.6 ± 0.6
Gascan 13.4 ± 0.8 5.7 ± 0.56 8.4 ± 0.8
Hedgehog 1.6 ± 0.1 2.0 ± 0.1 1.9 ± 0.1
Robot 7.2 ± 0.7 5.0 ± 0.6 3.0 ± 0.3

(a) (b)

Figure 11. Analysis between manual versus semi-automated projection labeling. For each collected sequence
for a given class, human annotation times (a) and sequence length (b) are shown. A human annotator is able
to annotate a 3D model in approximately the same time it takes to annotate 100 individual image frames. The
average number of annotated frames for each class is between one and two orders of magnitude greater for the
same effort when using our annotation tool.
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7. Conclusion
In this paper, we presented an efficient method to estimate the continuous 6-DoF pose of an object
from a single RGB image. Capitalizing on the robust, semantic keypoint predictions provided by a
state-of-the-art convnet, we proposed a pose optimization scheme that fits a deformable shape
model to the 2D keypoints and recovers the object’s 6-DoF pose. To ameliorate the effect of
false detections, our pose optimization scheme integrates heatmap values, which reflect predictive
confidence, to model each detection’s certainty. Both the weak perspective and the full perspective
cases were investigated. Moreover, we incorporated a technique for generating data from unlabeled
videos, enabling semi-automatic labeling, such that our pipeline can be trained with minimal effort
during the annotation stage. The experimental validation includes evaluation on instance-based
pose estimation on the LineMOD-Occluded, YCB-Video, and TUD-Light datasets as well as
evaluation on category-level pose estimation on the PASCAL3D+ dataset. Additionally, our method
is accompanied by an efficient implementation with a running time under 0.3 seconds, making it a
good fit for near-realtime robotics applications.
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