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Abstract: Pose estimation of recognized objects is fundamental to tasks such as robotic grasping
and manipulation. The need for reliable grasping imposes stringent accuracy requirements on pose
estimation in cluttered, occluded scenes in dynamic environments. Modern methods employ large
sets of training data to learn features and object templates in order to find correspondence between
models and observed data. However, these methods require extensive annotation of ground-truth
poses. An alternative is to use algorithms, such as PERCH (PErception Via SeaRCH) that seek an
optimal explanation of the observed scene in a space of possible rendered versions. While PERCH
offers strong guarantees on accuracy, the initial formulation suffers from poor scalability owing to its
high runtime. In this work, we present PERCH 2.0, a deliberative approach that takes advantage
of GPU acceleration and RGB data by formulating pose estimation as a single-shot, fully parallel
approach. We show that PERCH 2.0 achieves a two orders of magnitude speedup (∼100X) over
the hierarchical PERCH by evaluating thousands of poses in parallel. In addition, we propose a
combined deliberative and discriminative framework for 6-DoF pose estimation that doesn’t require
any ground-truth pose-annotation. Our work shows that PERCH 2.0 achieves, on the YCB-Video
Dataset, a higher accuracy than DenseFusion, a state-of-the-art, end-to-end, learning-based approach.
We also demonstrate that our work leads directly to an extension of deliberative pose estimation
methods like PERCH to new domains, such as conveyor picking, which was previously infeasible due
to high runtime. Our code is available at https://sbpl-cruz.github.io/perception/
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1. Introduction
For robotic manipulators to operate successfully outside controlled environments, they need to be able
to interact with objects in a safe and reliable manner. Such interaction requires correct identification
of object categories as well as their location and orientation in the 3D world. Manipulators are often
deployed in settings, such as an automated warehouse, where the objects of interest could either
be at rest in shelves or in bins or moving, as on a conveyor (Figure 1a). In either scenario, robust
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(a) Conveyor Picking (b) Container Opening

(c) Table top robotic manipulation

Figure 1. Examples of robotic manipulation scenarios.

recognition and pose estimation of the objects in the 3D world could greatly enhance the capabilities
of the deployed manipulator. The knowledge of the object pose allows the underlying planning system
to retain the flexibility of choosing an optimal grasp for picking up the object while avoiding collisions
with other objects or the environment.

Pick and place tasks performed by full body mobile manipulators appear in household environments
as well. The objects could be located on a table top (Figure 1c), on shelves, or within household
enclosures such as cabinets, dishwashers, refrigerators etc. More recently, research has also focused
on object articulation with the help of mobile robotic manipulators, especially in situations where
such handling would be dangerous for human beings (e.g. in an active war zone). One such task that
involved opening of a container and removing an object within for inspection, was the focus of a
project by the US Army Research Laboratory’s (ARL’s) Robotics Collaborative Technology Alliance
(RCTA) (Figure 1b) using the RoMan platform (Kessens et al., 2020).

A key difference in the domains described above is the degree of structure they present. Objects
present in automated warehouses and grocery stores on shelves are often arranged in a pre-decided
orientation (such as upright or lying down). In addition, an object’s location in a store, for example,
can give a hint of object’s identity or category. Similarly, in the case of container opening, the
container to be located can vary only in 3 degrees of freedom (DoF) that is (x, y, yaw). However, in
other domains, such as household environments, the objects could be found in random orientations
and locations, varying in all 6-DoF (x, y, z, roll, pitch, yaw). The identity of the objects would also
be independent of their location.

Despite differing domain-dependent requirements for interaction with objects, several challenges
in the underlying pose estimation task are common:

• Objects are often occluded by other objects or by unknown obstacles in the environment.
• The manipulator itself could be fixed or dynamic (e.g. mounted to a mobile base), the latter

requiring the algorithm to be robust to different background scenes and camera viewpoints.
• For picking moving objects from a conveyor, a fast pose estimation approach that provides high

accuracy when the object is at a distance is needed to plan and execute a motion to pickup the

Field Robotics, November, 2021 · 1:34–69



36 · Agarwal et al.

object. Similarly, tasks like container opening, performed in military settings, are time critical
and require fast pose estimation.

In this paper, we build on prior work such as PERCH (Narayanan & Likhachev, 2016a, 2016b,
2017) and combine advancements in computer vision, search, and optimization techniques with
advancements in computing hardware to devise an approach that scales with different domain require-
ments. The primary focus areas of our approach (referred to as PERCH 2.0 (Agarwal et al., 2020))
include ease of use, ready interpret-ability and the rapid adaptability for unseen objects encountered
in the field, all while maintaining the the accuracy of the estimated poses especially under occlusion,
since it has a direct positive impact on robotic manipulation success. Our approach also seeks to
exploit structure, wherever present in the environment, for improved speed and reduced resource
requirements. We also note that PERCH 2.0 has been used by recent works (Saxena et al., 2021) to
perform real world manipulation. The key contributions of our work can be listed as follows:

• PERCH 2.0: A fully parallel and scalable GPU-based deliberative pose estimation methodology
that achieves significant speedup over previous deliberative methods such as PERCH

• A combined discriminative and deliberative framework for 6-Dof pose estimation that elim-
inates the need for ground-truth pose-annotation in the training data and overcomes other
shortcomings of deliberative methods by using a discriminative CNN to prune large parts of
the search space

• A GPU-based, generalized ICP (GICP) approach to refine large number 6-Dof pose proposals
in parallel

• Incorporation of RGB sensor data into the objective function used by PERCH for 3-Dof pose
estimation, allowing the algorithm to handle scenarios where depth data alone is not sufficient
to estimate the object poses

• Demonstration of the application of PERCH 2.0 for pose estimation in new domains such
conveyor picking and container opening, as a result of improved runtime

2. Related work
In terms of methodology, approaches that address pose estimation of objects in 3D space can be
broadly divided into 2 categories: discriminative methods and deliberative methods.

2.1. Discriminative methods
Discriminative approaches traditionally used hand-crafted local 3D features to establish 2D to 3D
correspondences between the observed image and the 3D model and recover the object pose (Aldoma,
Tombari, Rusu, et al., 2012; Aldoma et al., 2011; Johnson & Hebert, 1999; Lowe, 1999; Rothganger
et al., 2006; Rusu et al., 2009; Rusu et al., 2010; Tombari et al., 2010). Other traditional approaches
computed similarity scores over regions of observed images with an object template (obtained by ren-
dering 3D models) to obtain the best match and corresponding pose (Cao et al., 2016; Hinterstoisser
et al., 2012; Hinterstoisser et al., 2013). Feature-based methods typically require rich textures to
be present on objects and even when features are present, fail to find good estimates when objects
are occluded. Moreover, estimating individual object poses in isolation may not lead to a globally
feasible and optimal solution that fully explains the observed scene (Stevens & Beveridge, 2000a).

Recent advancements in deep learning have led to the extension of 2D object detectors for the task
of 6-Dof pose estimation (Corona et al., 2018; Kehl et al., 2017; Liu & He, 2019; Mitash et al., 2017;
Mousavian et al., 2017; Pavlakos et al., 2017; Rad & Lepetit, 2017; Sundermeyer et al., 2018; Suwa-
janakorn et al., 2018; Tekin et al., 2018; Tremblay et al., 2018; Tulsiani & Malik, 2015; Wang et al.,
2019; Wohlhart & Lepetit, 2015; Xiang et al., 2018). These approaches can further be divided into:
methods that directly regress to 6-Dof pose coordinates and rotations (Billings & Johnson-Roberson,
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2019; Wang et al., 2019; Xiang et al., 2018), methods that localize object keypoints (Pavlakos et al.,
2017; Rad & Lepetit, 2017; Suwajanakorn et al., 2018; Tekin et al., 2018; Tremblay et al., 2018;
Tulsiani & Malik, 2015) in the image space or methods that discretize the 6D space and then score
each discretized pose using a classifier (Corona et al., 2018; Kehl et al., 2017; Mitash et al., 2018).
Regressing directly to poses ties the pose estimation to camera intrinsics, thus introducing errors
if the camera is changed. Localization to image keypoints often results in ambiguities for objects
with symmetries or requires explicit handling of symmetries. Scoring discretized poses is independent
of camera parameters and object symmetries but requires post prediction refinement to arrive at
the final pose. Moreover, several methods in each of these categories require extensive annotation
of ground-truth 6-Dof poses in the training data. While large scale annotation for bounding boxes
and instance segmentation masks can be automated or crowd-sourced through online tools such
as Amazon’s Mechanical Turk (Buhrmester et al., 2011), preparation of 6-Dof pose labels requires
specialized offline tools such as Labelfusion (Marion et al., 2018). Dataset sizes scale poorly with
number of objects since networks need to be trained on multiple objects from as many viewpoints as
possible per object with varying degrees of inter-object occlusions.

Other methods like Mitash et al. (2017) and Tremblay et al. (2018) use synthetic data to counter
the annotation requirement while authors in Deng et al. (2021) and Sundermeyer et al. (2018) train
an auto-encoder and use the encoder embedding space to compute similarity scores between observed
image and rendered images constructed by uniformly sampling the rotation space. However, these
methods still require training of a pose estimation neural network in addition to training for standard
computer vision tasks like instance segmentation and object detection. In Deng et al. (2020), the
authors explore a self-supervised approach to generate annotated pose estimation data that could
be used by learning based techniques for continuous improvement. However the method requires
pose initialization from an existing technique as well as a robot to generate poses from multiple
viewpoints.

2.2. Deliberative methods
Analysis-by-synthesis or deliberative approaches (Aldoma, Tombari, Di Stefano, et al., 2012; Mitash
et al., 2018; Narayanan & Likhachev, 2016a, 2016b, 2017; Stevens & Beveridge, 2000b; Wong et al.,
2017) rely on rendering and verification. Past work on Perception via Search (PERCH) (Narayanan
& Likhachev, 2016a, 2016b, 2017), demonstrated the effectiveness of combining rendering with search
for multi-object 3-Dof pose (x, y, yaw) estimation under occlusion and clutter. However, the initial
formulation’s high runtime and poor scalability, restricts its application to only 3-Dof pose estimation
of static objects. In addition, the formulation ignores RGB information present in the observed scene
as well as in available 3D models. As a result of this, the method fails under commonly occurring
scenarios in homes and retail stores, for example, when objects of different brands have the same
shape (such as soda cans, cereals, etc.).

D2P (Narayanan & Likhachev, 2016a), an extension to PERCH used the output of a 2D R-CNN
object detector as a heuristic to speed up the tree search. Similarly, the work in Mitash et al. (2018)
uses the output of a 2D object detector to construct a 6D pose hypothesis which is then evaluated
through a search. However, none of these approaches exploit the underlying parallelism in hypothesis
evaluation and are thus limited by high run times. The authors in Wong et al. (2017) improve run
time using a similar approach and tracking poses over time instead of re-evaluating the hypothesis.
Research works using traditional pose estimation techniques such as Choi and Christensen (2016)
employ GPU parallelization to speed up their pose estimation algorithms. However in recent years
the use of GPUs has been largely restricted to end-to-end learning algorithms. In our work, we
show that a deliberative-discriminative 6-Dof pose estimation framework, where the deliberative
component takes advantage of GPU parallelization can achieve a low run time as well as require
minimal pose-annotation. Such integration has been explored in early research works such as Mörwald
et al. (2010), and has only recently started to receive focus from the research community in the deep
learning era (Labbé et al., 2020).
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2.3. Pose refinement methods
ICP (Chen & Medioni, 1992) is a popular optimization approach that is used in pose estimation as
well as tasks such as, scan matching and tracking camera pose of a robot in motion. Several enhanced
versions of the original ICP algorithm have been proposed over the years, such as, the probabilistic
Generalized ICP (GICP) (Segal et al., 2009). GICP models surface of different types through Gaussian
distributions. Despite increase in accuracy and speed of recent ICP variants (Koide et al., 2021),
ICP alone is insufficient for object pose estimation in clutter since it requires initialization with a
pose estimate close to the ground-truth. However, this makes ICP a perfect candidate for refinement
of poses, predicted through other methods (Wong et al., 2017; Xiang et al., 2018). In this process,
special care must be taken to avoid local minima.

ICP is an important component of PERCH (Narayanan & Likhachev, 2016b) that helps resolve
pose discretization artifacts that arise from rendering of the pose hypotheses. However as we will
show in our work, the ICP approach utilized in PERCH and other methods, doesn’t scale well with
number of objects and number of poses being considered. In this work, we extend ideas proposed for
GPU-based ICP and nearest neighbour search parallelization in Garcia et al. (2010), Koide et al.
(2021), and Qiu et al. (2009), so that several thousand poses can be refined using ICP in parallel.

3. Background
This section states the problem setup and optimization formulation for estimating the 3-DoF pose (x,
y, yaw) by PERCH (Narayanan & Likhachev, 2016b). We also discuss relevant extensions to PERCH.
Our discriminative-deliberative framework for 6-Dof pose estimation which relaxes assumptions made
by PERCH in 3-Dof is described later in Section 4.6.

3.1. Perception via search for multi-object pose estimation
For estimating the 3-DoF pose (x, y, yaw), PERCH assumes a set of K object instances in the input
point-cloud, given the 3D models of N unique objects. PERCH allows the possibility of cases where
multiple copies of a particular object instance are present in the scene. The algorithm also assumes
that the 6-DoF camera pose is given. The camera pose is required by the algorithm to render 3-Dof
poses in the world frame by varying only (x, y, yaw) of every pose. The notations used by PERCH
are listed in Table 1. In order to compare PERCH 2.0 with PERCH, we use a similar 3-Dof pose
estimation formulation in our work.

3.2. Problem formulation
Given the input point-cloud I, PERCH (Narayanan & Likhachev, 2016b) estimates poses of O1:K
objects in the scene, by seeking to find a rendered point-cloud Rj having j(≤ K) objects, such that

Table 1. Notations used in PERCH (Narayanan & Likhachev, 2016b).

I The input point-cloud
K The number of objects in the scene
N The number of unique objects in the scene (≤ K)
Oj An object state specifying a unique ID and 3-DoF pose
RK Point-cloud for a rendered scene with K objects O1:K
∆Rj Point-cloud with points of Rj belonging exclusively to Oj
∆R̃j ∆Rj after ICP refinement
V (Oj) The set of points in an admissible (conservative) volume occupied by object Oj , (volume of the inscribed

cylinder)
Vj The union of admissible volumes occupied by objects O1:j
Jo The observed cost of the scene with respect to given Rj
Jr The rendered cost of the scene with respect to given Rj
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every point in I has an associated point in Rj and vice-versa. In other words, PERCH seeks to
minimize the following objective:

J(O1:K) =
∑
p∈I

OUTLIER(p | Rk)︸ ︷︷ ︸
Jo(O1:K )

+
∑

p∈Rk

OUTLIER(p | I)︸ ︷︷ ︸
Jr(O1:K)

(1)

in which OUTLIER(p | C) for a point-cloud C and point p is defined as follows:

OUTLIER(p | C) =
{

1 if minp′∈C∥p′ − p∥ > δ

0 otherwise
(2)

where δ is the sensor noise resolution. In order to counter the intractability of this joint global
optimization problem, owing to a large search comprising of all possible joint poses of all objects,
PERCH decomposes the cost function over individual objects added to the rendered scene. The
decomposition is subject to the constraint that the newly added object does not occlude those already
present. This allows the optimization to be formulated as a tree search problem where a successor
state is added to the tree whenever a new object is added to the rendered scene. The search tree is
referred to as the Monotone Scene Generation tree or MSG (Figure 2).

It is clear that the expansion of each state in the PERCH search tree has a significant computational
cost that scales unfavorably with the number of successors to be generated for the state. Figure 3
illustrates the steps followed during expansion of a state S1 in the tree. As shown, the successors are
generated by first rendering the object Oj to be added to the state in different poses using OpenGL.
For each pose, the algorithm then composes the rendered image with an image containing objects
already present in the parent state. This step is essential to check if the current object occludes any
object already present or to remove pixels corresponding to occlusions caused by other objects in the
scene. This is followed by conversion of the rendered depth image to a point-cloud and downsampling
it with VoxelGrid downsampling, thus obtaining ∆Rj . In order to account for discretization artifacts,
local-ICP (Chen & Medioni, 1992) is used to refine the pose. Since the adjusted state may change its

Figure 2. Portion of the Monotone Scene Generation tree constructed by PERCH(Narayanan & Likhachev,
2016b) and corresponding tasks involved in expanding a state S1.
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Figure 3. Expansion of a state S1 in the PERCH flow on CPU (Narayanan & Likhachev, 2016b).

occlusion properties, it is rendered again, composed with the parent image, and finally converted to
the downsampled adjusted point-cloud ∆R̃j . K-d tree (Bentley, 1975) based nearest neighbor searches
are then performed to calculate the observed and rendered cost for each of the successor states. For
computing rendered cost Jr, the k-d tree representation of the observed depth input is used and the
distance between every point in ∆Rj and its nearest neighbor in the k-d tree is computed iteratively
to classify it as an outlier or inlier according to Equation 2. For observed cost Jo, a similar process is
followed, though the k-d tree representation of every ∆R̃j needs to be constructed. While PERCH
uses OpenMPI to exploit the parallelism by executing these sequential steps in parallel threads for
each successor state being added to the tree, the restricted number of CPU cores available in regular
PCs places a practical limit on the speedup obtained through this approach. Moreover, the approach
fails to take advantage of a much wider parallelism in each independent step.

3.3. Extensions to PERCH
In this section we highlight some extensions to PERCH that were proposed in past research and form
the inspiration for our work.

3.3.1. Discriminatively-guided Deliberative Perception
The work on D2P (Discriminatively-guided Deliberative Perception (Narayanan & Likhachev, 2016a))
used discriminatively-trained algorithms to guide the tree search, with the objective of reducing
the time needed to find a solution. As shown in Figure 4, the input point-cloud is clustered into
K components, and the points in each cluster are back-projected to obtain ROIs in the depth image.
Then, the ROIs are fed to an R-CNN (Girshick et al., 2014) model trained on the complete object
instance database, after appropriate scaling and colorization. Finally, every high-confidence class
prediction for an ROI is converted to a heuristic for global search. Let l denote the label associated
with a unique object model, Bi the set of ROIs (bounding boxes) in the depth image and c(l | Bi) the
confidence score for object instance l being present in Bi. For every detection with c(l | Bi) ≥ cthresh,
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Figure 4. D2P (Narayanan & Likhachev, 2016a) pipeline. In this example, the R-CNN predicts two possible
hypotheses for the center ROI, which results in two heuristics being created for that ROI.

(a) (b) (c)

Figure 5. (a) The input point-cloud I (represented as a depth image and pseudo-colored); (b) Rendering R1
corresponding to one object object O1; (c) Rendering R1 \ C1, where C1 corresponds to points in I that occlude
R1 (Narayanan & Likhachev, 2017).

the heuristic is generated as follows:

p̄ = PROJECTTOSUPPORTPLANE (CENTROID ({p | p ∈ Bi})) (3)

h (sj) =


∞ if id (Oj) ̸= l

0 if ∥p̄ − T (Oj)∥p ≤ rdetector

∥p̄ − T (Oj)∥p otherwise
(4)

where ∥ · ∥p is the p-norm and T (Oj) is object Oj ’s center (assuming all models have been pre-
processed such that the z-coordinate of their origins have been set to the height of the supporting
surface), ignoring the orientation.

3.3.2. Deliberative perception in clutter
As is evident from previous sections, the Monotone Scene Generation tree formulation is primarily
used to account for inter-object occlusions. However, the work on C-Perch (Narayanan & Likhachev,
2017) presented an alternate way to acknowledge inter-object occlusions by marking certain points
CK in the input scene as clutter and using them as extraneous “occluders” while rendering the object
of interest in the scene (Figure 5), obtaining the rendered point-cloud RK \ CK instead of RK . Here
CK represents the points in the input scene that occlude object O1:K . It was shown that this strategy
for modelling inter-object occlusions is incredibly useful when models of all objects in the scene are
not available and thus the Monotone Scene Generation tree cannot be used to account for the same.
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From (Narayanan & Likhachev, 2017), we note the changes to the terms Jo and Jr in Equation 1:

Jo (O1:K) =
∑

p∈I∩VK

OUTLIER (p | (RK \ CK))

Jr (O1:K) =
∑

p∈RK \CK

OUTLIER(p | I)
(5)

4. Methodology
In this section, we describe our methodology for PERCH 2.0 and how we overcome shortcomings of
PERCH as well as some of the related work. In Sections 4.1, 4.2, 4.3 and 4.4, we describe how GPU
parallelization of various components is integrated into PERCH 2.0 for runtime improvement. In
Section 4.5 we describe the incorporation of RGB data into the PERCH 2.0 cost function, which
allows it to distinguish between objects of the same shape. In Section 4.6 we describe the combined
discriminative-deliberative framework for 6-Dof pose estimation.

4.1. Parallel scene generation
At a high level, the process of rendering a given number of objects N in state S1, consisting of P
poses of each object can be thought of as having N × P parallel threads. However if we consider
each object and its corresponding 3D mesh model to be made up of T triangles, a parallelism over
N × P × T threads can be observed. Consider a simple scenario consisting of 4 objects having 10
poses each and 10,000 triangles in each mesh model. The corresponding rendering task exhibits a
parallelism of 400,000 threads. The scale of this parallelism is ideal for exploitation on a GPU and
consequently we use that approach in PERCH 2.0.

Once the rendered RGB and depth images have been obtained for all objects and poses, they need
to be converted to point-clouds with every pixel transformed to its corresponding 3D point using
the depth input and camera intrinsic parameters in parallel. Given a depth input D, the following
relation can be used to get the (X, Y , Z) location of every pixel (x, y):

Z = D(x, y) (6)

X = (x − cU ) × Z

fU
(7)

Y = (y − cV ) × Z

fV
(8)

Here (fU , fV ) are the camera focal lengths, and (cU , cV ) are the camera centers. This process can be
seen to have a parallelism of N × P × L threads where L is the number of points in the rendered
image of the pose P .

The Region of Interest or ROI corresponding to the rendered object occupies a relatively small
area with respect to the whole image. Even within the ROI, the pixel density is quite high and a
direct transformation of every pixel in this region to corresponding (X, Y , Z), would result in a very
dense cloud which would in turn limit the scalibility of the downstream tasks. In order to counter
this, we introduce a downsampling and masking step that computes a mapping from the pixel space
of the rendered images to the reduced 3D point-cloud space while ignoring all pixels outside the ROI.
This mapping is then used to compute a downsampled point-cloud for all rendered images in parallel
on the GPU. The extent of downsampling can be controlled by a pixel stride parameter that allows
the mapping to be sparse or dense as per requirement.

4.2. Parallel Many-to-Many (M2M) GICP
ICP (Chen & Medioni, 1992) is an iterative technique to align a given source point-cloud to a given
target point-cloud. An approach of point-to-point non-linear ICP from the PCL library is used
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by PERCH (Narayanan & Likhachev, 2016b) to align rendered point-clouds to observed clouds
and account for discretization artifacts. However as we will show in later sections, this approach is
insufficient to deal with the scalability requirements presented by common pose estimation scenarios.
Moreover, as we will demonstrate, a point-to-point ICP approach like the one used by PERCH,
leads to poor accuracy under high occlusion by converging to the wrong pose. Recent works on
GICP (Koide et al., 2021; Segal et al., 2009) have proposed to counter this problem by developing a
generalized version of ICP or GICP. GICP combines features of point-to-point and point-to-plane
ICP by modelling the surface from which each point is sampled as a Gaussian distribution.

Following Koide et al. (2021), we explain GICP in this section. Let ai and bi be two points in
source pose and target pose found by a nearest neighbor search and the transform between them
is given by T . We assume they are both drawn from Gaussian distributions ai ∼ N

(
âi, CA

i

)
and

bi ∼ N
(

b̂i, CB
i

)
and the transform error between them is defined as follows:

d̂i = b̂i − Tâi (9)

The error d̂i can be represented by:

di ∼ N
(

b̂i − Tâi, CB
i + TCA

i TT
)

(10)

= N
(
0, CB

i + TCA
i TT

)
(11)

The GICP objective function is to find the transform T such that:

T = arg max
T

∑
i

log (p (di)) (12)

= arg min
T

∑
i

dT
i

(
CB

i + TCA
i TT

)−1
di (13)

The covariance matrices CA
i and CB

i are computed from k nearest neighbors in the respective
point-clouds. In practice, Equation 12 is solved by using a Gauss Newton optimizer as in Koide
et al. (2021). We can see from the outset that performing all the required steps for each candidate
pose with the observed scene would be inefficient even if performed in parallel in CPU threads. We
propose a modified scalable GPU GICP approach that is shown in Figure 6. The kNN computation
required in the flow is described later in Section 4.3.1. In order to compute JT J and −JT L from
Ji and li, cuBLAS batch matrix multiplication is used where each batch represents one pose. The
resulting set of equations are solved in parallel using the cuDNN library to obtain ∆T for every pose.
This process is repeated iteratively until all poses have converged.

4.3. Parallel objective function evaluation
In this section we describe two approaches that we incorporate in PERCH 2.0 to speed up the
evaluation of the objective function. The primary difference in the two approaches is the method used
to compute the nearest neighbor distances or kNN which are then used to compute OUTLIERS in
Equation 2. In the Experiments section, we present the effects of both approaches on overall runtime.

4.3.1. kNN Approach I
The need to create k-d trees for each successor cloud ∆R̃j and then iteratively computing nearest
neighbors in I for every point in every ∆R̃j leads to slow speeds despite the efficiency of the k-d tree
data structure. This parallelism for computing nearest neighbor distances over N objects, P poses of
each object Oj , consisting of L points each in the ICP adjusted point-cloud can be considered as
requiring N × P × L × I parallel threads. We use the kNN-GPU library presented in Garcia et al.
(2010) to compute the nearest neighbor in the input point-cloud I for each point in every ∆R̃j in
order to exploit this parallelism.
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Figure 6. Parallel Many-to-Many GICP flow (O: Number of object instances, P: Number of poses per ob-
ject instance, L: Number of points in rendered point-cloud of a given pose, I: Input point-cloud, R: Rendered
point-clouds, R̂: GICP adjusted rendered point-clouds).

4.3.2. kNN Approach II
While Approach I is fully parallel, a closer look at the implementation reveals the need to allocate a
large 2D array to store pairwise distances between points in ∆R̃j and I as they are being computed
in parallel. This imposes a larger memory requirement on the GPU which could drive up the peak
memory usage and limit the overall number of poses that can be evaluated in parallel. Thus we
develop another approach that exploits a reduced parallelism of N × P × L threads. In each thread,
we loop over the points in I, computing distances to points in ∆R̃j and pushing them into a priority
queue. When all threads have finished execution, we have the nearest neighbors and corresponding
distances for every point ∆R̃j to every point in I. Unlike kNN Approach I, the reduced parallelism
in this approach eliminates the need for the allocation of a large 2D array.

Once distances are computed by using either approaches, another GPU kernel is then used to
classify every point as inlier or outlier in parallel, thus obtaining the rendered cost Jr. Finally we use
an additional kernel to compute the observed cost Jo, which checks every point in the input scene I
and if it lies within the volume occupied by an given object pose V (Oj), simultaneously marking
it as inlier or outlier depending on whether it was found as a nearest neighbor for a point in the
corresponding ∆R̃j in the previous step.

4.4. Parallel search
Despite speedup from enhancements in the above steps, the runtime remains limited owing to the
sequential nature of the Monotone Scene Generation tree. More specifically, the search must determine
the right non-occluding order in which to place the objects until a solution that satisfies the cost bound
has been found. We recount from Narayanan and Likhachev (2016b) that this process is primarily
a way to model inter-object occlusions. We build on the strategy used in C-Perch (Narayanan &
Likhachev, 2017) in PERCH 2.0, by treating the search for each object as an independent search for
that object in a cluttered scene where the model for other objects is unknown. This change effectively
reduces a sequential search to a parallel one that can be performed efficiently with our GPU-based
pipeline. Following a strategy similar to Narayanan and Likhachev (2017) for creating RK \ CK by
using the input depth image, we render and compute costs for all successors and find the best one
corresponding to the minimum cost for each object in parallel on the GPU. The complete 3-Dof pose
estimation pipeline is shown in Figure 7.
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Figure 7. 3-Dof pose estimation flow (O: Number of object instances, P: Number of poses per object instance,
T : Number of triangles in an object 3D mesh model, N: Number of pixels in rendered pose image, L: Number of
points in given pose point-cloud).

Figure 8. Objects & some sample images from the dataset used for evaluating 3-Dof PERCH 2.0.

4.5. Augmented objective function with RGB
The formulation of explanation cost in PERCH is based on the implicit assumption that depth data
alone can be used to capture how well a rendered point-cloud matches the observed point-cloud. More
formally, the classification of a point p in a point-cloud C as an outlier in Equation 2 is entirely based
on the Euclidean distance between them in 3D space. However this definition fails in scenarios similar
to those depicted in Figure 8. In such scenarios, where objects of similar shape are present, PERCH
is unable to estimate the (x, y, yaw) correctly because rendering any object at a given (x, y, yaw)
results in the same change in cost, owing to an outlier definition based purely on Euclidean distance.

Intuitively, the explanation cost in such cases must utilise the difference in point-wise RGB
information present in ICP adjusted rendered clouds ∆R̃j and in the observed point-cloud. It must
also accommodate changes in perceived color due to lighting. Keeping these requirements in mind, we
introduce the CIEDE2000 color difference formula (Sharma et al., 2005) in the CIELAB color space
to perform the comparison between a point in the observed cloud I and the rendered point-cloud
∆R̃j or vice-versa. In this space, each color is represented by 3 values—L∗, a∗ and b∗ and uniform
changes in these components are designed to replicate uniform changes in color as perceived by
the human eye. Formally, for a point p in C, the OUTLIER(p | C) definition in Equation 2 can be
re-written as:

OUTLIER_RGBD(p | C) =


1 if minp′∈C∥p′ − p∥ > δ

1 if ∥p′′
c − pc∥c > τc

s.t. minp′′∈C∥p′′ − p∥ ≤ δ

0 otherwise

(14)
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where:

• pc and p′′
c denote the color in CIELAB of points p and p′′ respectively

• ∥p′′
c − pc∥c denotes the CIEDE2000(Sharma et al., 2005) color-difference between the two points

• τc denotes the maximum allowed color difference for two colors to be considered same

With this definition of OUTLIER_RGBD(p | C), we penalize points for being distant in color space
even though they might satisfy the Euclidean constraint in 3D space.

4.6. 6-Dof pose estimation
While we presented a way to incorporate RGB data into PERCH 2.0 in Section 4.5, convolutional
neural networks (CNNs) have been proven to have extremely high discriminative capabilities on
RGB input. We build on the success of CNNs in 2D instance segmentation and it’s output to prune
a large part of the 6-Dof search space. In our combined discriminative-deliberative framework, we
generate a set of pose proposals H(Oj) by combining the 2D object detector with a uniform sampling
of the rotation space and then process these proposals using PERCH 2.0 to estimate 6-Dof poses
for every object in the scene. Besides extending deliberative pose estimation to 6-Dof, the combined
framework avoids several disadvantages of purely discriminative data-driven techniques highlighted in
Section 2.1. The integration also relaxes key assumptions made in the PERCH problem formulation,
such as, the pre-requisite knowledge labels of objects in scene and the 6-Dof camera pose.

4.6.1. Translation proposal generation
In our approach we generate translation proposals from the 2D bounding box output of the object
detection network. Translation proposals denote possible (x, y, z) locations of the center of the
object’s 3D bounding box. Recent outdoor datasets such as Shao et al. (2018) have focused on
annotation of “full” bounding boxes as opposed to only “visible” bounding boxes in the image
database. The difference between the two kinds of annotations is highlighted in Figure 9. In our 6-Dof
pose estimation framework, we employ “full” bounding box annotation to assist in pose estimation
of occluded objects by giving us a more accurate location of the 2D projection of the object’s 3D
bounding box in the image. With the help of full bounding box and instance segmentation mask, we
can generate a set of translation proposals for a detected object Oj as follows:

Htj = ⟨xc, yc, zi⟩ where zmin ≤ zi ≤ zmax (15)

In the above equation, ⟨xc, yc⟩ is obtained by back projecting the center of the object’s 2D full
bounding box into 3D space using the camera’s projection matrix. zi ranges from zmin, the closest
point to the camera corresponding to the given object in the observed depth image to zmax, the
farthest point from the camera corresponding to the given object in the observed depth image. These
are obtained by combining the segmentation mask for the object with the input depth image.

(a) (b)

Figure 9. Different kinds of bounding box annotations. (a) Visible bounding box; (b) Full bounding box.
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(a) (b) (c)

Figure 10. (a) Objects from the YCB object database (Calli et al., 2015) with rotational symmetry about one
axis; (b) Objects from the YCB object database (Calli et al., 2015) with 180 degree semi-symmetry about 2 axis;
(c) Objects from the YCB object database (Calli et al., 2015) with no symmetry about any axis.

4.6.2. Rotation proposal generation
In our approach, we uniformly sample the rotation space by representing all possible rotations as
a set of viewpoints and in-plane rotation angles (Kehl et al., 2017; Sundermeyer et al., 2018). We
equidistantly-sample M viewpoints v from unit sphere and N in-plane rotation angles θ from [0, 2π]
and combine each with the other to generate M × N possible set of rotation proposals for object Oj :

Hrj = ⟨vi, θk⟩ where 1 ≤ i ≤ M and 1 ≤ k ≤ N (16)

An advantage of sampling rotations using viewpoints and in-plane rotations is that it allows for
explicit handling of object symmetry while ensuring that all object orientations have been considered.
This is in contrast to CNN based pose estimation methods where learning object symmetries is left
to the neural network. For an object that exhibits rotational symmetric about one axis such as the
can shown in Figure 10, the sampling of in-plane rotation can be skipped, significantly reducing
the number of proposals to be considered. Similarly for an object such as a sugar box which is
semi-symmetric or exhibits indistinguishable views if rotated along the axis by 180 degrees, only half
of the viewpoint sphere needs to be sampled.

4.6.3. 6-Dof pose estimation pipeline
A pictorial representation of the entire 6-Dof pose estimation pipeline can be seen in Figure 11. The
input RGB image is passed through a MaskRCNN (He et al., 2017) instance segmentation network,
obtaining object labels, segmentation masks and “full” bounding boxes. Then we generate 6-Dof
pose proposals for the detected objects through parallel rendering of each pose proposal on GPU.
While marking points as extraneous clutter, we use the class labels of the pixel to make sure that the
occluders belong to a different object than the one being rendered. We then generate point-clouds
which are refined using our parallel M2M GICP approach. We note that instance segmentation fits
neatly into our parallel GICP framework, allowing us to align multiple source poses to multiple target
poses in parallel. In addition, we use instance segmentation labels to speed up k-NN II by computing
nearest neighbors only for matching labels in rendered and observed point-clouds.

Finally, we render and generate point-clouds for the adjusted poses and compute the cost of each
pose proposal in parallel.

Instead of explicitly computing points within the object volume V (Oj) for calculation of observed
cost component Jo, we directly use the pixel-wise segmentation labels to determine the set of observed
points belonging to a given object.
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Figure 11. 6-Dof Pose Estimation Pipeline (O: Number of object instances, P: Number of poses per object
instance, T : Number of triangles in an object 3D mesh model, N: Number of pixels in a rendered pose image, L:
Number of points in given pose point-cloud).

5. Experimental results
5.1. 6-Dof tabletop manipulation
In this section we evaluate PERCH 2.0 on 6-Dof pose estimation and compare it against state-of-the-art,
end-to-end, learning-based methods on the YCB-Video Dataset (Xiang et al., 2018).

5.1.1. External baselines
In order to evaluate the performance of PERCH 2.0 for 6-Dof pose estimation, we compare our
results with DenseFusion (Wang et al., 2019) and PoseCNN + ICP (Xiang et al., 2018) on objects
from the YCB-Video Dataset (Xiang et al., 2018). The results are computed for the 2,949 keyframes
used for testing in prior works.

5.1.2. Ablation baselines
In order to understand the impact of various components in PERCH 2.0 on the overall pose estimation
accuracy, we use the following PERCH 2.0 baselines:

• PERCH 2.0 A (PoseCNN Mask + PCL ICP + kNN I): Here we directly instance segmentation
masks published online by PoseCNN1 in conjunction with PERCH 2.0 (PCL ICP + kNN I).
PCL ICP is the same non linear ICP algorithm used by PERCH. Since the mask is directly
used, we do not have the full bounding boxes available. The bounding box is computed from
the mask provided and the center of bounding box is used in PERCH 2.0. We note that this is
the visible bounding box as opposed to the full bounding box that our method seeks to use.

• PERCH 2.0 B (PoseCNN Mask + M2M GICP + kNN II): Here, we directly use the PoseCNN
masks in conjunction with PERCH 2.0 (M2M GICP + kNN II) which uses the our parallel
many-to-many GICP approach (Section 4.2) and kNN II (Section 4.3.2).

• PERCH 2.0 C (MaskRCNN + M2M GICP + kNN II): Here we use a MaskRCNN model that
outputs instance segmentation masks and full bounding boxes in conjunction with PERCH 2.0

1 https://rse-lab.cs.washington.edu/projects/posecnn/
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(M2M GICP + kNN II). This is our recommended framework for 6-Dof pose estimation. The
MaskRCNN implementation is described in Section 5.1.3 below.

For a better understanding of the impact of the GPU-based parallel M2M GICP approach and kNN
II on runtime, we use two variants of PERCH 2.0:

• PERCH 2.0 C (kNN I + CPU GICP) which uses kNN I and the publicly available CPU
parallelized version of GICP (Koide et al., 2021).

• PERCH 2.0 D (kNN II + M2M GICP) which uses our parallel many-to-many GICP approach
(Section 4.2) and kNN II (Section 4.3.2)

For running the above PERCH 2.0 variants, we use a machine with 16GB P100 NVidia GPU and
32 CPU cores. For rotation proposals, we sample 80 viewpoints from the unit sphere and combine
it with 3 in-plane rotation angles (for unsymmetrical objects). Translation proposals are created
by sampling object centers at a 1 cm threshold. A pixel stride of 8 is used to create downsampled
point-clouds from RGBD inputs.

5.1.3. MaskRCNN implementation details
In order to train a CNN for instance segmentation and full bounding box detection, we use a Mask
RCNN (He et al., 2017) model to train on RGB images, segmentation and class labels from the 80
training videos provided in the YCB-Video Dataset. Our implementation is based on Massa and
Girshick (2018). However since the YCB-Video dataset doesn’t contain annotation for full bounding
boxes, we use the ground-truth 6-Dof pose and project it onto the image to obtain the full bounding
box. We note that though we are using the 6-Dof pose to obtain the full bounding box, this could
instead be done through crowdsourced human annotation as done for the CrowdHuman (Shao et al.,
2018) dataset, eliminating the need to collect 6-Dof pose-annotations. The training is performed on 4
NVidia V100 GPUs.

Metrics. We use two metrics to compare our 6-Dof pose estimation results—area under ADD-S
threshold curve (ADD-S AUC < 0.1 m) and the percentage of poses with ADD-S < 2 cm. The results
are shown in Table 2. For understanding the accuracy of our instance segmentation and bounding
box regression, we use the average precision or the AP metric (He et al., 2017). The results are shown
in Table 3.

Accuracy. The results in Table 2 show that without using any ground-truth pose-annotation, the
variant PERCH 2.0 B outperforms all external baselines on both AUC (< 0.1 m) and ADD-S < 2 cm
metrics even though it uses the same PoseCNN Mask. We observe that the variant PERCH 2.0 C
that uses full bounding boxes further improves on the accuracy and performs well across objects of
varying shape, size, texture and symmetry, estimating 99.29% of the poses within the 2 cm ADD-S
error and hence within the tolerance limit of most robot grippers. However unlike DenseFusion (Wang
et al., 2019) and PoseCNN + ICP (Xiang et al., 2018), no pose estimation network on images from
the 80 training videos and 80,000 synthetic images were trained. The results in Table 3 show that
our MaskRCNN model is able to accurately estimate full bounding boxes and instance segmentation
masks for objects of different shapes and sizes. On closer inspection, we could see that the reason for
the low AP for 051_large_clamp and 052_extra_large_clamp is because the model often confuses
between them due their very similar appearance with the only difference being their size.

Robustness. A comparison between PERCH 2.0 B with PERCH 2.0 A shows the improvement that
can be achieved with the help of GICP alone. Further, the comparison between PERCH 2.0 C and
PERCH 2.0 B shows the improvement that can be achieved with full bounding boxes. Specifically, a
significant jump in accuracy metrics is seen for highly occluded objects such as the 003_cracker_box,
024_bowl, and 021_bleach_cleanser.
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Table 2. Area under accuracy-threshold curves for 6-Dof pose estimation on objects from the YCB-Video Dataset
(Xiang et al., 2018).

Objects PoseCNN
+ ICP

DenseFusion
(Iterative)

PERCH 2.0-A
(PoseCNN
Mask
+ PCL ICP
+ kNN-I)

PERCH 2.0-B
(PoseCNN
Mask
+ M2M GICP
+ kNN-II)

PERCH 2.0-C
(MaskRCNN
Mask
+ M2M GICP
+ kNN-II)

AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm

002_master_chef_can 95.80 100.00 96.40 100.00 95.3 99.86 96.06 100.00 96.25 100.00
003_cracker_box 92.70 91.60 95.50 99.50 89.14 96.69 93.54 97.81 94.69 99.65
004_sugar_box 98.20 100.00 97.50 100.0 98.64 98.64 95.86 99.66 96.11 99.58
005_tomato_soup_can 94.50 96.90 94.60 96.9 95.62 100 97.26 99.77 97.30 100.00
006_mustard_bottle 98.60 100.00 97.20 100.0 93.99 100 97.51 100.00 97.42 100.00
007_tuna_fish_can 97.10 100.00 96.60 100 93.59 100 95.50 99.91 95.97 100.00
008_pudding_box 97.90 100.00 96.50 100 92.32 97.7 93.04 94.03 93.55 99.53
009_gelatin_box 98.80 100.00 98.10 100 92.46 100 96.77 100.00 96.56 100.00
010_potted_meat_can 92.70 93.60 91.30 93.1 93.64 97.99 95.13 97.82 95.45 99.72
011_banana 97.10 99.70 96.60 100 94.93 99.73 96.53 99.74 96.88 99.74
019_pitcher_base 97.80 100.00 97.10 100 92.4 100 92.37 100.00 92.11 100.00
021_bleach_cleanser 96.90 99.40 95.80 100 90.81 99.03 93.39 96.99 95.25 100.00
024 bowl 81.00 54.90 88.20 98.8 92.55 95.56 93.42 97.04 97.22 100.00
025_mug 95.00 99.80 97.10 100 95.66 100 96.96 100.00 96.96 100.00
035_power_drill 98.20 99.60 96.00 98.7 92.94 100 96.10 99.91 95.72 99.72
036_wood_block 87.60 80.20 89.70 94.60 90.07 94.6 90.31 90.08 91.58 93.61
037_scissors 91.70 95.60 95.20 100 91.11 96.65 95.11 100.00 96.49 100.00
040_large_marker 97.20 99.70 97.50 100 96.11 100 97.56 99.85 97.78 100.00
051_large_clamp 75.20 74.90 72.90 79.20 84.16 71.19 72.25 77.06 92.41 97.99
052_extra_large_clamp 64.40 48.80 69.80 76.3 80.66 71.54 86.12 82.58 88.54 90.24
061_foam_brick 97.20 100.00 92.50 100.0 94.48 100 95.89 100.00 95.72 100.00
All Objects 93.00 93.20 93.10 96.8 92.10 96.15 94.56 98.00 95.48 99.29

Runtime. From Table 4, we can observe that PERCH 2.0 C on 6-Dof poses takes an average of
75.43 s to estimate poses for all objects in the scene. A closer inspection reveals that out of the 75.4 s,
an average of 88.9% time is spent on refining poses through ICP, while other parts of the pipeline take
an average of only 8.4 s to run for all objects and poses in the scene. In contrast, PERCH 2.0 B takes
only 7.6 s on average to estimate poses for all objects in the scene. It achieves a ∼10X improvement
over PERCH 2.0 A, highlighting the importance of parallel GICP and kNN II when the number of
poses to be evaluated is high. For both variants, an average of 2400 poses are evaluated per scene for
all objects combined.

Qualitative analysis. A few test scenes from the YCB-Video Dataset along with corresponding
bounding box, instance segmentation and 6-Dof pose predictions are shown in Figure 12. From the
first scene, we can observe that despite severe occlusion of the 037_scissors object, our Mask RCNN
model is able to accurately localize the full 2D bounding box and hence the object center in the image.
The predicted poses in scenes show that 6-Dof poses of objects of various shapes, sizes, symmetries
with varying levels of occlusion are predicted accurately. Figure 13 shows a scenario where pose
estimates from PERCH 2.0 could be inaccurate. The inaccuracy in this case is caused by depth holes
in the reflective parts of the 007_tuna_fish_can, resulting in very few points in the corresponding
point-cloud and hence an inaccurate pose estimate. Similarly Figure 14 depicts a scenario where
predicted pose estimates could be ambiguous. The ambiguity is caused by a reduction in density of
the observed point-clouds of 019_pitcher_base and 035_power_drill at certain angles, which in turn
results in multiple poses matching the observation during M2M GICP and cost computation.
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Table 4. Evaluation of runtime on YCB-Video Dataset.

Method Runtime (s)

PoseCNN + ICP 10
DenseFusion (Iterative) 0.06
PERCH 2.0 C (kNN I + CPU GICP) 75.43
PERCH 2.0 D (kNN II + M2M GICP) 7.6

(a) Input scene (b) 2D object detection (c) Predicted 6-Dof poses

Figure 12. Results from the YCB-Video Dataset.

5.2. 3-Dof pose estimation
While the previous section evaluated PERCH 2.0 against other publicly available methods, it is
inadequate for evaluation against PERCH, since a 6-Dof pose estimation approach based on the
hierarchical PERCH would be impractical owing to its high run time. Thus, in this section, we
describe several experiments on 3-Dof pose estimation to evaluate the performance of PERCH 2.0 in
direct comparison with PERCH. Due to the lack of availability of 3-Dof pose estimation datasets,
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(a) Input scene (b) Reconstructed scene from predicted poses

Figure 13. Edge case from the YCB-Video Dataset: Inaccurate pose for 007_tuna_fish_can.

(a) Input scene (b) Reconstructed scene from predicted poses

Figure 14. Edge case from the YCB-Video Dataset: Pose ambiguity for 019_pitcher_base and 035_power_drill.

we construct our own synthetic or real world datasets for these experiments with ground-truth
pose-annotation.

5.2.1. Tabletop object manipulation
Dataset. Experiments in Narayanan and Likhachev (2016b) have shown that PERCH can exploit
minute differences in shape and estimate poses accurately. Thus, for evaluating PERCH 2.0 against
PERCH, we focus on images of common objects that have same shape but different appearance. Such
objects are commonly found in grocery stores but to our knowledge, no database exists in literature
that consists of depth and RGB images of such objects. Moreover for PERCH, we require variation
only in 3-Dof pose (x, y, yaw) for every object while common annotated pose estimation databases
consist of pose variation in 6-Dof. Subsequently, we constructed a synthetic photo-realistic dataset of
75 scenes with corresponding RGBD and depth images using NVidia NDDS (To et al., 2018) plugin
for Unreal Engine 4 (objects shown in Figure 8). Within the plugin, we randomly vary 3D pose (x, y,
yaw) of every object on a tabletop while keeping z, roll and pitch constant. The plugin generates
images with more realistic lighting conditions and inter-object occlusion.

Baselines. We use the following baselines and PERCH 2.0 variants for this experiment:

• DOPE (Tremblay et al., 2018) + ICP: DOPE is a RGB based 6-Dof pose estimation method
directly compatible with NDDS generated data which we combine with ICP refinement on the
depth input for our experiments.
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• The Brute Force ICP (BF-ICP) baseline presented in Narayanan and Likhachev (2016b) is
also used for comparison. Here the object’s model is transformed by the same candidate poses
considered by PERCH and PERCH 2.0, and then local ICP alignment is performed and the
pose with the best ICP fitness score is selected.

• PERCH 2.0-A which does not use the input depth data to mark occluded points in the rendered
scenes.

• PERCH 2.0-B which does not use full parallelization like PERCH 2.0, but instead uses a tree
search formulation similar to PERCH.

• PERCH 2.0-C which uses full parallelization, kNN I and the same PCL ICP used by PERCH.

For training DOPE, we construct a training dataset of 12K images containing each of the selected
6 objects using NDDS (To et al., 2018). The network was trained for 60 epochs (pretrained on
ImageNet) on each object individually, taking approximately 12 hours for each on 2 NVidia P100
GPUs. For inference of DOPE and detection using PERCH and PERCH 2.0, an 8 core Intel i7-6700
CPU with an NVidia GeForce GTX 1070 8GB GPU was used. For PERCH and PERCH 2.0, we use
a translation discretization of 0.08 m and a yaw discretization of 22.5 degrees. The sensor resolution
δ is set to 0.0075 m. The color distance threshold τc is set to 12.5.

Metrics. We use the ADD-S (Hinterstoisser et al., 2013; Xiang et al., 2018) metric for evaluation,
which computes the average distance between the closest points in the object’s 3D model, transformed
with ground-truth pose and the same model transformed with the predicted pose. We vary the
ADD-S distance threshold up to 0.1 m and obtain the area under the accuracy-threshold curve (AUC)
for all methods as shown in Table 5. We also compute ADD-S < 1 cm, which denotes the percentage
of poses with less than 1 cm ADD-S error.

Accuracy. PERCH 2.0-C achieves the best performance among all variants with 100% of poses below
ADD-S 1 cm error. It can also be noted that PERCH 2.0-C and DOPE + ICP outperform PERCH
and BF-ICP. This shows that PERCH 2.0 and DOPE are able to utilize the RGB information present
in the object model and observed scene and closer inspection reveals that these methods do not get
confused between similar looking objects even in occlusion (like sprite_can and pepsi_can).

Robustness. The robustness of the RGBD cost function used by PERCH 2.0-C is highlighted by
its ability to differentiate between objects of different sizes (bottle vs can), objects with minute
color differences (pepsi can vs sprite can), and objects with a non-uniform color distribution (sprite

Table 5. Evaluation of 3-Dof pose estimation for similar shape objects.

Objects BF-ICP PERCH DOPE + ICP PERCH 2.0-A
(W/O
Occluder
Marking)

PERCH 2.0-B
(W/O Full
Parallelization)

PERCH 2.0-C
(ICP
+ kNN I)

AUC <1 cm AUC <1 cm AUC <1 cm AUC <1 cm AUC <1 cm AUC <1 cm

coke_bottle 46.61 0.00 55.43 58.00 90.00 94.00 96.59 100.0 96.6 100.00 96.59 100.00
sprite_bottle 46.16 0.00 55.37 58.00 87.99 84.44 97.06 100.0 96.65 100.00 97.09 100.00
sprite_can 17.62 0.00 43.04 30.00 90.71 80.00 57.41 60.00 95.42 100.00 95.61 100.00
pepsi_can 38.10 0.00 48.63 48.57 94.82 96.00 95.66 100.0 95.63 100.00 95.69 100.00
coke_can 46.61 0.00 40.58 40.00 89.18 89.18 93.39 97.30 95.61 100.00 95.95 100.00
7up_can 28.27 0.00 32.46 25.00 75.21 68.00 79.33 68.00 95.03 100.00 95.26 100.00
All Objects 37.51 0.00 47.16 43.26 88.16 85.27 80.49 87.55 95.26 100.00 95.72 100.00
Mean
Runtime (s) 220.7 137.2 1.0 1.64 11.9 1.31
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can, 7up can). PERCH 2.0-C also handles occlusions more effectively as compared to DOPE and
PERCH 2.0-A, which is exhibited in its better performance as compared to both.

Runtime. From Table 5 it is clear that we are able to achieve a nearly two order of magnitude improve-
ment in runtime (∼100X) with PERCH 2.0-C over PERCH. A comparison between PERCH 2.0-C
and PERCH 2.0-B also reveals that PERCH 2.0-C is able to achieve the same accuracy with full
parallelization that PERCH 2.0-B is able to obtain using the Monotone Scene Generation tree
(Narayanan & Likhachev, 2016b). However PERCH 2.0-C is 10 times faster than the latter. Moreover,
PERCH 2.0-C has a runtime close to the DOPE + ICP pipeline which suggests that it can achieve
speeds comparable to popular learning based approaches followed by depth-based refinement without
requiring any training for estimating 3-Dof poses and object categories.

Qualitative results. We analyzed the performance of PERCH 2.0 with several scenes captured on 2
robot systems—a PR2 mobile manipulator and a Ubtech Walker robot. The results are shown in
Figure 15 and Figure 16. The results on PR2 in Figure 15 demonstrate that the pose estimation
accuracy and runtime transfer well to the real world scenes that consist of multiple objects with
inter-object occlusion. The results on the Walker robot in Figure 16 show that the RGB aware
cost function is capable of distinguishing objects of similar shape but different appearance in the
real world. We also note that PERCH 2.0 was used in Saxena et al. (2021) to perform real world
manipulation based on the 3-Dof poses predicted by the algorithm.

5.2.2. Conveyor object manipulation
Task. Recent research has explored mobile manipulators being deployed for the task of pick-and-drop
of moving objects on a conveyor (Cowley et al., 2013; Islam et al., 2021; Menon et al., 2014). As argued
in Cowley et al. (2013), a fast and accurate perception system is needed for robust pick-and-place
of moving objects. Further, authors in Islam et al. (2021) showed that an accurate and early pose
estimate can be utilized by motion planners to pick up objects moving at high speeds. However due
to high runtime, deliberative pose estimation methods like PERCH are unable to be deployed for
tasks such as these while data-drive techniques like Wang et al. (2019) would have to be trained
for every unique object and at different distances from the camera. In this section, we demonstrate
that due to runtime enhancement, PERCH 2.0 can successfully estimate the 3-Dof poses of objects
moving on a conveyor with high accuracy and speed.

Dataset. Since there is no publicly available database that consists of sequences of moving objects
with known 3D models and varying 3-Dof poses, we constructed a database by collecting 10 videos of
4 YCB objects moving along the conveyor. The objects are shown in Figure 17. The 6-Dof camera
pose was also captured along with intrinsic camera parameters. In order to annotate the ground-truth
3-Dof pose, we first split the recorded videos into RGB and depth images. For each captured frame,
we convert the corresponding 3D point-cloud to the frame of the robot base and then filter out all
points except those belonging to the object of interest using pass-through filters in the PCL library
(Rusu & Cousins, 2011). Next we manually annotate the 3-Dof pose of the object in the first captured
frame. For every successive frame, we use ICP alignment from PCL to annotate the pose using the
annotation from the previous frame as the initial pose estimate. In this manner, we generate 961
RGB and depth images with annotated 3-Dof poses.

Baselines. For this experiment we use PERCH 2.0 with the same ICP as PERCH and kNN I
(Section 4.3.1). Similar to the previous experiment, our objective here is to examine the adaptability
of deliberative pose estimation methods like PERCH to this task, as well as to test the runtime
improvement offered by PERCH 2.0. Consequently, we evaluate both algorithms on the generated
conveyor dataset. We evaluate both algorithms against the BF-ICP baseline as before. We note that
the BF-ICP approach was used in Islam et al. (2021) to perform pose estimation for real-time grasping
of objects off a conveyor. For both PERCH and PERCH 2.0, we use a translation discretization of
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(a) Input Scene (b) Reconstructed scene from predicted poses

Figure 15. A few qualitative 3-Dof pose estimation results on PR2 for runtime evaluation (Average runtime:
2.45 s).
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(a) Input Scene (b) Reconstructed scene from predicted poses

Figure 16. A few qualitative 3-Dof pose estimation results on Walker Robot for RGBD cost function evaluation.
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Figure 17. Left: PR2 robot setup for data collection, Right: A few extracted frames from the conveyor dataset.

Table 6. Evaluation of 3-Dof pose estimation of objects on a conveyor.

Objects BF-ICP PERCH PERCH 2.0
(ICP + kNN I)

Database

AUC <2 cm AUC <2 cm AUC <2 cm Image Count

035_power_drill 91.38 100.000 91.60 99.785 91.37 99.57 465
006_mustard_bottle 85.27 82.278 91.93 98.101 91.70 98.73 158
004_sugar_box 87.85 96.842 91.20 99.648 91.06 99.30 284
005_tomato_soup_can 92.25 92.593 94.18 100.000 94.85 100.00 54
All Objects 89.29 95.738 91.61 99.479 91.47 99.38 961
Mean Runtime (seconds) 8.065 25.938 0.619

0.08 m and a yaw discretization of 22.5 degrees. The sensor resolution δ is set to 0.02 m. For running
PERCH 2.0 and PERCH, a machine with a GTX 1070 8GB GPU with 8 CPU cores is used.

Metrics. We use three metrics to compare our results—area under ADD-S threshold curve for every
object (ADD-S AUC < 0.1 m), the percentage of poses with ADD-S < 2 cm, and the mean ADD-S
error. The results are shown in Table 6.

Accuracy. PERCH 2.0 and PERCH achieve comparable performance on the dataset with more
than 99% of the poses within the 2 cm ADD-S error limit. The slight difference in performance can
be attributed to differences in downsampling used by the two methods. While PERCH uses Voxel
downsampling in 3D point-cloud space, PERCH 2.0 samples directly in the image space using a
stride to skip pixels. Both methods perform significantly better than BF-ICP, again highlighting the
importance of rendering in achieving high accuracy. The improvement in accuracy when compared
to BF-ICP suggests that PERCH 2.0 is a viable candidate for performing pose estimation for the
conveyor picking task since BF-ICP was used in Islam et al. (2021).

Runtime. We can observe from Table 6 that PERCH 2.0 is significantly faster than PERCH and
offers a ∼43X speedup. In order to understand the impact of runtime on the given task, we note that
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Table 7. Maximum number of possible poses processed for
given conveyor speed.

Conveyor Speed (m/s) Number of Poses Processed

PERCH PERCH 2.0

0.025 2 90
0.050 1 45
0.100 1 23
0.150 0 15
0.200 0 11
0.250 0 9
0.300 0 8
0.350 0 6

Table 8. Variation of accuracy metrics with distance from the robot along the conveyor.

Distance From Robot (m) BF-ICP PERCH PERCH 2.0

AUC <2 cm AUC <2 cm AUC <2 cm

0.0–0.2 91.35 99.12 90.54 99.11 90.56 98.21
0.2–0.4 92.40 100.0 92.17 100.0 92.56 100.0
0.4–0.6 92.68 100.0 92.59 100.0 92.98 100.0
0.6–0.8 92.57 99.17 92.74 99.17 92.74 99.17
0.8–1.0 89.44 100.0 92.60 100.0 92.15 100.0
1.0–1.2 86.57 93.52 91.63 100.0 90.87 100.0
1.2–1.4 83.28 81.15 89.82 98.36 89.62 97.54

the region of the conveyor visible to the robot’s Kinect camera is only 1.4 m in length. Based on this
length and for different speeds of the conveyor, we can easily compute the number of pose estimates
each method would be able to obtain in the visible region (as shown in Table 7). It is evident from this
table, that PERCH, due to its high runtime, is able to provide estimates for very low conveyor speeds
only. Such speeds are not practical in a real-world industrial scenario where a high throughput is
required. Moreover, if planning and execution time for the robot are taken into account, the PERCH
pose estimates may be infeasible even for low speeds. In contrast, PERCH 2.0 can offer several pose
estimates for the moving object even at high conveyor speeds due to its enhanced runtime. As a
result, it can be used by planning methods such as Islam et al. (2021), which can utilize multiple
pose estimates while planning for the arm.

Spatial analysis. A key component of any method being applied to the given task is the variation
in the method’s accuracy as the object moves from end of the conveyor to the other end closer to the
robot. A method that can offer higher accuracy even if the object is at the far end of the conveyor
allows sufficient time for planning and execution of the pickup motion by the robot arm before the
object reaches within the robot workspace. In order to understand the spatial variation in accuracy for
each of the methods, we divide the conveyor into bins of 0.2 m and compute AUC as well as ADD-S
< 2 cm for poses belonging to each bin. The results are shown in Table 8 and Figure 18 for PERCH,
PERCH 2.0 and BF-ICP. Figure 19 shows qualitative performance of PERCH 2.0 for different objects
at varying distances from the robot. The overall observation consistent with all three methods is that
the pose estimation accuracy reduces when the object is too close or too far from the robot. A close
inspection of scenes when the object is far away revealed significant depth holes in the captured depth
images which in-turn reduces the number of points available for pose estimation in the observed
point-cloud (Figure 22a). Similarly for some objects in certain poses such as the 035_power_drill, the
visible parts of the object when its close to the robot are insufficient to discern the correct 3-Dof pose.
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(a) PERCH (b) PERCH 2.0 (c) BF-ICP

Figure 18. Variation of pose estimation accuracy with distance from robot along the conveyor.

(a) Input scene (b) Reconstructed scene from predicted poses

Figure 19. A few results from the conveyor dataset.
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(a) Input scene (b) Reconstructed scene from predicted poses

Figure 20. PERCH 2.0 edge case from the Conveyor Dataset: Inaccurate pose for 004_sugar_box.

(a) Input scene (b) Reconstructed scene from predicted poses

Figure 21. PERCH 2.0 edge case from the Conveyor Dataset: Inaccurate pose for 035_power_drill.

This can be attributed to the creation of ambiguous top-down views of the object, again reducing the
number of points available in the observed point-cloud for pose estimation (Figure 22b). Figures 20
and 21 represents the two edge cases where PERCH 2.0 predicts inaccurate or ambiguous poses.
However, the second observation that is evident from Figure 18 is that the drop in accuracy when
the object is far way is significantly higher for BF-ICP than for PERCH and PERCH 2.0. The drop
clearly highlights that rendering plays a key role in determining the correct 3-Dof pose when objects
are far from the camera and only few points from the object are actually visible. It also points to
PERCH 2.0 being a favorable candidate for the given task owing to its low runtime when compared
to PERCH and higher spatially consistent accuracy when compared to BF-ICP.

5.2.3. Container opening
Task. PERCH 2.0 was evaluated for the task of opening a container using the RoMan platform
shown in Figure 25a. Here, PERCH 2.0 estimates the 3-Dof pose of the container (x, y, yaw) to
be opened, which then serves as an input for the manipulation planner. The task of opening a
container imposes stringent accuracy requirements on estimated pose due to manipulation work
space limitations of the robot and the necessity to locate the handle of the container which occupies
a limited area with respect to the entire container. In addition, the size of the container and its
close proximity to the robot, renders large parts of the container occluded from the camera, thus
making the pose estimation accuracy requirement harder to meet. While experiments conducted in
Kessens et al. (2020) showed high overall container opening success rates when PERCH was used for
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(a) Depth holes in far away objects

(b) Objects in close proximity result in ambiguous top-down views

Figure 22. Difficult scenarios for pose estimation of objects moving along the conveyor.

Figure 23. A few sample scenes from the container test dataset.

container pose estimation (over 80%), the high runtime still limits its applicability in the real world.
This provides us the necessary motivation to consider PERCH 2.0 for this task.

Dataset. For evaluating PERCH 2.0 based pose estimation of the container and to compare its
accuracy and runtime against the accuracy of PERCH, we require multiple scenes consisting of the
container with varying (x, y, yaw) and different degrees of visibility. In addition, computation of
accuracy, requires ground-truth pose-annotations for each scene, a task which is difficult to obtain
in the real world. Subsequently, we constructed a synthetic photo-realistic dataset of 25 scenes
containing the container with corresponding RGB and depth images using NVidia NDDS (To et al.,
2018) plugin for Unreal Engine 4 (as shown in Figure 23) as before. Within the plugin, we randomly
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vary 3-Dof pose (x, y, yaw) of the container located on the ground. The height of the camera is fixed
according to the height of the RealSense mounted on RoMan and scenes bearing close resemblance
to real world requirements where the container is highly occluded and in close proximity to the
RealSense are generated.

Baselines. In this experiment, we use two variants of PERCH 2.0:

• The first variant is PERCH 2.0 A (ICP + kNN I)
• The second variant is PERCH 2.0 B (M2M GICP + kNN II)

We compare these two variants with PERCH and BF-ICP baseline. For running PERCH 2.0, a
machine with a P100 16GB GPU with 8 CPU cores is used. For PERCH a machine with 8 CPU
cores is used.

Metrics. We use 3 metrics to compare our results—area under ADD-S threshold curve for every
object ADD-S AUC < 0.1 m, the percentage of poses with ADD-S < 2 cm and the mean ADD-S
error. The results are shown in Table 9.

Accuracy. The first observation is that PERCH 2.0 A and PERCH 2.0 B achieve comparable
performance on the ADD-S < 2 cm metric with 96% of the poses within the 2 cm ADD-S error
limit. However PERCH 2.0 B (M2M GICP + kNN II) performs significantly better than the other
approaches on the metrics ADD-S AUC (< 0.1 m) and mean ADD-S error. This shows that GICP
improves accuracy by performing better alignment under occlusion and is consistent with our ob-
servation in the experiment in Section 5.1. We note that all PERCH variants have a significantly
better accuracy than the BF-ICP approach which highlights the importance of rendering and using
the PERCH cost function in the estimation of the container pose especially when large parts of the
container are occluded.

Runtime. The results show that PERCH 2.0 (M2M GICP + kNN II) is ∼50X faster that PERCH
on the given dataset. It is also ∼1.5X faster than PERCH 2.0 (ICP + kNN Approach I) which
shows that for a large number of candidate poses, parallel GICP as well as kNN Approach II help in
reducing runtime further. This observation is also consistent with our observation in Section 5.1. For
all methods the average number of poses rendered is within 700 to 800.

Qualitative results. Figure 24 shows a few scenes from crate database with corresponding predicted
poses by PERCH 2.0. The predictions highlight the capability of PERCH 2.0 in being able to
accurately estimate the 3-Dof pose even under high occlusion. Figure 25 represents scenes and
predictions captured from the RoMan robot and show that the runtime and accuracy capabilities of
PERCH 2.0 transfer well to the real world.

Table 9. Evaluation of 3-Dof pose estimation of container.

Objects BF-ICP PERCH PERCH 2.0 A
(ICP + kNN I)

PERCH 2.0 B
(M2M GICP + kNN II)

AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm

container 51.12 24.00 88.41 96.00 90.35 96.00 93.14 96.00
Mean Runtime (s) 2.47 162.36 5.07 3.23
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Figure 24. A few results from the crate test dataset.

(a) Input scene (b) Reconstructed scene (Runtime: 3.0 s)

(c) Input scene (d) Reconstructed scene (Runtime: 1.4 s)

Figure 25. A few test scenes from the RoMan robot platform.
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6. Conclusion
In this work we introduced PERCH 2.0, a parallel, GPU-based, deliberative, pose estimation method-
ology that finds the best explanation of an observed scene by searching a space of possible rendered
scenes. The methodology scales proportionally with the number of objects and number of poses to
be considered for each object by breaking down every task into the smallest possible unit that can
fully utilize a GPU’s parallelization capabilities.

Within the deliberative framework, we first render a set of candidate poses for every object of
interest in the scene. Our GPU-based renderer can generate thousands of scenes at a time and
inherently accounts for occlusion from other objects by using the input depth data to mark certain
points in a given scene as extraneous occluders. Rendering is followed by 3D point-cloud creation
wherein the camera’s intrinsic parameters are used to simultaneously project every valid pixel in the
rendered scenes to 3D space. The point-clouds are then fed into our many-to-many GICP framework
that aligns every pose to the corresponding observed point-cloud. In order to counter the sequential
nature of ICP iteration, we perform ICP iterations for all point-clouds in parallel, thereby reducing a
multi-sequential step of aligning several point-clouds to a single sequential step. After GICP, the
updated poses are rendered again and converted to point-clouds. In the final step, we evaluate the
candidate poses by computing a cost function that relies on a parallel nearest neighbor search of
every rendered 3D point in the observed scene.

Our experiments showed that PERCH 2.0 is two orders of magnitude faster than its predecessor
PERCH (Narayanan & Likhachev, 2016b) for 3-Dof pose estimation. As a direct result of the speedup,
we demonstrated the application of PERCH 2.0 to new domains such as container-opening and pose
estimation of moving objects on a conveyor belt. For container opening, where the designated task
was to estimate the 3-Dof pose of a large container, we showed that despite high occlusion due to
close proximity of the container to the robot, our method is able to achieve high accuracy and low
runtime. In the case of moving objects on a conveyor, PERCH 2.0 retains high accuracy even when
the object is at the far end of the conveyor belt and offers several pose estimates as the object gets
closer. Intuitively, both capabilities are favorable for a planner intending to grasp the object as it
arrives within the robot workspace.

For 6-Dof pose estimation, where the number of poses to consider for every object increases expo-
nentially, we demonstrated a successful and scalable integration of a discriminative learning based 2D
object detector with the deliberative methodology PERCH 2.0. The combined framework predicts
6-Dof poses directly from an instance segmentation mask, generated by the 2D object detector, thus
eliminating the need for ground-truth 6-Dof poses in the detector’s training database. Our 6-Dof
experiments demonstrated that our framework can achieve higher accuracy than state-of-the-art
discriminative methods that do not have a deliberative component. Additionally, we showed the
impact of localizing full bounding boxes, as opposed to visible ones, on overall pose estimation
accuracy by better handling occlusion.

7. Future work
Our framework provides several directions for future work on deliberative pose estimation by
formulating it in a more scalable and practically feasible manner.

For 3-Dof pose estimation, so far only indoor scenes have been explored in our work. This could
be extended to outdoor scenes where Lidar data can be used to accurately estimate 3-Dof poses of
vehicles by autonomous cars. Since outdoor scenes typically deal with higher distance magnitudes,
a voxelized version of PERCH 2.0 may be developed to speed up computation even further. An
extension to vehicle pose detection also presents an opportunity to extend deliberative pose estimation
to scenarios where it may not be possible to have exact models of all objects.

In the context of 6-Dof pose estimation, we presented a framework that elegantly combines discrim-
inative, deliberative, and optimization based approaches for pose prediction. However, in our method,
predictions flow from the discriminative side to the deliberative side, but there is no feedback of
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information. As an extension, the costs predicted for each of the poses in the pose hypothesis could be
used to learn a sampling distribution that takes the depth image of the scene as input. This sampling
distribution can then be used to sample poses by PERCH 2.0 on the deliberative side instead of
uniformly sampling the rotation space. This would enable a further speedup of the deliberative part
of the framework and also ensure a continually improving self-supervised discriminative methodology
that enables the deliberative part to get faster as it receives more data.
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