
Field Robotics, January, 2024 · 4:99–137 · 99

Special Issue: Opportunities and Challenges with Autonomous Racing

Regular Article

er.autopilot 1.0: The Full Autonomous
Stack for Oval Racing at High Speeds
Ayoub Raji1,2 , Danilo Caporale3 , Francesco Gatti4, Andrea Giove5,
Micaela Verucchi1,4 , Davide Malatesta3, Nicola Musiu1, Alessandro Toschi1 ,
Silviu Roberto Popitanu5, Fabio Bagni1,4, Massimiliano Bosi1,4, Alexander Liniger6 ,
Marko Bertogna1,4 , Daniele Morra5, Francesco Amerotti4, Luca Bartoli4,
Federico Martello1 and Riccardo Porta1
1University of Modena and Reggio Emilia, Italy
2University of Parma, Italy
3Technology Innovation Institute–Autonomous Robotics Research Center, UAE
4HIPERT srl
5University of Pisa, Italy
6Computer Vision Lab, ETH Zurich, Switzerland

Abstract: The Indy Autonomous Challenge (IAC) brought together for the first time in history
nine autonomous racing teams competing at an unprecedented speed and in a head-to-head scenario,
using independently developed software on open-wheel race cars. This paper presents the complete
software architecture used by the team TII EuroRacing (TII-ER), covering all the modules needed
to avoid static obstacles, perform active overtakes, and reach speeds above 75 m/s (270 km/h). In
addition to the most common modules related to perception, planning, and control, we discuss the
approaches used for vehicle dynamics modeling, simulation, telemetry, and safety. Overall results
and the performance of each module are described, as well as the lessons learned during the first
two events of the competition on oval tracks, where the team placed second and third, respectively.

Keywords: autonomous racing, control, motion planning, perception, extreme environments

1. Introduction
The introduction of Advanced Driver Assistance Systems (ADASs) and partially automated systems
on commercial cars has reduced the number of motor vehicle crashes and deaths in the majority
of high-income countries (Yellman, 2022). This trend could become even more effective in the
coming decades thanks to speed limit regulations and the obligation for car manufacturers to
include advanced safety systems, such as the Driver Alcohol Detection System for Safety and the
Driver Drowsiness Detection System, on all their vehicles (Benson et al., 2018; Ecola et al., 2018).

Received: 1 October 2022; revised: 22 February 2023; accepted: 21 March 2023; published: 9 January 2024.
Correspondence: Ayoub Raji, University of Modena and Reggio Emilia, Italy; University of Parma, Italy,
Email: ayoub.raji@unimore.it
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2024 Raji, Caporale, Gatti, Giove, Verucchi, Malatesta, Musiu, Toschi, Popitanu, Bagni, Bosi, Liniger,
Bertogna, Morra, Amerotti, Bartoli, Martello and Porta
DOI: https://doi.org/10.55417/fr.2024004

http://fieldrobotics.net

https://orcid.org/0000-0003-4188-8854
https://orcid.org/0000-0003-2665-3950
https://orcid.org/0000-0003-3898-8571
https://orcid.org/0009-0002-4497-0589
https://orcid.org/0000-0002-7858-7900
https://orcid.org/0000-0003-2115-4853
mailto:ayoub.raji@unimore.it
https://doi.org/10.55417/fr.2024004
http://fieldrobotics.net

100 · Raji et al.

Nevertheless, currently a significant number of crashes and deaths are caused by harsh weather
conditions, poor visibility, and loss of control, which are not likely to be preventable by current
ADASs (Benson et al., 2018). This should serve to advance research on fully autonomous driving
on highways, in high-speed scenarios, and in harsh road conditions.

Motorsport has always produced innovative technologies that, in many cases, were subsequently
adapted to automobiles to improve safety and enhance performance. Examples are rear-view
mirrors, seat belts, active suspensions, and engine recovery systems. Similarly to the integration
of Motorsport technological innovations in human-driven urban cars, Autonomous Racing could
help in the development and testing of self-driving capabilities in extreme cases on race tracks, with
future applications in urban autonomous vehicles (Betz et al., 2019b).

Autonomous driving competitions have historically been very effective in fostering research and
industrial interest to push self-driving technology beyond its limits. A first milestone was set in 2005
with the DARPA Grand Challenge, where multiple teams competed to drive autonomously off-road
vehicles along a 132-mile path in the desert near the California/Nevada state line. The Stanford
Racing Team won the $2 million prize, completing the path in slightly less than 7 h. Researchers
from the five teams that completed the challenge became involved as founders and chief researchers
of companies that only a decade later would render urban autonomous vehicles a commercial reality.

In the autonomous racing domain, two notable initiatives were proposed in 2016. The f1tenth1

initiative is an open source platform for the development and testing of autonomous driving software,
consisting of 1:10 scale RC cars equipped with a LiDAR scanner, a stereo camera, and Nvidia
computational boards. Annual international race events of the f1tenth are organized during the most
important conferences in Robotics. Roborace2 provides full-scale electric race cars able to achieve
speeds of around 69.4 m/s (250 km/h). The competition is based on a championship formed by
several real and virtual races. In 2017, the Formula SAE3 created the new Formula Student Driverless
(FSD) class where teams formed by students have to design and develop both the mechanics and
software of a prototype capable of autonomously running in a closed loop track created by cones.
In 2020, a new competition, the Indy Autonomous Challenge (IAC), was launched, with the aim to
showcase multivehicle head-to-head races at the limits of handling in high-speed racetracks.

In this paper, we present er.autopilot 1.0, the complete software stack used during the IAC by
the TII EuroRacing team, which accomplished the second and third position in the first two events.
The system was demonstrated to be able to avoid static obstacles, perform active overtakes on other
vehicles, and achieve speeds above 75m/s. The aim of this work is not only to be a reference for the
Autonomous Racing domain but also for other autonomous systems in edge-case scenarios for road
vehicles and sport cars. Among the major contributions, we present a vehicle model identification
approach in which a model-based controller is tuned using simulation tools without prior dynamic
data of the vehicle. We exhaustively characterize the performance of each software and control
module, and of the overall system, deriving the main lessons learned by analyzing the pros and cons
of each solution.

In the remainder of Section 1, we give a brief introduction to the competition and the race
car. Related research in the Autonomous Racing domain is discussed in Section 2. The full stack
of er.autopilot 1.0, the underlying design principles, and the technological solutions adopted
are presented in Section 3. In particular, the modules related to localization and perception
are presented, including a LiDAR-based solution, and the description of different clustering and
detection approaches. The software modules related to motion forecasting, planning, and control
have already been presented in (Raji et al., 2022). We thus give here a brief description of their
implementation and focus on their effects on the overall system and the final results obtained.
Section 4 presents the simulation platforms used for testing. Telemetry and Visualization tools are
illustrated in Section 5. The results of each module and of the overall system during the competition

1 https://f1tenth.org/
2 https://roborace.com/
3 https://www.fsaeonline.com/

Field Robotics, January, 2024 · 4:99–137

https://f1tenth.org/
https://roborace.com/
https://www.fsaeonline.com/

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 101

are summarized in Section 6. Section 7 gathers an overview of the lessons learned by the team. The
paper is concluded in Section 8, where potential improvements and future research directions are
also presented.

1.1. Indy Autonomous Challenge
The IAC4 is an international competition that brings together public-private partnerships and
academic institutions to challenge university students around the world to imagine, invent, and
validate a new generation of automated vehicle software to run fully autonomous race cars.

The challenge was carried out in two steps: a simulation race and a real race. Of the 30 teams from
universities all around the world that participated in this competition, only 9 passed the simulation
step. The first race, the Indy Autonomous Challenge powered by Cisco, was held on October 21,
2021 at the Indianapolis Motor Speedway (IMS), and the second one, the Autonomous Challenge @
CES, was held on January 7, 2022 at the Las Vegas Motor Speedway (LVMS). The car shakedown
and a considerable part of the development before the IMS race was conducted at Lucas Oil Raceway
(LOR).

The race at IMS was a solo time trial competition that consisted of a semifinal and final event.
To get access to the race, the teams had to demonstrate a set of requirements during testing. This
event, besides the time trial, included an obstacle avoidance challenge: two static obstacles were
placed in the front stretch to prove that the car was capable of actively avoiding static obstacles.
The final leg was limited to the three teams that achieved the best score in the semifinals. The
entire run was formed of four warm-up laps and two performance laps. The winner was determined
based on the highest average speed achieved during the two consecutive performance laps.

The race at LVMS consisted in a Passing Competition, where multiple rounds of head-to-head
matches were conducted by two cars that had to take turns playing the role of defender and attacker,
attempting to overtake at increasing speeds, until one or both cars were unable to complete a pass.
In each round, the attacker had to follow the following four steps:

1. Reduce the gap with the defender.
2. Keep a longitudinal safety distance.
3. Overtake the defender once a passing zone is reached.
4. Switch the role to defender and reduce the velocity to a predetermined constant value.

A time trial event was created to determine the teams’ seeding in the brackets of the Passing
Competition.

It is worth noting that the original plan for the IAC was to have a multivehicle race with 10 cars
on the track already at IMS. Due to several challenges (from weather to logistics to teams facing
new difficulties on the track over a short period of time), the race rules were modified to deliver a
successful show where most teams could participate with their current level of readiness.

1.2. Dallara AV-21
Each team of the IAC participates with a Dallara AV-21, shown in Figure 1, a fully autonomous
open-wheel race car based on the official Indy Lights IL-15. Unlike the original race car, the engine
mounted is a turbo-charged Honda K20 with 390 horsepower. The mechanics, suspensions, and
aerodynamics are adjusted for oval racing and high banked tracks with an asymmetrical setup.

On the perception side, the car is equipped with two GNSS modules, three LiDARs, six cameras
(two cameras in a stereo setup and four to cover the 360 range), and three RADARs. The Novatel
GNSS Pwrpak 7d receivers provide a centimeter precision localization of the car thanks to four
antennas and RTK correction. The three solid-state LUMINAR H3 LiDARs have a range of 200 m
and they operate at 20 Hz. The Aptiv ESR 2.5 frontal radar and the MRR side radars have a range

4 https://www.indyautonomouschallenge.com/

Field Robotics, January, 2024 · 4:99–137

https://www.indyautonomouschallenge.com/

102 · Raji et al.

(a) AV-21 with the TII EuroRacing livery. (b) Close view on the onboard sensors.

Figure 1. Dallara AV-21.

of around 160 m and they provide the detected obstacles at 10 Hz. The six high-resolution RGB
Mako G319C cameras from Allied Vision are mounted to have a view of almost 360 degrees around
the car. The computing platform used on the vehicle is an ADLINK AVA-3501 consisting of an 8
core Intel Xeon E 2278 GE CPU, an NVIDIA RTX Quadro 8000 GPU, and 64 GB DDR4 RAM.
For external communication, Cisco FM-4500 radio transceivers are used on the car and around the
tracks in order to make telemetry data available to the crew team in the pit lane. Race Control
signals can be exchanged by means of a MYLAPS RaceLink system mounted on the racetracks and
a transponder mounted on the vehicle.

On the actuation side, the car has a Drive-by-Wire (DBW) system realized by Schaeffler to
actuate the steering, the throttle pedal, the brake pedal, and the gearbox. The New Eagle GCM 196
Raptor control module is used as an interface between the DBW system, the computing platform in
which the algorithms are executed, and the other units related to the engine and minor subsystems.

2. Related Work
Thanks to the availability of low-cost research race car prototypes and the media impact of
autonomous driving challenges, the number of published works in this domain is progressively
increasing. In (Betz et al., 2022b), the authors presented a survey on autonomous racing cars
reviewing the most relevant publications detailing autonomous driving modules, vehicle modeling,
simulation, and complete software architectures.

One of the first problems each team faces when working on an autonomous (race) car is obtaining
an accurate localization and state estimation of the ego vehicle within the track. To solve the
localization problem, Extended Kalman Filter (EKF) solutions based on a vehicle model are usually
adopted to fuse the measurements from different onboard sensors, like GNSS, LiDAR, Inertial
Measurement Unit (IMU), and wheel speed odometry (Wischnewski et al., 2019). LiDAR-only
localization solutions are proposed in (Massa et al., 2020) and (Schratter et al., 2021), demonstrating
an accuracy suitable for driving the Roborace DevBot 2.0 race car within 100 km/h.

On the perception side, the object detection problem in the Autonomous Racing field focused on
camera-based solutions. In particular, cone detection using Convolutional Neural Network (CNN)
methods on a camera frame has been used by several teams in the FSD competition (De Rita et al.,
2019; Puchtler and Peinl, 2020; Vödisch et al., 2022). A more robust and redundant solution is
presented in (Kabzan et al., 2019), including cone detection with feature-based and CNN-based
approaches using both mono and stereo cameras, cone detection and color classification on LiDAR,
and a sensor fusion solution based on the projection of the LiDAR in the camera reference system
(Andresen et al., 2020). Finally, (Strobel et al., 2020) employ a CNN both for cone detection and
key points estimation for localization purposes. The active detection of other dynamic agents in

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 103

a racing domain is also detailed in (Betz et al., 2022a), using an approach that is similar to that
adopted in urban settings, where LiDAR, RADAR, and camera data are typically fused.

Global planning in the racing domain is approached by solving an optimization problem to retrieve
the lowest lap time trajectory. Solutions based on minimum curvature and minimum time-based
optimization considering the vehicle dynamics can be found in (Heilmeier et al., 2020; Massaro and
Limebeer, 2021).

For local planning, sampling-based methods are a popular option due to their effectiveness in
various kinds of robotics problems related to obstacle avoidance. Different versions of the Rapidly-
exploring Random Tree (RRT) method have been presented, especially for FSD and small-scale
platforms, combined with local controllers, predictions using a vehicle model, and curve refinement
(Arslan et al., 2017; Bulsara et al., 2020; Feraco et al., 2020). For full-scale vehicles and high-speed
conditions, different local planners have been proposed, generating a graph of possible trajectories
and choosing the one that minimizes a cost function defined on different criteria (Raji et al., 2022;
Stahl et al., 2019). Other methods proposed optimization-based controllers considering obstacles
and the free driveable area (Buyval et al., 2017; Liniger et al., 2015).

Regarding the controller module that tracks a certain reference path and speed profile, Model
Predictive Control (MPC) -based methods had a great impact due to their advantages in considering
complex systems with their inputs, outputs, and constraints, despite the burden on the algorithm
design, modeling, and optimization for real-time usage. Some works focused on representing nonlin-
ear models of the vehicles (Novi et al., 2020; Vázquez et al., 2020), while others use simpler models
considering uncertainties and constraining the control on some physical parameters (Wischnewski
et al., 2021). More classical controllers based on slip angle or feed-forward steering have reached
similar performances in sports cars (Kapania and Gerdes, 2015; Laurense et al., 2017).

For what concerns the whole autonomous software stack, the literature presents several works
related to the FSD competitions in which a brief description of each module is given (Chen et al.,
2019; Culley et al., 2020; Nekkah et al., 2020; Tian et al., 2020). (Kabzan et al., 2019) can be
considered the most complete system paper presenting implementation details for the common
modules needed to succeed on the FSD events, describing the adopted testing framework and the
weak points for future improvements. For full-scale race cars, (Betz et al., 2019a; Caporale et al.,
2019) present their architecture for the Roborace competition giving particular attention to the
motion planning and control modules, with very limited details on the object detection problem.
Similar works not associated with any competition have been published. In (Funke et al., 2012), a
system architecture is presented focusing on localization, path planning, and control of a commercial
sports car at its limits, including the design of a safety module. (Funk et al., 2017) described the
design of the hardware and software of an electric race car autonomously driven on a challenging
Swiss mountain road.

None of the mentioned works consider multiagent scenarios, or they assume the information on
other vehicles will be given. (Betz et al., 2022a) presented the software architecture and methodology
of the TUM Autonomous Motorsport team for the IAC. The authors described each module of the
stack adopted during the first two events, including the head-to-head race. A framework report
can be found in (Urmson et al., 2008), detailing the architecture of the vehicle that won the 2007
DARPA Urban Challenge. In this work, we present a complete autonomous stack for a multiagent
scenario, including additional details that we consider fundamental for high-speed racing.

3. Software Stack
The er.autopilot 1.0 software stack consists of multiple modules following the Perceive-Plan-Act
paradigm. In Figure 2, a block diagram with a high-level overview of the modules is shown.

A localization module produces the state estimate of the ego vehicle used by all the other modules.
By getting the data from the sensors of the AV-21, the Perception stack is able to detect the other
vehicles and objects in the environment. This information is used mainly by the Motion Forecasting
and Planner modules to predict the opponent’s movement and generate a local path to avoid collision

Field Robotics, January, 2024 · 4:99–137

104 · Raji et al.

DALLARA AV-21

PERCEPTION LOCALIZATION

MOTION
FORECASTING PLANNER CONTROLLER

MISSION
PLANNER

FAILURE
DETECTION (*)SUPERVISOR (*) (*) module connected with all the other modules

Figure 2. Diagram block with the software modules of er.autopilot. The modules marked with an asterisk
are connected with all the other modules.

or perform an overtake. A Mission Planner is integrated into the software stack as a behavioral
planner able to get the signals from Race Control and from an internal state machine in order to
give high-level decisions to the Planner and Controller, such as entering or exiting the pit lane and
starting to overtake the opponent. Lastly, the Controller module is the one responsible for generating
the correct actuation commands to be sent to the vehicle.

The modules, represented as nodes, communicate with each other using the ROS2 framework and
Eclipse Cyclone DDS as middleware. Nodes are compiled into a shared library loaded at runtime,
which makes it possible to run multiple nodes in separate processes or as a single process. A base
class has been defined for some nodes. For the control methods, the base class contains the callbacks
needed to receive the vehicle state from the localization node and the actuation commands feedback,
as well as some common methods. Each implementation extends the base class with the additional
callbacks, methods, and interfaces to the libraries needed. Indeed, we decided to use the ROS2 nodes
as wrappers for the communication, leaving the pure algorithmic parts as stand-alone software to be
interfaced with. The only logics implemented on the control base node are the safety checks on the
lateral and heading errors of the path tracking performance. Three thresholds have been defined:

• max_error: Above this value, the target speed of the vehicle is linearly decreased.
• max_error_soft: After passing this threshold, the target speed is set to zero and the controller

performs a soft stop.
• max_error_hard: Reaching this value, a hard brake is actuated over the command of the

controller.

All the code executed on the car is written directly in C++ or generated from Matlab Simulink
using the C-code generation tool. Python and Julia languages have been used for offline scripts
related to data analysis, trajectory optimization and refinement, and visualization. A Docker
container has been created for easy deployment on the vehicle and on the developers’ machines,
as well as on our online GitLab pipeline for basic testing.

3.1. Localization of the ego vehicle
The purpose of the localization module is to provide an estimate of the ego vehicle state using the
available information from the sensor data or other software components. Several architectures were
investigated before converging to the final one, which is presented hereafter.

The vehicle is equipped with two GNSS modules. As explained in Section 1.2, each of these
provides the RTK-corrected position of the primary antenna, together with other information like

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 105

the estimated speed and heading, and additional information on the quality of the position solution
also called the fix. Each receiver module is connected to an IMU that provides linear acceleration and
angular rates, and is used to provide some prefiltered signals useful for the user (such as estimated
roll, pitch, and yaw angles). We decided to ignore these prefiltered signals and only use sensor raw
data to retain a finer control on the localization pipeline. For a detailed description of the antenna’s
capabilities, please refer to the producer website.5

In the design, we had to consider several vehicle and operational domain requirements:

• The two receivers, called top and bottom receiver, had the antennas mounted on the main
longitudinal axis and lateral axis of the car, respectively. We found the relative positioning of
the antennas to have a slight effect on the quality of the fix, hence different weighting was
considered for the two.

• The ego vehicle estimation has to be consumed by other modules, the fastest ones being the
planning module (running at 50Hz) and the control module (running at 100Hz).

• The RTK correction was not always reliable, and the same holds for the GNSS signal, which is
a common problem for these kinds of systems [for a more in-depth discussion, please refer to
(Massa et al., 2020)].

• The vehicle can reach a maximum velocity of around 300 km/h, hence latency should be reduced
to a minimum to guarantee a tight correspondence between the car’s position on the track and
its latest available estimate.

For all the above reasons, we chose to equip our car with a robust localization filtering scheme
based on an EKF and to develop a LiDAR based localization system to further enhance the system’s
robustness in case the GNSS signal is lost.

3.1.1. GNSS Localization
The model used for the estimation is a simple kinematic unicycle in global coordinates, Equation 1.
Given the absence of a side-slip angle sensor on the car, it is difficult to obtain a reliable estimate
for this important quantity. Despite this simplification, which has been taken into account in the
motion controller, the state estimate was accurate enough for the localization even at high speed,

ẋ(t) = vx(t) cos (θ(t)) + νx(t),
ẏ(t) = vx(t) sin (θ(t)) + νy(t),
θ̇(t) = ωz(t) + νθ(t),
v̇x(t) = ax(t) + νvx

(t),
ȧx(t) = νax

(t).

(1)

The filter is implemented in such a way that it can manage the asynchronous data sources at the
fastest possible rate, which is 250 Hz as per the IMU inputs. Model predictions are computed at the
same frequency, while corrections are applied whenever new inputs are available. Measurements can
come from different sources, such as GNSS- or LiDAR-based localization for the position and/or
heading, wheel speed or GNSS speed for the vehicle velocity, and IMU for the yaw rate. The quality
of the incoming signals is evaluated partially at the sensor level (e.g., before sending the readings
to the EKF) and partially at the filter level when receiving the data, before using it to compute a
correction (e.g., by checking the consistency of the GNSS fix with the last estimated vehicle state,
or by discarding measurements that are too old due to a lack of real-time processing capability on
the onboard computer).

Despite its simplicity, this model allowed us to obtain a precise estimate of the car’s position,
heading, and longitudinal acceleration.

5 https://novatel.com/products/receivers/enclosures/pwrpak7d

Field Robotics, January, 2024 · 4:99–137

https://novatel.com/products/receivers/enclosures/pwrpak7d

106 · Raji et al.

Figure 3. Top view of the LiDAR map obtained for the LVMS circuit. The color used for the points in the cloud
is determined by the intensity value of each point.

3.1.2. LiDAR Localization
For the LiDAR vehicle localization, point clouds are first synchronized and merged together.
Additionally, each cloud is individually motion-compensated using IMU data.

Mapping is done offline, on a log covering the whole track at a slow speed, to enhance the map
quality. LiDAR clouds are aligned using a LiDAR Odometry and Mapping (LOAM) method aided by
vehicle odometry and GPS. The obtained map is later globally optimized using GTSAM (Dellaert,
2012)6 to maintain the shape and minimize the distance to the GPS trajectory. The mapping process
produces a georeferenced point cloud, which is then used by the LiDAR localization method. A top
view of the resulting map is shown in Figure 3.

From the LiDAR depth map, vertical objects are extracted filtering the image by the pixel normal
value. The filtered point cloud is used to localize the car on a two-dimensional (2D) top-down map
of the circuit. The 2D map is a likelihood field of the filtered point clouds. A particle filter approach
is used to localize the car on the 2D map. The particle filter is parallelized on GPU evaluating the
probability of each point of each particle. The extrapolated LiDAR localization can be used by the
EKF as an alternative to (or together with) the GPS position.

3.2. Perception
The complete perception scheme of our stack is depicted in Figure 4. All the blocks are hereafter
discussed, but only the gray ones have been used for the races at IMS and LVMS.

The white blocks are implemented and are working, but we excluded these blocks for the following
two main reasons. The first is the unsuitable accuracy; in fact, we did not trust some pipelines (e.g.
LiDAR Detection) due to the high false positive rate. The second, related to the camera pipelines,
is a bandwidth issue we experienced while reading the six cameras with all the other sensors. It
occurred several times when reading the cameras’ streams led to a higher drop of LiDAR packets

6 https://github.com/borglab/gtsam

Field Robotics, January, 2024 · 4:99–137

https://github.com/borglab/gtsam

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 107

Clustering BEV

LiDAR Detection

Clustering PMLiDAR Point Cloud

Projection Fusion Sensor Fusion Motion Forecasting Planner

Camera DetectionCameras Frames

RADAR DetectionRADAR Point Cloud

Figure 4. Perception scheme of er.autopilot.

or even to LiDAR failure that was irreversible and needed a system reboot. Considering that the
LiDAR is the sensor with the most reliable detections, we sacrificed the cameras so as not to have
such a problem during racing days. We will investigate how to solve this issue to exploit those high
potential sensors as well.

3.2.1. Drivers, Settings, and Calibration
Before introducing the algorithms that run on the sensors’ data, the acquisition, configuration, and
calibration of the sensors need to be discussed.

The raw data coming from the LiDARs, cameras, and RADAR (and also GNSS) are collected
using our own-made drivers instead of the official ROS2-based ones provided by the sensors’
manufacturers. This has been done to manage all the low-level data we consider useful that are
not contemplated in the ROS2-based drivers and to reduce the delay between sensor data reading
and usage, especially for big data such as frames or point clouds, on our perception algorithms.

We decided to use all six Mako cameras, with a resolution of 1032× 772 pixels and a frequency
of 10 FPS. We utilized a limited resolution and frequency in our setup to prevent band saturation.
We used all three Luminar LiDARs, setting a field of view (FOV) of 15 deg, the Gaussian pattern,
the center at 0 deg at IMS (1 deg at LVMS due to banking), and a frequency of 20Hz. We employed
a Gaussian pattern to increase the point density on the horizon, while the FOV and layer number
were optimized to maintain a 20 Hz frequency while preserving the point density. For the RADAR,
we decided to employ only the frontal one, using the default settings and a frequency of 10 Hz, the
only available option for the given sensor.

Thereafter, we took care of the sensors’ calibration. First, we performed intrinsic camera
calibration exploiting an 8×6 checkerboard pattern printed on a rigid panel and the Kalibr tool (Oth
et al., 2013). Then we implemented and performed camera-LiDAR extrinsic calibration with the
same pattern, matching the checkerboard detected from the camera frames with the ones recognized
in the LiDAR depth images. At the end of these procedures, we knew both the intrinsic parameters
of the cameras and the transformation with respect to all the involved sensors.

3.2.2. LiDAR Clustering—Bird’s-eye-view approach
The LiDAR Clustering Bird’s-eye-view (BEV) pipeline takes the LiDAR point cloud as input,
removes the ground, and gives as output clusters of tracked objects. It only executes on the CPU,
which makes it robust to GPU failures. To remove the ground, the normals of the point cloud have
been exploited. For each point, its x, y, and z normals have been computed and the points have
been filtered on the norm value on the vertical axis (z). Additionally, all the points higher than a
certain threshold (i.e., 3 m) and the points belonging to the ego vehicle have been removed.

Field Robotics, January, 2024 · 4:99–137

108 · Raji et al.

Figure 5. Results of the clustering BEV pipeline. The algorithm employs a low-resolution representation of the
BEV, depicted on the left, where the white lines indicate the track walls, and their respective clusters are ignored.
Instead, the rectangles represent the clusters, color-coded based on their local tracker, and the red arrows indicate
their speed vectors. On the right side, the clusters are projected back onto the cloud.

Once the cloud is processed, a BEV image of the remaining points is built. On that image we run
a Connected Component algorithm to group the points into objects. That computes the clusters
that we can reproject on the point cloud.

For a more stable detection, we also inserted a tracker in the pipeline. The tracker tracks the
position, and in particular the center of the cluster, using an EKF, and it matches the objects in
different iterations using a nearest-neighbor technique.

Some visual results are depicted in Figure 5 while overtaking a vehicle (top), where the vector
representing the velocity (red arrow in the BEV) is negative, and while overtaken (bottom), where
the velocity of the opponent is positive.

3.2.3. LiDAR Clustering—Point Map approach
The LiDAR clustering Point Map (PM) pipeline takes the LiDAR point cloud as input, removes
the ground, and gives as output clusters of objects. It executes both in GPU and CPU, and it is an
alternative to the other clustering algorithm.

At first, the point cloud is converted into a Point Map, an image that contains at least three
channels that, instead of representing RGB values, are the position of the single point in the 3D
environment x, y, z. Besides position, information such as intensity, time of flight, and ring index
can also be included in the PM channel. The whole pipeline then uses this converted PM.

In this approach, introduced in (Costi, 2022), the ground is removed with an upgraded version
of the Line Fit Ground Segmentation (Himmelsbach et al., 2010). Then the clustering is computed
using again a Connected Components approach, but in this case on the PM rather than on a BEV.
The clustering algorithm is subdivided into two main steps. The first one works directly on the Point
Map exploiting a Connected Component algorithm to compute neighbors and label them with the
same ID, executing entirely on the GPU. In the second step, running on CPU instead, the neighbors’
data extracted from the PM are elaborated to aggregate neighbors in different clusters. The results
are reported in Figure 6.

3.2.4. Camera detection
The camera detection pipeline takes the camera frames as input and gives as output tracked detected
vehicles. It executes both in CPU and GPU, but most of the computation is performed on the latter.

The detection of the other AV-21 vehicles is performed using an Object Detection Convolutional
Neural Network. We adopted YOLOv4 (Bochkovskiy et al., 2020), implemented via tkDNN (Veruc-
chi et al., 2020), a custom framework that optimizes its performance on Nvidia GPUs.

To correctly detect open-wheel race cars, we trained the model on an open source data set, Deep
Drive BDD100k (Yu et al., 2020), to learn road objects (cars, bikes, pedestrians, and so on). Then

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 109

Figure 6. Results of the clustering PM pipeline. On the top, there are three LiDAR PM, in order without the
ground, the plain PM, and the one with clusterized components. On the bottom, the clusters are projected on
the cloud.

we collected data on different tracks (LOR, IMS, LVMS), down-sampled the different logs on the
different cameras, and manually labeled almost 400 images using the LabelImg tool.7 Using those
labeled images, we fine-tuned the network only for the car class. Eventually, the network only detects
open-wheel race cars.

Once trained, the network has been deployed on tkDNN8, which uses TensorRT9 and CUDA
kernels to optimize each network layer. The visual result of the detection trained network for all the
cameras is reported in Figure 7.

To estimate the distance of the object, a simple geometric approach reported in Equation 2 has
been adopted, based on the intrinsic calibration of the cameras (in particular, their focal_length),
the actual height of the vehicle in mm object_h_mm, and the height of the detected vehicle in pixels
object_h_pixel.

dist = object_h_mm · focal_length
object_h_pixel

(2)

We also implemented an NN-based method to estimate the distance, with a simple Encoded-
Decoder approach, but the results were unsatisfactory.

Finally, the same tracker used for the LiDAR clustering BEV pipeline has been used to track the
vehicles in the frames.

3.2.5. LiDAR detection
A very similar approach to the camera detection has also been applied to the LiDAR-based detection.
From the point clouds, we have constructed LiDAR images based on the intensity of the points. Using
this format, we have collected a data set of almost 600 images, and we have manually labeled them.

We modified Deep Drive BDD100k images to monochrome images, adapting the format to the
LiDAR images one (16:1). We then trained YOLOv4 on the modified BDD100k to then fine-tune it
on the 600 labeled images. The results of vehicle detection are reported in Figure 8.

7 https://github.com/heartexlabs/labelImg
8 https://github.com/ceccocats/tkDNN
9 https://developer.nvidia.com/tensorrt

Field Robotics, January, 2024 · 4:99–137

https://github.com/heartexlabs/labelImg
https://github.com/ceccocats/tkDNN
https://developer.nvidia.com/tensorrt

110 · Raji et al.

Figure 7. Results of vehicle detection on the six different camera views.

Figure 8. Results of vehicle detection on frontal (top) and lateral (bottom) LiDAR intensity images.

In this case, the objects’ distance is given by the LiDAR, so there is no need for estimation. For
the tracking, yet again we adopted the EKF tracker.

3.2.6. RADAR Detection
The RADAR detection pipeline takes the RADAR point cloud as input and gives as output tracked
moving objects, executing on CPU.

The point cloud given by the RADAR is already processed, and it is not possible to retrieve the
raw data. Therefore, we only applied filtering to the input data, considering only the stable moving
objects lying inside the track boundaries.

3.2.7. Projection Fusion
The Projection Fusion pipeline takes as input the LiDAR point cloud, the RADAR point cloud,
the detected vehicles from the camera, and the clusters of the LiDAR Clustering PM pipeline. It
gives as output detected vehicles that have been recognized at least by two different sensors. It only
executes on the CPU.

The proposed approach exploits camera projection to properly fuse detected objects from camera
images with 3D estimations. The algorithm tries to estimate the 3D location in world coordinates
for each detected vehicle. The projection converts vertices from the world coordinate system to the
camera pixel coordinates system with Equation 3. u
v
z

 = K[R|T]

 X
Y
Z

 , (3)

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 111

whereK is the camera intrinsic matrix, [R|T] is the camera extrinsic calibration matrix, [u, v, z] is the
undistorted point in camera pixel coordinates, and finally [X,Y, Z] are the real-world coordinates.
It is worth mentioning that accurate intrinsic and extrinsic calibrations are required to reach
satisfactory results.

The LiDAR point cloud is fused with camera detections with the following steps: (i) Equation 3
is applied to all the points of a cloud, for each camera. (ii) All the LiDAR points projected outside
the camera bounding box are filtered out, therefore a frustum of 3D points is considered for each
object. (iii) A single point in the frustum is chosen as the Point-Of-Interest (POI), sorting all the
points by distance and picking the nearest (the first element), the median (the element in the middle
of the array), or another custom array position. (iv) Finally, the location of the object is estimated
as the average between all the points in the neighborhood of the POI.

The RADAR point cloud is fused differently with the camera detections. From the RADAR point
clouds, we have a single point for each object, therefore a single point is fused with each camera
bounding box with the following steps: (i) RADAR points are projected on-camera images. (ii) The
matching cost is estimated as |cx−x|(w/2) , where cx is the horizontal coordinate of the camera box center,
x is the horizontal coordinate of the RADAR projected point, and w is the width of the camera box.
(iii) The Hungarian algorithm (Kuhn, 1955) is applied to matchboxes and RADAR points using the
cost previously computed. (iv) Finally, incorrect matches are filtered out via a user-defined threshold
on the cost.

LiDAR clusters are considered as already detected 3D objects from another source. Similarly to
RADAR-camera fusion, a single cluster is fused with each camera-detected object, with the following
steps: (i) Each point of the cluster is projected on the camera, and the bounding box of these points
is calculated. (ii) The matching cost is computed as the inverse of Intersection-over-Union (IoU)
between the camera box and the cluster projected box. (iii) Hungarian matching is then in charge
of the matching, and finally, (iv) bad matches are filtered out with a threshold.

At this point, there are multiple pairs of objects from the camera and another 3D source, and two
steps are yet to be performed: fusion among all the cameras and fusion of all the object pairs. There
are two straightforward cases: (i) if the objects belong to the same camera, the objects are fused
with the same bounding box, and then it is the same object; otherwise, it is not; (ii) if detected
vehicles from multiple cameras are fused with the same cluster, then it is the same object. For
the other cases, aggregation is not as simple, and the proposed approach exploits 3D coordinates
from fused 3D sources. A matrix cost is computed considering 3D box reprojection and Euclidean
distance, combined with a weighted sum. Matches with costs exceeding a threshold parameter are
discarded.

At this stage, a list of aggregated objects containing all the camera boxes and all the LiDAR,
RADAR, and cluster positions has been obtained. Every 3D pose of the aggregated object has an
associated score, calculated proportionally to the focal length of the camera fused with it. Higher
confidence is given to objects detected from cameras with higher focal lengths because the field of
view is narrower and the boxes are bigger. This score is used as a weight for a weighted average
that gives the final aggregated object 3D position in world coordinates.

3.2.8. Sensor Fusion Module
All the presented pipelines flow into a Sensor Fusion module. This acts as an aggregator for all the
different detection pipelines active on the machine. In particular, it deals with the transformation
of the raw detections from local to global coordinates, the association between the new detections
and the ones already tracked, and the prediction of their movement.

The node aggregates several pipelines of detections from various sensors located at different
positions in the car, and each of them produces detections in its own reference system. To aggregate
them together, we decided to transform every detection to global coordinates via Equation 4, using
the ego vehicle position computed by the localization node,

Tglobal_obj = Tloc Tsensor Tlocal_obj (4)

Field Robotics, January, 2024 · 4:99–137

112 · Raji et al.

Each Ti is a 4× 4 transformation matrix. Tglobal_obj is the object pose in global coordinates, Tloc
is the car pose given by the localization node, Tsensor is the sensor pose relative to the car CoG, and
Tlocal_obj is the pose of the detected object locally to its sensor.

The estimated position of each detection is endowed with uncertainty, due to the method or the
accuracy of the sensor itself, as well as the position estimated by the localization module. Therefore,
when applying Equation 4, the localization error is propagated into the position estimation of the
detections. For this reason, it is also necessary to propagate the localization covariance on the
detection covariance.

The object tracking can work in two coordinate systems: (i) Cartesian (x, y) and (ii) Frenet (s, d),
in which the central trajectory of the track is used as a reference. In each case, a Kalman filter with a
material point model is used. For the Cartesian version, the state is [x y Vx Vy]T and the correction
[x y]T , while for the Frenet version, the state is [s d Vs Vd]T and the correction [s d]T . The Kalman
filter calculations are the same in both cases; a simple Cartesian to Frenet transformation is applied
on the input and vice versa on the output.

To summarize, the algorithm is composed of the following steps:

1. Kalman prediction.
2. Filtering of detections if (i) outside the track, (ii) inside the area of the ego vehicle, (iii) they

have high covariance.
3. Detection association, with Hungarian matching and Mahalanobis distance.
4. Kalman correction.
5. Creation of new tracklets, i.e., tracked objects, if far from existing tracklets.
6. Removal of tracklets with too large covariance (not corrected for too long).

All the tracklets that are active are unique detections that are then passed to the motion
forecasting module and finally to the planner.

3.3. Planning
To be able to safely avoid static obstacles and perform overtakes at high speeds, as requested by the
IAC competitions at IMS and LVMS, in addition to the global planner, which produces offline the
optimal racing line on each track, we implemented the modules needed to predict the other agent’s
movement and generate a local trajectory considering all the static and moving obstacles in the
surroundings. We give here an overview of the proposed solution, while a more detailed report can
be found in (Raji et al., 2022).

Considering the race rules limiting the defender to keep the inner line, one strategy could have
been to switch directly to a racing line positioned in the outer lane of the track as soon as the ego car
becomes the attacker. On the one hand, this approach can be considered safer since the two vehicles
keep separate lines for most of the time except during the line switching performed in safe moments.
On the other hand, staying in the outer lane where usually there is more dirt could result in less
grip at high speeds and longer distances with respect to the defender’s inner line. Considering our
research interest in creating solutions suitable for unconstrained racing scenarios with more than
two vehicles on a track, we decided to perform the overtakes once in proximity to the opponent
keeping the same racing line followed while defending.

3.3.1. Global Planner
A minimum-time optimization problem is solved for the global planning, formulating the nonlinear
problem in JuMP and solving it using IPOPT. The dynamics of the vehicle, presented in Section 3.4,
are transformed in the spatial domain discretizing the continuous space model with a discretization
distance. The cost function is defined as

Jopt(xk, uk) = −ṡk + uTRu+B(xk), (5)

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 113

where x is the state vector, u is the inputs vector, ṡ is the progress rate, B(xk) = qBα
2
r is a

regularization term that penalizes the rear slip angle αr, and uTRu regularizes the inputs rates.
The overall problem is defined as

min
X,U

N∑
k=0

= Jopt(xk, uk)

s.t. xk+1 = fds (xk, uk) ,

fds (xN , uN) = x0 ,

xk ∈ Xtrack xk ∈ Xellipse ,

ak ∈ A, uk ∈ U , k = 0, . . . , N,

where X = [x0, . . . , xN], and U = [u0, . . . , uN] are the state and input sequences respectively.
Xellipse is a constraint on the friction ellipse, and Xtrack represents a track constraint. A and U
are, respectively, box constraints on the physical inputs a and their rate of change u.

3.3.2. Motion Forecasting
The goal of motion forecasting is to estimate the future trajectory of the vehicles detected by the
perception module. The estimated trajectories are then used by the motion planning algorithm to
avoid collisions.

For each obstacle, the perception module provides a unique identifier and its position in a
Cartesian frame. Given the sequence of the position of an obstacle, the goal is to predict its future
trajectory. We employed a Kalman filter with a model defined in a Frenet frame.

Given the position of the ith obstacle in a Cartesian frame xi(k), yi(k), the position of the obstacle
in the Frenet frame si(k), ni(k) is computed. The model of the obstacle is defined as

ṡi(k + 1) = ṡi(k) (6)
ni(k + 1) = ni(k) (7)

Equation 6 states that the longitudinal speed of the obstacle is constant, whereas Equation 7
indicates that the lateral displacement from the reference path is constant.

This simple model exploits the fact that the only objects of interest on the track are other cars
that will follow a racing line similar to the one that the ego car is following. For this reason, we
decided to define the model in a Frenet frame that uses the race line as the reference path. Moreover,
we can assume that the cars will run all the time at an almost constant speed because the oval shape
of the tracks involved does not require as many decelerations and accelerations as in a course road
track. From Equations 6, 7 the state space model used in the Kalman filter can be derived.

To summarize, at each step, for every obstacle, the following steps are applied to predict its future
trajectory:

1. The new measurement ŝi(k), n̂i(k) is computed from x̂i(k), ŷi(k).
2. Using the new measurement, the Kalman filter is updated with a prediction step, followed by

a correction step.
3. The future trajectory of the obstacle is predicted by applying m consecutive prediction steps

to the Kalman filter.
4. The trajectory is converted back into the Cartesian frame.

3.3.3. Local Planner
The local planner is an extension of (Werling et al., 2010), as it computes the trajectory generation
in a Frenet coordinate frame, where the following adjustments have been implemented to satisfy the

Field Robotics, January, 2024 · 4:99–137

114 · Raji et al.

needs of our racing scenario:

• The main reference used for the Frenet frame is the optimal racing line generated by the global
planner.

• The time interval T between each node of the trajectories is kept constant since the controller
requires a trajectory with a fixed length in time.

• The collision check of the trajectories set is performed in the Frenet frame to avoid converting
the trajectories into a Cartesian frame. Rather than doing the checks on the polynomials, we
sampled each trajectory in a finite number of points by a time interval ∆T .

• An improved collision check method is used in which a soft constraint is added to avoid the
edge cases when only hard constraints are considered and to be safer in case of noises in
the localization and the control loop. For each trajectory τi, a collision coefficient γi ∈ [0, 1] is
computed, where γi = 0 indicates that the trajectory is not colliding with any obstacle, whereas
γi = 1 indicates that the trajectory is violating the safety margins (hard constraint). Then the
total cost computed is
Ctot,i = klatClat,i + klonClog,i + ksoftγ

2
i (8)

with klat, klon, ksoft > 0.
To compute γi we decided to exploit the Euclidean distance from the safety margin. For

every trajectory τi the minimum distance di from the safety margin is computed. Then γi is
defined as

γi = max
{

1− di
∆soft

, 0
}

(9)

where ∆soft > 0 is a parameter to enlarge or reduce the effect of the soft constraint.
• The initial conditions required to generate the set of trajectories are calculated by projecting

the car’s position on the best trajectory at the previous step. At the very first step of the
planner instead, the initial conditions are calculated purely on the car’s position.

• A different distance keeping mode. The desired speed used in the generation of the longitudinal
movements is calculated by a simple proportional controller, which considers the opponent’s
speed, the desired distance to keep, and the current distance. This mode is used when the rules
or the race control are not permitting us to perform an overtake.

Along with the main planner, a simple emergency planner is run, whose solution is used when the
Supervisor module detects a failure in the main planner or in the modules it depends on. The
emergency planner continuously extends the last feasible planned path with a smooth polynomial
in the Frenet coordinate frame, being able to make the car move to the inner side of the track or
enter the pit lane, if requested by the race control.

3.3.4. Mission Planner
The mission planner is responsible for generating the reference signals and instructions used by the
Local Planner based on the position of the car on the track, the phase of the race, and the flags
received from Race Control. In particular, it controls when the car can enter or exit the pit lane, if
the car has to perform the warm-up lap, which is the maximum allowed speed, whether the car is
allowed to overtake or not, and which is the minimum distance that the car has to maintain from
the opponent if it is not allowed to overtake.

A fundamental requirement for the mission planner is to be easy to change because it needs to
rapidly adapt to changes in race rules. For this reason, we used a Finite-State Machine (FSM) to
define the logic. A high overview of the FSM is shown in Figure 9.

For the implementation, we relied on scxmlcc,10 an open-source tool that autogenerates the C++
code of the state machine from an XML file that defines the states, the events, and the transitions.

10 scxmlcc: https://github.com/jp-embedded/scxmlcc

Field Robotics, January, 2024 · 4:99–137

https://github.com/jp-embedded/scxmlcc

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 115

INITIALIZATION

PIT EXIT

RACE

PIT ENTRY

start

Figure 9. Overview of the mission planner state machine. Each of the shown states groups more specific states
and transitions, which depend on the car’s position, actuators, and engine status, and external signals sent by
Race Control.

3.4. Modeling and Control
Given the current state of the car, the controller computes the actuation commands to track the
reference trajectory produced by the local planner illustrated in Section 3.3. At high speed, a Model
Predictive Controller (MPC) is used to control simultaneously the steering, the throttle, and the
brake. The vehicle model used in the MPC is a dynamic single-track model identified from a high
fidelity multibody simulation. A kinematic model was also developed to work accurately at low
speed. Due to the limited testing time, the integration between the kinematic and the dynamic
models was not implemented, and the control at low speed (below 100 kph) has been delegated
to a Pure Pursuit algorithm and a PID controller, respectively, for the steering and the pedals.
A hysteresis and a consistency check on the steering wheel commands of the two controllers are
applied to switch safely between the two solutions based on the operational conditions. The gearbox
is controlled via a state machine that, based on the RPM of the engine, selects the appropriate
gear.

3.4.1. Modeling
Prior to the testing time and physical access to the car, we developed a multibody model of
the AV-21 on Dymola (Dempsey, 2006) using the VeSyMA - Motorsports libraries provided by
Claytex.11 The first set of parameters are derived from data provided by the IAC organizers and
the vehicle’s component manufacturers. The remaining unknown details have been estimated from
available information on similar vehicles and commercial racing-game simulators like RFactor 2.12

The model has been refined after gathering experimental data on the track. In Figure 10, an overview
of the model on Dymola is shown, in which the front suspensions subsystem blocks scheme is
highlighted.

Particular attention has been given to the following components:

• Tires: the force-slip model is based on a Pacejka Magic Formula 6.2 (Pacejka and Bakker,
1991) with Kelvin-Voigt spring-damper vertical load, combined slip parameters and neglecting
the relaxation length. Inflation pressure and camber angle are considered asymmetrical for the
right and left sides due to the setup for an oval track.

• Powertrain: a 3D diagram with engine torque, RPM, and the throttle position has been
implemented starting from the engine test bench data. The gear ratio, final drive, and shift
time have been defined from telemetry and manufacturers’ data.

11 https://www.claytex.com/
12 https://www.studio-397.com/

Field Robotics, January, 2024 · 4:99–137

https://www.claytex.com/
https://www.studio-397.com/

116 · Raji et al.

(a) Vehicle animation.

\

SubFrame[] RollControlFrame

rockerFrame quarterCarBus

(b) Blocks of the suspensions subsystem.

Figure 10. Multibody model built on Dymola using the Claytex VeSyMA Motorsports libraries.

0 200 400 600 800
0

200

400

600

800

(a) Trajectory.

-10 -5 0 5 10
-1

-0.5

0

0.5

1
104

(b) Front axle characteristic.

Figure 11. Virtual test results of the ramp steer manoeuvre at three different speeds.

• Aerodynamics: a simple model with drag and downforce coefficients is used. The center of
pressure is positioned between the front and rear axle to define the correct aerobalance.

• Suspensions: the modeled components include the double wishbone geometry with a vertical
antiroll bar, the rocker, and the shock absorber. Stiffness and damping are defined for all
components.

• Body: the sprung and unsprung masses are modeled considering the center of gravity and
cross-weight to validate the experimental data of static load balance. The inertia matrix is
defined as well.

The multibody model has been used to produce manoeuvres that cannot be easily replicated on the
real vehicle due to the lack of suitable space and limited testing time. In Figure 11 we report the
ramp steer manoeuvres produced at different speeds. The wheels’ steering angle is set to vary from
zero to the maximum value at the rate of 1 deg/s, while the vehicle speed remains constant.

A single-track model on curvilinear coordinates, shown in Figure 12, has been identified from the
high fidelity multi-body model, including the forces due to the road bank angle, the aerodynamic
effects, the longitudinal forces on the rear axle generated by the turbo-charged engine, and the
tire forces represented with a simplified Pacejka Magic Formula considering the vertical load and

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 117

֔ց

֓ց

֔֍

֓֍

֓ ֔

Figure 12. Dynamic single-track model on curvilinear coordinates, where s, n, and µ are the progress along the
path, the orthogonal deviation from the path, and the local heading. F xf ,r and F yf ,r are the longitudinal forces
and lateral forces arising from the interaction between the tires and the ground. (vx ,vy ,r) identify the motion
field of the center of gravity, and δ is the steering angle.

camber angle as well as the combined slip effects. The equations of motion and the explanation of
the modeled forces are presented in (Raji et al., 2022).

3.4.2. Pure Pursuit Controller
An extension of (Coulter, 1992) has been developed. The target point is chosen at a curvilinear
distance lookahead from the projection of the car’s position on the local path, hence the reference
curvature is obtained as

kpp = 2ψtarget/lookahead,

where ψtarget is the angle of the target point position with respect to the x-axis of the local reference
frame. The curvature is then converted to a steering angle at the wheels using the classical kinematic
steering model:

δwheel = arctan (kpp · wheelbase).

The lookahead is updated at each step depending on the current speed and lateral error, in both
cases with a contribution proportional to a reference value.

3.4.3. Warm-up manoeuvre
Without tire warmers and considering the low ambient temperatures during the race events, which
were a maximum of 12.2◦C (54◦F) on October 21, 2021, at IMS and 17.2◦C (63◦F) on January 7,
2022, at LVMS, it was extremely important to heat the tires as much as possible. One approach,
followed by the majority of the teams, consisted in incrementally increasing the speed of the vehicle
during the first couple of warm-up laps following a normal raceline and running at least one lap at a
speed higher than 50m/s (180 km/h), where it has been demonstrated that the tires’ temperatures
increase rapidly. However, this approach produces higher energy and therefore higher temperature
on the rear axle with respect to the front axle.

For this reason, during the first couple of laps, we performed an open-loop warm-up manoeuvre
at 25m/s (90 km/h) which consists of a series of ±80 deg steering wheel angle commands on top of
the Pure Pursuit algorithm.

The manoeuvre has been produced considering the following parameters:

• steer_val: the steering wheel angle that should be commanded during the manoeuvre;
• step_duration: the amount of time during which steer_val is kept;
• step_gap: the amount of time between two step_duration, during which the steering controller

is not overridden;

Field Robotics, January, 2024 · 4:99–137

118 · Raji et al.

0 200 400 600
-100

0

100

0 200 400 600
-2

0

2

(a) The steering angle δ (a model input) and the sideslip
angle β (an output signal).

0 200 400 600

-10
0

10

0 200 400 600

-20

0

20

(b) Lateral acceleration and yaw rate.

Figure 13. Virtual test results on the warm-up manoeuvre compared with the experimental data.

• curvature_threshold: a value for checking whether to reduce steer_val based on the
curvature of the path in front of the car.

This solution aims to increase the temperature of the front tires, which is important to reduce the
probability of occurring in an understeering condition, before setting a higher speed and following
the global trajectory to increase more homogeneously the temperature on all the tires; some results
of this manoeuvre will be discussed in Section 6.3.

The stability of the vehicle during the warm-up manoeuvre has been evaluated on the multibody
model developed on Dymola. In Figure 13 simulation data are compared with measurements acquired
during tests with an additional optical speed sensor.

3.4.4. Model Predictive Controller
The MPC used at high speed is an extension of (Vázquez et al., 2020), where the optimization
problem is formulated as in Section 3.3.1 using the model discretized in time fdt (xt, ut). The main
differences from the original work are:

• A more complex model
• The path and velocity produced by the Frenet-based planner are used as a reference to be

tracked, considering the cost function

JMPC(xt, ut) = −ṡt + qnn
2
t + qµµ

2
t + qv|sv,t|+ uTRu+B(xt) ,

where in addition to the terms used in Equation 5, it includes the path following weights qn
and qµ, and a velocity tracking weight qv on the slack variable sv,t.

• The optimization problem is solved using HPIPM (Frison and Diehl, 2020).
• An automatic differentiation library, CppADCodeGen,13 is exploited to obtain the derivatives

of the nonlinear differential equations of the model producing the source code, which is statically
compiled offline and linked dynamically at runtime. This led to a speedup of the MPC keeping
the computational execution below the 10 ms on high-end Intel processors such as E-2278GE,
i7-10750H, and similar.

Considering the uncertainties of the dynamics of the actuator at speeds never tested before, and
to cope with a potential model mismatch related to the force offset of the asymmetrical setup of the

13 https://github.com/joaoleal/CppADCodeGen

Field Robotics, January, 2024 · 4:99–137

https://github.com/joaoleal/CppADCodeGen

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 119

AV-21, we decided to set a high value to the costs on the physical inputs a and their rate of change
u. This has been done expecting to avoid critical oscillations and to keep a smooth movement in
exchange for a slower system and a potentially higher path tracking error.

3.4.5. Controller Mux
The Pure Pursuit controller (Section 3.4.2) and the Model Predictive controller (Section 3.4.4) run
in parallel, each producing a control command. Both of these commands are sent to a Controller
Mux node, which selects one of the two sources based on their priority and availability, and routes
its message to the hardware.

In er.autopilot 1.0, the Model Predictive controller has the highest priority, followed by the
Pure Pursuit controller. In the rare event in which the Model Predictive controller fails to find a
solution or it does not provide a control message at the required rate, the Controller Mux switches
to the Pure Pursuit controller. As mentioned in Section 3.4.4, the MPC is not used at low speed,
therefore the Controller Mux uses the Pure Pursuit for this case as well. The decision is made by
checking a flag sent by the controllers indicating whether their commands should be applied.

During a switch, the commands are interpolated to smoothly match the ones of the new command
source. This is done to avoid sudden changes in the control commands that could lead to undesired
behavior.

3.5. Supervisor and Safety Layer
3.5.1. Supervisor
The supervisor module coordinates all the software modules. In particular, it takes part in the
start-up sequence of the car and commands an emergency stop if an anomaly is detected by the
failure detection module. It listens to the Mission Planner presented in Section 3.3.4, the Race
Control, and to the joystick used by the pit crew to trigger a manual emergency stop. Besides this
main Supervisor module, er.autopilot 1.0 uses a concept we called MicroSupervision. Each ROS2
node of the software stack has some checks on the availability of the most important topics, such as
the vehicle state (position and velocity), the commands feedback, and the status of other modules.
In particular, the controller base node has the possibility to directly stop the car. This can be seen
as a redundancy in the general safety system of the architecture.

3.5.2. Failure detection
The failure detection module is responsible for detecting anomalies in the system. One of its tasks
is to monitor the signal of all the car’s sensors to check if the values are in the nominal ranges
or if the sensors give the correct outputs, excluding, for example, NaN or values with a wrong
scale/range. Some sensible parameters related to the engine, transmission, fuel, and battery have
additional checkups related to the optimal operating range in order to guarantee peak performance.
When some of these sensors are out of their optimal values, but in acceptable ranges for a certain
amount of time, the failure detection module sends a warning to the supervisor. On the other hand,
if the sensors reach critical values, the emergency signal is triggered.

Another task of this module is to monitor the status of all the software stack in order to notify the
supervisor if some of them trigger an error state or stop working. In the latter, the failure detection
module monitors the time stamps of the messages sent for communication purposes in order to check
for timeout conditions, and as a redundancy it takes advantage of the QoS (Quality of Service) API
exposed by the ROS2 middleware interface (namely DDS14) in order to have confirmation for a
potential crash of the modules.

Furthermore, it checks that the connection between the car and the base station is alive. If an
anomaly is detected, an error is sent to the supervisor module, which reacts accordingly.

14 Data Distribution Service: https://www.omg.org/spec/DDS/

Field Robotics, January, 2024 · 4:99–137

https://www.omg.org/spec/DDS/

120 · Raji et al.

4. Simulation
Two simulation environments have been used to test the software stack, considering the following
criteria:

• Vehicle Dynamics fidelity: the simulated vehicle handling should behave similarly to the real
one, and it should be easy to test different road friction coefficients, tire temperatures, and
tracks.

• Simulation to Reality gap: should be limited to the differences between the reality for the steps
followed on the real car for pit entry and exit, and the signals sent between the race control and
the pit crew. The sensors’ interfaces and communication protocols used should be replicated
as well.

• Ease of use: each team’s developer should be able to run the entire software stack and the
simulator on the same machine, and easily restart and change the simulation scenario.

A single simulator that satisfies all these conditions is still in development, where the aim is to
include the multibody model developed on Dymola into the simulator described in Section 4.2.

4.1. AssettoCorsa
AssettoCorsa15 is a racing-game simulator developed by Kunos Simulazioni. It is popular for its
realistic dynamics and because it can be easily extended with custom vehicles, tracks, and plugins.
Furthermore, the simulator exposes an interface in Python to retrieve in real time detailed data
related to the running vehicles, such as position, velocities, accelerations, tires, and aerodynamics.

We developed additional interfaces to send the actuation commands, and we created the ROS2
wrappers to use the same messages of the real system. We started with custom mods of the Dallara
IL-15 and the oval tracks available online. The car model has been adjusted to replicate the engine
map, setup, and tire model of the Dallara AV-21. Our Motion Planning and Control algorithms
have been heavily tested in this simulation environment, in which it is possible to easily produce
challenging scenarios changing several parameters, such as the road friction coefficient, car setup
and stability, wind, and slipstream effects, as well as running against multiple AIs or human-driven
agents. A Windows machine is dedicated to running the racing game and publishing the ROS2
messages, whereas a separate machine with Linux runs a version of the er.autopilot 1.0 software
disabling some nodes related to the Perception, and adapting the parameters related to Race Control
and other communications that are not replicated on the simulator.

Further details on the interfaces, customization, and potential contribution of this simulation
platform will be presented in a separate work.

4.2. Unity-based semi-HiL Simulator
Besides AssettoCorsa, we decided to implement a lightweight Unity-based simulator to test all the
software stack onto, which has the same interface as the real car, and is easy to install and use.

It is the semi Hardware In the Loop (HIL) approach, given that the communication is the same
as the car at the lowest level possible, in particular:

• The Raptor and MyLaps communicate via a virtual CAN interface as the real car;
• The GPS is simulated and sent via TCP, using messages formatted as for the real Novatel

GNSS modules;
• The LiDAR is simulated and sent via UDP, using messages formatted as the real Luminar.

Moreover, the race track in the simulator is georeferenced as well, therefore the GPS positions
coincide with reality.

15 https://www.assettocorsa.it/

Field Robotics, January, 2024 · 4:99–137

https://www.assettocorsa.it/

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 121

Figure 14. The Dallara AV-21 communicates with the base station via a wireless infrastructure made up of
multiple antennas placed around the track. The base station is connected to the infrastructure using an Ethernet
cable.

The car dynamics are provided by the NWH Vehicle Physics 2,16 and then they have been tuned
to match our vehicle settings as closely as possible. Despite the ease of adjusting the vehicle model,
it has not been possible to reach fidelity on the lateral dynamics as accurately as on AssettoCorsa
or Dymola.

The simulator was designed to be used on the real hardware in an HIL fashion, through CAN
and Ethernet connections. Nonetheless, it can run in a Software In The Loop (SIL) fashion on
any high-end laptop, such as those used by the team for development. In particular, this simulator
has been used by the developers to implement and validate the correctness of modules related to
the system integration, such as Mission Planner (Section 3.3.4), Controller Mux (Section 3.4.5),
Supervisor, and Safety (Section 3.5). Finally, there is also the possibility to run the simulator
automatically, with a predefined mission, and headless, without visualization. We exploited this
feature to include a simulation test in our GitLab pipelines.

5. Telemetry and Visualization
The Dallara AV21 car constantly communicates with an on-ground computer called a base station.
The base station and the car communicate via a wireless infrastructure that is made up of multiple
antennas placed around the track (Figure 14).

From the base station, it is possible to send commands to the car and monitor all the signals that
are relevant to evaluate the performance of the car. From a joystick connected to the base station,
it is possible to reduce the speed of the car and command an emergency stop. If communication
with the base station is lost, the car performs a graceful stop.

5.1. Telemetry Data
To overcome the issue of the limited bandwidth of the wireless infrastructure, the TII Euroracing
team has implemented a proprietary protocol based on UDP that drastically reduced the amount
of data going through the infrastructure. All the signals coming from the car are downsampled to
5 Hz and compressed before sending them to the base station.

5.2. Visualization
While the car is running, on the base station the proprietary software er.viz (Figure 15) allows the
team to visualize the car position, the planned trajectory, and the detected obstacles, along with
the car speed.

16 http://nwhvehiclephysics.com

Field Robotics, January, 2024 · 4:99–137

http://nwhvehiclephysics.com

122 · Raji et al.

Figure 15. er.viz is the visualization tool used on the base station to monitor the performance of the car.
The car position is shown in the center of the window; the detected car is marked with a blue circle; the desired
trajectory is drawn with a thick yellow line, while the motion forecasting of the detected car is drawn in purple.

Along with er.viz, on the base station the open-source software PlotJuggler17 is used to plot the
signals in real time. The most relevant signals monitored by the team during a run are the lateral
error from the desired trajectory, the steering and throttle commands, the tires’ temperatures, and
the covariances of the localization.

6. Results
In this section, we report the main results for each of the presented software modules.

6.1. Localization
In evaluating the quality of the localization system, we could not rely on a ground truth system for
comparison. We proceeded, keeping in mind the following objectives:

1. Empirically compare the ego vehicle estimate with the GNSS raw inputs, also considering their
covariance.

2. Evaluate the performance of the estimator in case the RTK signal was lost on one or both
receivers.

3. Understand the practical performance of the localization system and derive safety thresholds
based on its accuracy and tolerance to sensor malfunctions.

In Figure 16 we show the result of some of these tests conducted at LOR, where each sensor RTK
correction is disabled/enabled in different combinations.

17 PlotJuggler: https://www.plotjuggler.io/

Field Robotics, January, 2024 · 4:99–137

https://www.plotjuggler.io/

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 123

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
0

5

10

15

20

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
0

0.5

1

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
0

1000

2000

3000

Figure 16. Ego-vehicle localization in the absence of RTK correction. i) In the first test, the RTK correction is
disabled for the bottom receiver around 1250 s. Given the tuning used in the test, this does not affect the accuracy
of the estimation. The correction is then reapplied. At around time 1450 s, the top receiver RTK correction is
disabled, which immediately brings the pose estimate standard deviation (average over latitude and longitude)
over the first threshold of 0.2 m triggering a safe braking of the car. ii) The safety threshold is increased to 0.3
m and the test continues. It is visible how the top receiver accuracy quickly degrades. Once also the bottom
receiver RTK correction is disabled again at around 1750 s, the accuracy is still within range and the car keeps
moving. The car is then stopped manually and the test is considered successful.

The importance of these tests lies in the fact that they gave us confidence in the accuracy of
the car pose estimates, which could then be used to calibrate the safety thresholds for the safe-stop
signals in the failure detection module and to confidently increase the operating speed during the
test sessions. The LiDAR localization system described in Section 3.1.2 is treated as an additional,
virtual, sensor in the EKF, providing position, heading, and velocity estimates with their confidence
at around 25 Hz. Given the limited amount of track time we had to test this critical software
component, we decided not to use it in the final races in order to advance its development and
present more results in future works.

However, we report our current results in the charts of Figure 17. On the left, we depict a joint plot
with the distribution of the lateral and longitudinal error in meters. The error has been computed
considering the RTK-corrected GPS position as ground truth, on the qualification log for the LVMS
race where the car exits the pit, increments the speed up to 75 m/s, and goes back to the pit. The ori-
gin in the plot represents the car’s Center of Mass. The results are very promising: the maximum lat-
eral error is 25 cm, while the longitudinal one is on average around 30 cm, with few peaks close to 2 m.

The chart on the right shows the error in m (y-axis) at the different speeds in m/s (x-axis).
From this second plot, we can notice that the error peaks increase while increasing the speed, as
one could expect. We can then notice that the 2m errors are experienced only over 70 m/s, while at
lower speeds the maximum error is always lower. Moreover, the chart shows two distinct patterns

Field Robotics, January, 2024 · 4:99–137

124 · Raji et al.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Lateral error [m]

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50
Lo

ng
itu

di
na

l e
rro

r [
m

]

30 40 50 60 70
Speed [m/s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Er
ro

r [
m

]

Figure 17. Results of the LiDAR localization at LVMS. On the left is the joint plot of the lateral error (x-axis)
and the longitudinal one (y-axis). On the right is the plot of the error module (y-axis) at different speeds.

Table 1. Accuracy results of the Object Detection of the camera detection
pipeline (Section 3.2.4).

Train-set Size Val-set Size Classes AP 0.5 AP 0.75 AP 0.5:0.95
350 50 1 0.92 0.67 0.60

of errors: frequent low errors at the bottom of the chart, and higher errors in the upper part. These
patterns appear to be correlated with straight sections and curved exits, respectively.

6.2. Object Detection and Tracking
To correctly evaluate the perception pipeline, we have to consider both execution time and accuracy.

Given that there is not an official data set on which to evaluate our methods, we will report the
accuracy results on the data we have manually labeled. For the same reason, we sometimes report
both boxplot graphs and tables to serve as reference in future works.

For the Object Detection NN of the camera detection pipeline (Section 3.2.4), the accuracy results
have been reported in Table 1. The data set statistics reported refer to the manually labeled images
used to fine-tune the YOLOv4 pretrained on BDD100K. The Average Precision (AP) obtained for
open-wheel race cars of our solution is 92% when using a confidence threshold of 0.5.

Regarding the execution time, Figure 18 shows the boxplots of the LiDAR clustering BEV
(Section 3.2.2), camera detection (Section 3.2.4), and sensor fusion (Section 3.2.8) for 16 600 iteration
of one complete log run where these pipelines were active. The execution times refer to the vehicle’s
workstation. The three Luminar LiDAR are handled by three separated nodes, whose boxplots
are luminar, luminar_l and luminar_r, while all the cameras are elaborated by a single node to
have a single batched inference (therefore there is only one boxplot). Please keep in mind that the
execution times provided were calculated while the computer was operating at full capacity, running
the entire stack, rather than in isolation. As a result, the execution times for the same algorithm
(such as luminar, luminar_l, and luminar_r) may fluctuate slightly.

Moreover, these pipelines’ statistics are also reported in Table 2. On average, the BEV clustering
with its internal tracking is performed in 5.5 ms, the vehicle detection and tracking on six camera
frames in 47 ms, and all the data are fused in 0.14 ms. Unfortunately, we have not recorded accurate
profile data for the other pipelines.

Finally, we evaluated the result of the Sensor Fusion pipeline (Section 3.2.4), which is the module
in charge to give the input to the Planner, when merging detections from the LiDAR clustering

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 125

luminar luminar_r luminar_l cameras sensor fusion

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Figure 18. Boxplots of the execution times of the LiDAR clustering BEV (Section 3.2.2), camera detection
(Section 3.2.4), and sensor fusion (Section 3.2.8) pipelines, over 16 600 iterations.

Table 2. Execution time statistics of the LiDAR clustering
BEV (Section 3.2.2), camera detection (Section 3.2.4), and
sensor fusion (Section 3.2.8) pipelines, over 16 600 iterations.

avg [ms] max [ms] min [ms]
luminar 5.08 43.14 2.51
luminar_r 5.93 30.73 2.91
luminar_l 5.66 31.18 1.53
cameras 47.05 68.69 37.21
sensor fusion 0.14 3.54 0.04

BEV (Section 3.2.2) and the Radar (Section 3.2.6) pipelines on the head-to-head run against TUM,
during the LVMS event.

To compute that, we compared the GPS position of TUM’s car, using the output of the Novatel
top (in front of the car), and the GPS position of our vehicle, using the output of the Novatel top
(in front of the car), and the detection computed by the Sensor Fusion module, which is the center
of the detected objects, aligning our data with the opponents’ ones with the Novatel’s time stamp.
We then converted the GPS positions into local coordinates to compare them with the detections,
and we only considered the case in which the opponent’s car is not behind ours.

It is important to notice that the considered ground truth (TUM’s position) is a point in the
front of the car, while the detection is usually a point in the back of the car, and that the car is
almost 5 m long and 2 m wide. Keeping that in mind, to compute the goodness of the pipeline, we
considered various scenarios in which the two cars’ Euclidean distance was in a certain range.

This having been said, we evaluated the ranges [0–10]m, [10–25] m, [25–50] m, [50–100]m, [100–
150] m, and [0–150]m. Table 3 reports the complete evaluation for those ranges, including True
Positives (TP), False Negatives (FN), False Positives (FP), precision (p), recall (r), and longitudinal
and lateral errors statistics, such as minimum (min), maximum (max), average (avg), and median
(med). It is worth noting that the recall is 1.0 within 50 m, and the worse value is 0.65 in the
[100–150] m range; on the other hand, the precision is around 1 when the distance is greater than
50 m. For smaller distances, the precision is worse due to the error of the detection, e.g., considering
the range [0–10]m if the ground truth position is around 11.0m (out of the considered range), while
its detection is around 9 m and that is considered FP.

Field Robotics, January, 2024 · 4:99–137

126 · Raji et al.

Table 3. Results of the Sensor Fusion (Section 3.2.8) output (center of detection) compared with the TUM
position (Novatel top). The distance between TUM’s car and ours is in the range [Min dist-Max dist]m, and all
the error statistics (minimum, maximum, average, and median) are in meters.
Min dist Max dist TP FN FP p r minx maxx avgx medx miny maxy avgy medy

0.00 10.00 141.00 0.00 57.00 0.71 1.00 0.48 7.13 −2.71 −2.86 0.05 2.10 −1.06 −1.10
10.00 25.00 298.00 0.00 69.00 0.81 1.00 1.01 5.39 −3.40 −3.65 0.04 3.85 −1.48 −1.38
25.00 50.00 609.00 0.00 80.00 0.88 1.00 0.71 5.74 −1.85 −2.42 0.09 5.30 −0.88 −1.18
50.00 100.00 2,814.00 101.00 34.00 0.99 0.97 0.00 11.30 0.54 0.50 0.00 7.80 0.72 1.85

100.00 150.00 598.00 327.00 0.00 1.00 0.65 0.01 98.28 10.40 5.36 0.12 97.20 4.40 −2.26
0.00 150.00 4,460.00 428.00 0.00 1.00 0.91 0.00 98.28 0.41 −0.66 0.00 97.20 0.49 −0.10

err_x err_y

5

4

3

2

1

0

Er
ro

r [
m

]

err_x err_y
6

4

2

0

2

Er
ro

r [
m

]

err_x err_y

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Er
ro

r [
m

]

err_x err_y

0

20

40

60

80

100

Er
ro

r [
m

]

Figure 19. Statistics of the longitudinal and lateral error of the Sensor Fusion’s output (Section 3.2.8) compared
with the TUM position (Novatel top). The distance between TUM’s car and ours is, from left to right, in the
ranges [0–25]m, [25–50] m, [50–100] m, and [100–150]m.

In addition to the table, the lateral and longitudinal errors of the detections are depicted in
Figure 19, in particular for the ranges [10–25] m, [25–50]m, [50–100] m, and [100–150]m. From the
range [10–25] m, the average longitudinal error is −3.40 m, which is almost the distance between
the top position (ground truth) and the rear one (center of detection seen from behind). More
generally, the maximum longitudinal error is around 10.4m and the lateral error is around 4.4 m
(without considering the actual size of the cars) within 100 m of distance. It has greater outliers,
up to 98.28 m of longitudinal error and 97.2m of lateral error when the distance between the two
vehicles is over 100 m; the cause can be found in the only presence of radar detection, less reliable
than LiDAR, at that range and the divergence of the Kalman Filter on the banking.

6.2.1. Motion Forecasting
A complete analysis of the performance of the motion forecasting module would not have been
possible without the help of the TUM team, which provided us with the GPS log of their car. The
GPS position is extremely accurate thanks to the RTK correction, so it has been used as the ground
truth to evaluate the output of the motion forecasting module. Without using the log of another
car, the only way to analyze the performance would have been the usage of the perception module
output as ground truth. However, the estimation error of the motion forecasting module would have
been affected by the error of the perception module.

In the data set used, the TUM car did several laps at different speeds, ranging from 10 m/s up
to 55 m/s (Figure 20). The position of the car at each step has been used directly as input to the
motion forecasting module.

The predicted trajectory of the motion forecasting module has a length of 3 s,18 so to evaluate
the accuracy of the prediction, the prediction error is computed at different prediction lengths.
Moreover, the error is split along the longitudinal and lateral axes. In Figure 21, the error at 3 s of

18 Length in time: the last point of the predicted trajectory is the predicted position of the car in 3 s.

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 127

0 200 400 600 800 1000 1200
10

20

30

40

50

60

Figure 20. Speed profile in the log provided by the TUM team. The data set contains multiple laps at different
speeds.

0 200 400 600 800 1000 1200
0

5

10

15

20

0 200 400 600 800 1000 1200
0

2

4

6

8

Figure 21. On the top graph, the longitudinal error of the motion forecasting is illustrated at 3 s of prediction,
whereas the bottom one contains the lateral error. The output of the motion forecasting module is 3 s long. For
convenience, the statistical quantities are also reported in Table 4.

prediction is shown, along with the median (Q2) and the 75th percentile (Q3). Table 4 summarizes
the statistical characteristic of the error at 1, 2, and 3 s of prediction.

By combining the speed profile (Figure 20) and the prediction error (Figure 21), we can see that
the error increases with the speed. Furthermore, the outliers are mostly due to the acceleration of the
car. This phenomenon is expected because the model Equation 6 used to make the prediction assumes
that the car is moving at a constant speed. However, the overall prediction error is promising: at 3
s of prediction the Q3 of the error is less than half of the car length on the longitudinal component
and slightly more than half of the width of the car on the lateral component. This result lies in
the same order of magnitude of the estimates performed relying only on the logs of our car, and it
helped us in tuning the safety thresholds in the planning stack.

Field Robotics, January, 2024 · 4:99–137

128 · Raji et al.

Table 4. Statistical quantities of the error of prediction at various
prediction steps.

Longitudinal Err. (m)
1 s 2 s 3 s

min 0.0 0.0 0.0
Q1 0.04 0.09 0.16
Q2 0.107 0.26 0.49
Q3 0.27 0.71 1.34
max 7.91 19.75 34.19

Lateral Err. (m)
1 s 2 s 3 s

min 0.0 0.0 0.0001
Q1 0.0659 0.1284 0.1939
Q2 0.1646 0.3136 0.454
Q3 0.4308 0.8345 1.2053
max 3.7161 6.0891 7.0894

-100 -50 0 50 100
Coord: Y [m]

-30

-20

-10

C
oo

rd
:
X

[m
]

Global Trj
Local Trj
Track margin

0 1 2 3 4 5 6
T ime [s]

-20

-10

0

10

S
te

er
in

g
[d

eg
]

Figure 22. Avoiding pylons during the Semifinal at IMS. The location of four water-filled pylons is marked with
red dots. The local planner is informed by the detection stack and reacts with a smooth trajectory to avoid them.

6.3. Planning and Control
Thanks to the optimization-based global planner, it has been possible to generate a feasible raceline
that does not take into consideration only the time minimization but also the rate of change of the
steering wheel angle. Considering the uncertainties of the actuators, the model mismatch on the
controller, and the need for a feasible path at all the possible velocities, we preferred to follow a
smoother and safer trajectory than the potential minimum lap trajectory.

The Frenet-based planner and the Control module have been tested thoroughly at various speeds,
as presented in (Raji et al., 2022).

In particular, the planner has been capable of generating smooth overtaking trajectories with a
speed that went from 22 m/s (∼80 km/h) up to 64m/s (∼230 km/h), as well as performing safely
static obstacle avoidance, as can be seen in Figure 22. During the high-speed laps at LVMS, when
the speed varied from 72m/s to 75.5 m/s, the MPC reached a maximum lateral error of 1 m and an
RMS value of 0.5 m, while the heading error was between 0.7 deg and −1.0 deg. On the other side,
when the speed varied from 61.45m/s to 63.16 m/s during the final at IMS, the maximum lateral
error was −0.67 m and the RMS value −0.29 m, while the heading error was between 0.6 deg and
−0.5 deg with a mean of −0.016. In Figure 23, we show the tracking performance during the two
events at similar speeds over one lap. The error on the lateral tracking has been influenced by the
choices on the regularization terms and the mismatch in the tire model. The differences, mainly
on the lateral error, are caused by changes in the weights’ values in the MPC cost function we
made, keeping unvaried the parameters of the Pacejka Magic Formula, from the first identification
explained in Section 3.4, due to insufficient time to safely validate on track a set of potentially more
accurate coefficients.

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 129

500 510 520 530 540 550 560

-20

0

20

S
te

er
in

g
[d

eg
]

500 510 520 530 540 550 560

-0.5

0

0.5

L
a
te

ra
lE

rr
or

[m
]

500 510 520 530 540 550 560
Time [s]

-0.5

0

0.5

H
ea

d
in

g
E

rr
or

[d
eg

]

(a) MPC Tracking Errors during a 215 kph lap at IMS.

345 350 355 360 365 370 375 380

-20

0

20

345 350 355 360 365 370 375 380

-0.5

0

0.5

345 350 355 360 365 370 375 380
Time [s]

-0.5

0

0.5

(b) MPC Tracking Errors during a 220 kph lap at LVMS.

Figure 23. Comparing controller tracking performance at a similar speed in different circuits. Despite different
tuning values being used, consistent behavior can be observed.

Table 5. Tires temperatures during the final at IMS. In the absence of tire warmers, and
despite a strategy comprising warm-up manoeuvres and fast laps, the achieved temperatures
after six laps are far from the nominal ones.

Temperature Gap [◦C]

Pit-exit
Temp. [◦C]

Warm-up
(1 lap)

Target 60 m/s
(2.5 laps)

Target 66 m/s
(2 laps)

Maximum
Temp. [◦C]

Front Left 25.5 + 9.9 + 9.6 + 2.8 51
Front Right 20.3 + 10.5 + 18.4 + 4 53.9
Rear Left 21.6 + 7.3 + 11.3 + 1.8 45.2
Rear Right 18.8 + 8.4 + 21 + 5.8 57.8

The results of the Warm-up manoeuvre described in Section 3.4 are presented in Table 5 and
Figure 24, where data from the final event at IMS are used. It has been possible to increase the
temperature on the front tires before increasing the speed, as we were aiming for. As we saw in the
simulations, this manoeuvre leads to a controlled front slip which can generate front temperature. It
is noticeable that the rear tires’ temperature increased when the car ran at 60 m/s while the tempera-
ture of the front tire began to flatten. The greater temperature on the right side is due to the banking
effect and the high load transfer, which increases the vertical load on those wheels. This leads to de-
formation of the tire carcass, which is converted into energy, and therefore heat. This effect is greater
on the rear right due to the car balance (both weight and aerodynamic) and the combined force.

6.4. Overall Results in the Competition
Using the presented software stack, the team achieved the second and third position, respectively,
at the two main events of the competition. This section gives an overview of the overall results,
explaining the strategy we used and the failures that limited our final placements.

6.4.1. Indy Autonomous Challenge powered by Cisco
In Table 6 we summarize the results of the teams qualified for the Seminal and Final of the race at
IMS and that they have been able to complete at least one of the rounds.

The order of the runs for the Semifinal was set by draw. The PoliMove Autonomous Racing team
was the first, followed by TUM, KAIST, Cavalier Autonomous Racing, and finally us. Running after
these teams gave us the advantage to know their results and setting a target speed high enough to
conclude first without taking too many risks. Given the first position gained in the Semifinal, we

Field Robotics, January, 2024 · 4:99–137

130 · Raji et al.

300 400 500 600 700 800

20

40

60

V
x

[m
=
s]

Lap 1 Lap 5Pit-exit Outlap Lap 2 Lap 3 Lap 4 Lap 6

Warm-up Lap
Performance Lap

300 400 500 600 700 800

20

40

T
em

p
:
[C

]

Lap 1 Lap 5Pit-exit Outlap Lap 2 Lap 3 Lap 4 Lap 6

Front Left
Front Right
Rear Left
Rear Right

300 400 500 600 700 800
Time [s]

-100

-50

0

50

S
te

er
in

g
[d

eg
]

Lap 1 Lap 5Pit-exit Outlap Lap 2 Lap 3 Lap 4 Lap 6

Figure 24. Tires temperatures during the final at IMS. From the pit-exit and during the outlap, the warmup
manoeuvre is performed by alternating left and right steering. At higher speed, we relied purely on friction to
increase the temperature. Given the low track temperature, in the few laps available for the race it was not
possible to heat the tires to their nominal temperature (around 80◦C).

Table 6. Semifinal and Final results of teams qualified for the race at IMS. DNF stands for
Did Not Finish, DNQ for Did Not Qualify. In bold, the best average speed of the top three
teams is used to determine the final positions.

Semifinal Final

Average
Speed [m/s] Position

Average
Speed [m/s] Position

TUM Autonomous Motorsport 57.774 2 60.772 1
TII EuroRacing 58.628 1 51.83 2
PoliMOVE 55.634 3 DNF 3
KAIST 37.71 4 DNQ
Cavalier Autonomous Racing 53.592 DNF DNQ

started our run for the Final after TUM and PoliMove. The format consisted of four warm-up laps
followed by two performance laps, in which the average speed was the criteria used to declare the
winner, and one cool-down lap before coming back to the pit.

Originally, our strategy, tested in simulation the night before the race, consisted in the following:

• Four Warm-up laps: two laps using the Warm-up manoeuvre presented in Section 3.4, one lap
at 200 km/h, and the last one at 240 km/h.

• Two Performance laps at a speed equal to or higher than 240 km/h considering the other teams’
result.

• One Cool-down lap at 150 km/h.

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 131

600 620 640 660 680 700 720 740 760
Time [s]

55

60

65

70

V
x

[m
=s

]

65

70

75

80

85

90

95

100Target Speed
Ego Speed
Throttle [%]

Figure 25. Fast laps in IMS Final. While the controller was requesting full throttle or a high value, the oscillations
are due to a nonideal tuning of the turbocharger and a temporary malfunction of its mechanics.

During the time available before our turn for the Final round, we considered performing the weaving
manoeuvre to heat first the front tires at 95 km/h just on the first warm-up lap, followed by two
laps at 215 km/h and a final warm-up lap at 240 km/h. This choice had been applied and tested in
our SiL simulator a few minutes before the run without the attention properly needed to guarantee
its correctness. This resulted in what we internally called the “Million dollar bug,” considering the
first place prize. Taking into account the TUM’s result of an average speed of 218.8 km/h and a
hardware failure that led PoliMove to keep their average speed of 200.03 km/h gained during the
Semifinal, we decided to keep the target speed for the performance laps at a speed of 240 km/h
around the entire track. As can be seen in Figure 25, despite a throttle pedal command higher than
90%, the speed did not increase more than 227.4 km/h due to a momentary malfunction on the
turbo-charger. After completing the first performance lap, the car reduced its speed to 150 km/h, as
depicted in Figure 24, which was the target for the cool-down lap. During the last-minute change in
the code, we erroneously set the cool-down lap speed at the end of the fifth lap instead of the sixth.
Concluding the last lap at the same speed as the previous one would have guaranteed an average
speed high enough to win, but the error led us to an average speed lower than that achieved in the
Semifinal, positioning us second.

6.4.2. Autonomous Challenge @ CES
At the second event, the order was set by draw as well and we ended up starting first at the time
trial part in which the lap time was the criteria for determining the seeding in the bracket of the
Passing Competition explained in Section 1. The run consisted of a maximum of 10 laps where the
teams were not constrained to follow any kind of format. We decided to perform the outlap and the
first lap doing the weaving manoeuvre at 100 km/h, followed by a series of laps at incrementally
higher speed. During the seventh lap, we set a target speed of 77.7m/s (280 km/h) but the vehicle
reached a maximum of 75.5 m/s (272 km/h), despite a full throttle command as presented in (Raji
et al., 2022), achieving a lap time of 33.99 s. Once the race car came back to the pit lane, the
mechanics found that a cable related to the power train had been detached and caused the speed
limitation. The results of the time trial are summarized in Table 7.

In the Passing Competition, we faced TUM for the Semifinal of the event. We were able to pass
the rounds up to the defending speed level of 58 m/s overtaking at 63 m/s (226.8 km/h). Table 8
compares the overtaking speed with the other teams.

An edge case for the motion planning and control modules happened during the round at the
defense speed of 60 m/s. A false detection of a standing obstacle by the Radar lets the planner
generate a series of aggressive manoeuvres with a higher difference in terms of curvature and
smoothness from each other. The MPC reacted with a much higher heading error than the one
usually had during other tests on the track at higher speeds, triggering a hard brake by the safety

Field Robotics, January, 2024 · 4:99–137

132 · Raji et al.

Table 7. Qualifying results of the race at LVMS; the four fastest teams
in testing were admitted.

Qualifying

Fastest Lap Time [s] Position
TII EuroRacing 33.99 2
TUM Autonomous Motorsport 35.3 3
PoliMOVE 32.54 1
Cavalier Autonomous Racing DNF

Table 8. Comparison of successful overtakes between all the qualified
teams, during the Las Vegas Motor Speedway event. The defense
speed is the speed of the defending car during the overtake.
Defence TII
Speed (m/s) EuroRacing TUM KAIST PoliMOVE
36 X X X X
45 X X X X
51 X X X X
56 X X × X
58 X X X
60 × X X
62 X X
65 X X
67 × X

728.5 729 729.5 730

0

1000

2000

3000

B
ra

k
e

[k
P

a
]

Command
Front
Rear

728.5 729 729.5 730
Time [s]

0

20

40

H
ea

d
in

g
E

rr
or

[d
eg

]

X 729.39
Y 0

X 729.41
Y 2757.8

X 729.398
Y 5.16782

X 729.438
Y 6.1398

(a) Heading Error triggering brake command.

728.5 729 729.5 730

-200

-100

0

S
te

er
in

g
[d

eg
] Command

Actuation

728.5 729 729.5 730
Time [s]

0

20

40

60

80

T
h
ro

tt
le

[%
]

Command
Actuation

X 729.4
Y -45.7447

X 729.4
Y 0

(b) MPC and Raptor actuation signals.

Figure 26. LVMS semifinal crash analysis. A false detection of a ghost car in front of the car triggered a steering
correction and reduction in throttle request (b). Shortly after, the heading error with respect to the planned path
went over the safety threshold, and the supervisor triggered an emergency braking (a). At over 200 kph, this
resulted in the loss of control of the vehicle.

checks, as explained in Section 3. In Figure 26 it can be seen that as soon as the heading error
passed the value of 6 deg, the brake pressure started to increase, bringing the car to a spin and
causing it to hit the track boundaries despite the controller trying to steer to the right.

7. Lessons Learned
Robotics challenges are great instruments for pushing the integration of the latest research results in
real-world applications, and they steer the efforts of research teams towards new results that can find

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 133

application outside the lab. In addition, the opportunity to compete against other teams is an impor-
tant way to build and maintain an active research community and to exchange ideas at a fast rate.

We could easily argue that everyone who competes in a race wants to win. When this result is
not achieved, it is very important to go back and make a rational analysis of the result. In our case,
we summarize our analysis in the following points, hoping they might provide useful insights to the
community.

• Control solutions based on complex models of the vehicle bring difficulties related to the
different conditions of the real world with respect to the estimated model. This mismatch could
lead the researchers to move to different approaches based on Robust Control, where, rather
than modeling the nonlinear dynamics of the system, the focus is on considering the uncertainty
around a simpler model, or on bounding the control commands on a set of potential limits of
longitudinal and lateral accelerations. In our work, we demonstrated that a model identified
from simulation has been used in an MPC in two different tracks with different weather
conditions and different scenarios, with similar performances adapting only the weighting terms
of the optimization problem and the cost function. Although we did not update the model after
the validation on the track due mainly to the limited testing time, we believe that the experience
gathered on modeling, validating, and tuning the controller will help to speed up the process and
enable us to refine the parameters for each new track and road condition in a timely manner.
Further effort should be put into automatically learning and refining the model parameters at
runtime, taking into account the stability and the tracking performance of the controller.

• Given the technical challenges that GNSS systems pose in practice (Massa et al., 2020),
we believe that investing effort in GNSS-denied localization systems will be key in future
racing championships. We believe that to produce a step-change in autonomous technology,
a race car should be equipped with all its capabilities in the edge-vehicle, relying on external
infrastructure only for interactions with race control and live telemetry streaming. A first step
in this direction will be reducing the importance of GNSS modules in ego vehicle localization,
up to the point at which these could become unnecessary.

• The crash that happened in the head-to-head race was caused technically by setting the
threshold on the safety check related to the heading error without considering possible extreme
scenarios for the perception and planning modules, which are difficult to address in a simulation.
A threshold of 6 deg on the heading error can be considered a strict value since in simulation
the controller was able to correctly react in similar conditions when the check was not enabled.
Furthermore, it would have been trivial to understand the potential effects of a hard brake
command at high speeds with tires below their nominal temperature. For this reason, the
safety check would be reevaluated for future runs. Potentially, the hard brake would be limited
to low speeds and to the occasions when the control commands are not properly applied to the
vehicle.

• Differently from usual research, in our case the race and the competitive component of the
challenge led us to make important decisions in a stressful environment and in a short time.
In addition to technical errors, wrong or high-risk organizational and operational decisions
could ruin the final result as well. In our experience, this was proven in the case of the Million
dollar bug, where we neglected the high probability of human error in applying and testing a
last-minute change in the software.

8. Conclusions
In this work, we presented the complete software stack implemented by the TII EuroRacing team.
Each module has been described including technical results as well as the overall achievements.
Insights on the aspects we considered crucial for reaching speeds above 75m/s (270 km/h), avoiding
static obstacles, and racing in a head-to-head scenario have been given. We explained the failures
that caused us not to achieve the first position in the final events, with important considerations

Field Robotics, January, 2024 · 4:99–137

134 · Raji et al.

that could be beneficial to the other teams and researchers competing in challenges of different
robots and fields.

With new Autonomous Racing challenges planned for the coming years, the team is working
on er.autopilot 2.0. The updated software should improve the robustness of the sensors fusion
on the detection module to cope with potential false detection and disturbances on the racetrack.
Despite the implementation of a light warm-up manoeuvre to increase the temperature of the front
tires, we will consider more aggressive manoeuvres to be performed in closed-loop control to speed
up the warm-up procedure and reach the ideal temperature. A key point to achieve this goal is to
improve the path-tracking performance of the MPC. Thanks to the data gathered at high speeds, it
has been possible to confirm the correctness of an updated version of the multibody model developed
in Dymola, which has been used to identify the single-track model parameters for the controller.

Another important feature will be the capability of running on GNSS-denied solutions. In addition
to the LiDAR-based localization, we will consider the integration of a pure local control method.
In (Lee et al., 2022), the authors presented a resilient navigation method based on following a
distance from the wall of the track, using the LiDAR sensor and a variant of the RANSAC algorithm
(Fischler and Bolles, 1981). Similarly, we will implement LiDAR-based and camera-based navigation
for emergency situations.

Future applications will be on running the algorithms in free racing scenarios where more than
two vehicles are allowed to drive without strict limitations on the possible trajectories to follow.
For this purpose, it will be important to develop a Local Planner capable of generating aggressive,
but feasible and safe, paths and velocity profiles. This would be possible by considering a dynamic
model on the planning module and improving the integration between Planning and Control.

Acknowledgments
We would like to thank all the students and researchers who contributed in small part to the
development. In particular, we thank André Jesus, Abdurrahman İşbitirici, Mankaran Singh, Andrea
Serafini, Francesco Moretti, Maciej Dziubiński, and Vallabh Ansingkar. Thanks to Claytex for the
VeSyMA Motorsports libraries, and MegaRide19 for the support in the tire model identification.
Thanks to SpinItalia20, particularly Francesco La Gala, for the insight on the GNSS failure at LVMS.

We would also like to thank the IAC organization and all their partners for making this work
possible.

Lastly, we would like to acknowledge the collaborative work done by all the teams during the
first months at LOR and IMS. In particular, the work carried out by Alexander Wischnewski from
TUM Autonomous Motorsport and Will Bryan from Autonomous Tiger Racing.

ORCID
Ayoub Raji https://orcid.org/0000-0003-4188-8854
Danilo Caporale https://orcid.org/0000-0003-2665-3950
Micaela Verucchi https://orcid.org/0000-0003-3898-8571
Alessandro Toschi https://orcid.org/0009-0002-4497-0589
Alexander Liniger https://orcid.org/0000-0002-7858-7900
Marko Bertogna https://orcid.org/0000-0003-2115-4853

References
Andresen, L., Brandemuehl, A., Honger, A., Kuan, B., Vödisch, N., Blum, H., Reijgwart, V., Bernreiter, L.,

Schaupp, L., Chung, J. J., et al. (2020). Accurate mapping and planning for autonomous racing. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4743–4749. IEEE.

19 https://www.megaride.eu/
20 https://www.spinitalia.com/

Field Robotics, January, 2024 · 4:99–137

https://orcid.org/0000-0003-4188-8854
https://orcid.org/0000-0003-4188-8854
https://orcid.org/0000-0003-2665-3950
https://orcid.org/0000-0003-2665-3950
https://orcid.org/0000-0003-3898-8571
https://orcid.org/0000-0003-3898-8571
https://orcid.org/0009-0002-4497-0589
https://orcid.org/0009-0002-4497-0589
https://orcid.org/0000-0002-7858-7900
https://orcid.org/0000-0002-7858-7900
https://orcid.org/0000-0003-2115-4853
https://orcid.org/0000-0003-2115-4853
https://www.megaride.eu/
https://www.spinitalia.com/

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 135

Arslan, O., Berntorp, K., & Tsiotras, P. (2017). Sampling-based algorithms for optimal motion planning
using closed-loop prediction. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 4991–4996.

Benson, A., Tefft, B., Svancara, A., & Horrey, W. (2018). Potential reductions in crashes, injuries, and
deaths from large-scale deployment of advanced driver assistance systems. AAA Foundation for Traffic
Safety, Washington, DC.

Betz, J., Betz, T., Fent, F., Geisslinger, M., Heilmeier, A., Hermansdorfer, L., Herrmann, T., Huch, S.,
Karle, P., Lienkamp, M., Lohmann, B., Nobis, F., Ögretmen, L., Rowold, M., Sauerbeck, F., Stahl, T.,
Trauth, R., Werner, F., & Wischnewski, A. (2022a). Tum autonomous motorsport: An autonomous
racing software for the indy autonomous challenge.

Betz, J., Wischnewski, A., Heilmeier, A., Nobis, F., Stahl, T., Hermansdorfer, L., & Lienkamp, M. (2019a).
A software architecture for an autonomous racecar. In 2019 IEEE 89th Vehicular Technology Conference
(VTC2019-Spring), pages 1–6.

Betz, J., Wischnewski, A., Heilmeier, A., Nobis, F., Stahl, T., Hermansdorfer, L., Lohmann, B., & Lienkamp,
M. (2019b). What Can We Learn from Autonomous Level-5 Motorsport?: chassis.tech plus, pages 123–146.

Betz, J., Zheng, H., Liniger, A., Rosolia, U., Karle, P., Behl, M., Krovi, V., & Mangharam, R. (2022b).
Autonomous vehicles on the edge: A survey on autonomous vehicle racing. IEEE Open Journal of
Intelligent Transportation Systems, 3, 458–488.

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). Yolov4: Optimal speed and accuracy of object
detection. arXiv:2004.10934.

Bulsara, A., Raman, A., Kamarajugadda, S., Schmid, M., & Krovi, V. (2020). Obstacle avoidance using
model predictive control: An implementation and validation study using scaled vehicles. SAE Technical
Paper Series, 1.

Buyval, A., Gabdulin, A., Mustafin, R., & Shimchik, I. (2017). Deriving overtaking strategy from nonlinear
model predictive control for a race car. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2623–2628.

Caporale, D., Settimi, A., Massa, F., Amerotti, F., Corti, A., Fagiolini, A., Guiggiani, M., Bicchi, A., &
Pallottino, L. (2019). Towards the design of robotic drivers for full-scale self-driving racing cars. In
2019 International Conference on Robotics and Automation (ICRA), pages 5643–5649.

Chen, T., Li, Z., He, Y., Xu, Z., Yan, Z., & Li, H. (2019). From perception to control: an autonomous
driving system for a formula student driverless car. arXiv:1909.00119.

Costi, G. (2022). Realtime lidar point cloud clustering and segmentation for automotive. MoreThesis
Unimore.

Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm. Technical Report
CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburgh, PA.

Culley, J., Garlick, S., Esteller G., Georgiev, P., Fursa, I., Vander Sluis, I., Ball, P., & Bradley, A. (2020).
System design for a driverless autonomous racing vehicle. In 2020 12th International Symposium on
Communication Systems, Networks and Digital Signal Processing (CSNDSP), pages 1–6.

De Rita, N., Aimar, A., & Delbruck, T. (2019). Cnn-based object detection on low precision hardware:
Racing car case study. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 647–652.

Dellaert, F. (2012). Factor graphs and gtsam: A hands-on introduction. Technical report, Georgia Institute
of Technology.

Dempsey, M. (2006). Dymola for multi-engineering modelling and simulation. In 2006 IEEE Vehicle Power
and Propulsion Conference, pages 1–6.

Ecola, L., Popper, S., Silberglitt, R., & Fraade-Blanar, L. (2018). The road to zero: A vision for achieving
zero roadway deaths by 2050. Rand Health Quarterly, 8, 11.

Feraco, S., Luciani, S., Bonfitto, A., Amati, N., & Tonoli, A. (2020). A local trajectory planning and control
method for autonomous vehicles based on the rrt algorithm. In 2020 AEIT International Conference of
Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), pages 1–6.

Fischler, M. A. & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM, 24(6), 381–395.

Frison, G. & Diehl, M. (2020). HPIPM: a high-performance quadratic programming framework for model
predictive control. IFAC-PapersOnLine, 53(2), 6563–6569.

Funk, N., Alatur, N., Deuber, R., Gonon, F., Messikommer, N., Nubert, J., Patriarca, M., Schaefer, S.,
Scotoni, D., Bünger, N., Dube, R., Khanna, R., Pfeiffer, M., Wilhelm, E., & Siegwart, R. (2017).
Autonomous electric race car design. arXiv:1711.00548.

Field Robotics, January, 2024 · 4:99–137

136 · Raji et al.

Funke, J., Theodosis, P., Hindiyeh, R., Stanek, G., Kritatakirana, K., Gerdes, C., Langer, D., Hernandez,
M., Müller-Bessler, B., & Huhnke, B. (2012). Up to the limits: Autonomous audi tts. In 2012 IEEE
Intelligent Vehicles Symposium, pages 541–547.

Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz, J., Lienkamp, M., & Lohmann, B. (2020).
Minimum curvature trajectory planning and control for an autonomous race car. Vehicle System
Dynamics, 58(10), 1497–1527.

Himmelsbach, M., Hundelshausen, F. V., & Wuensche, H.-J. (2010). Fast segmentation of 3d point clouds
for ground vehicles. In 2010 IEEE Intelligent Vehicles Symposium, pages 560–565. IEEE.

Kabzan, J., Valls, M. d. l. I., Reijgwart, V., Hendrikx, H. F. C., Ehmke, C., Prajapat, M., Bühler, A.,
Gosala, N., Gupta, M., Sivanesan, R., Dhall, A., Chisari, E., Karnchanachari, N., Brits, S., Dangel, M.,
Sa, I., Dubé, R., Gawel, A., Pfeiffer, M., Liniger, A., Lygeros, J., & Siegwart, R. (2019). Amz driverless:
The full autonomous racing system. Journal of Field Robotics, 37, 1267–1294.

Kapania, N. R. & Gerdes, J. C. (2015). Design of a feedback-feedforward steering controller for accurate
path tracking and stability at the limits of handling. Vehicle System Dynamics, 53(12), 1687–1704.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2), 83–97.

Laurense, V. A., Goh, J. Y., & Gerdes, J. C. (2017). Path-tracking for autonomous vehicles at the limit of
friction. In 2017 American Control Conference (ACC), pages 5586–5591.

Lee, D., Jung, C., Finazzi, A., Seong, H., & Shim, D. H. (2022). Resilient navigation and path planning
system for high-speed autonomous race car. arXiv:2207.12232.

Liniger, A., Domahidi, A., & Morari, M. (2015). Optimization-based autonomous racing of 1:43 scale rc
cars. Optimal Control Applications and Methods, 36(5), 628–647.

Massa, F., Bonamini, L., Settimi, A., Pallottino, L., & Caporale, D. (2020). Lidar-based gnss denied
localization for autonomous racing cars. Sensors, 20(14).

Massaro, M. & Limebeer, D. (2021). Minimum-lap-time optimisation and simulation. Vehicle System
Dynamics, 59, 1–45.

Nekkah, S., Janus, J., Boxheimer, M., Ohnemus, L., Hirsch, S., Schmidt, B., Liu, Y., Borbély, D., Keck,
F., Bachmann, K., & Bleszynski, L. (2020). The autonomous racing software stack of the kit19d.
arXiv:2010.02828.

Novi, T., Liniger, A., Capitani, R., & Annicchiarico, C. (2020). Real-time control for at-limit handling
driving on a predefined path. Vehicle System Dynamics, 58(7), 1007–1036.

Oth, L., Furgale, P., Kneip, L., & Siegwart, R. (2013). Rolling shutter camera calibration. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1360–1367.

Pacejka, H. B. & Bakker, E. (1991). The magic formula tyre model. Vehicle System Dynamics, 21, 1–18.
Puchtler, P. & Peinl, R. (2020). Evaluation of deep learning accelerators for object detection at the edge.

In KI 2020: Advances in Artificial Intelligence: 43rd German Conference on AI, Bamberg, Germany,
September 21–25, 2020, Proceedings, pages 320–326, Berlin, Heidelberg. Springer-Verlag.

Raji, A., Liniger, A., Giove, A., Toschi, A., Musiu, N., Morra, D., Verucchi, M., Caporale, D., & Bertogna,
M. (2022). Motion planning and control for multi vehicle autonomous racing at high speeds. In
2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pages 2775–
2782.

Schratter, M., Zubača, J., Lassnig, K., Renzler, T., Kirchengast, M., Loigge, S., Stolz, M., & Watzenig, D.
(2021). Lidar-based mapping and localization for autonomous racing. Opportunities and Challenges
with Autonomous Racing : 2021 ICRA Workshop; Conference date: 31-05-2021.

Stahl, T., Wischnewski, A., Betz, J., & Lienkamp, M. (2019). Multilayer graph-based trajectory planning
for race vehicles in dynamic scenarios. In 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pages 3149–3154.

Strobel, K., Zhu, S., Chang, R., & Koppula, S. (2020). Accurate, low-latency visual perception for
autonomous racing: Challenges, mechanisms, and practical solutions. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1969–1975.

Tian, H., Ni, J., Li, Z., & Hu, J. (2020). Autonomous formula racecar: Overall system design and
experimental validation. arXiv:2009.00385.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., Galatali, T.,
Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T., Kolski, S., Kelly, A., Likhachev, M.,
Mcnaughton, M., Miller, N., & Ferguson, D. (2008). Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics, 25, 425–466.

Field Robotics, January, 2024 · 4:99–137

er.autopilot 1.0: The full autonomous stack for oval racing at high speeds · 137

Verucchi, M., Brilli, G., Sapienza, D., Verasani, M., Arena, M., Gatti, F., Capotondi, A., Cavicchioli,
R., Bertogna, M., & Solieri, M. (2020). A systematic assessment of embedded neural networks for
object detection. In 2020 25th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), volume 1, pages 937–944. IEEE.

Vázquez, J. L., Brühlmeier, M., Liniger, A., Rupenyan, A., & Lygeros, J. (2020). Optimization-based
hierarchical motion planning for autonomous racing. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2397–2403.

Vödisch, N., Dodel, D., & Schötz, M. (2022). FSOCO: The formula student objects in context dataset.
SAE International Journal of Connected and Automated Vehicles, 5(1).

Werling, M., Ziegler, J., Kammel, S., & Thrun, S. (2010). Optimal trajectory generation for dynamic street
scenarios in a frenét frame. In 2010 IEEE International Conference on Robotics and Automation, pages
987–993.

Wischnewski, A., Euler, M., Gümüs, S., & Lohmann, B. (2021). Tube model predictive control for an
autonomous race car. Vehicle System Dynamics, pages 1–23.

Wischnewski, A., Stahl, T., Betz, J., & Lohmann, B. (2019). Vehicle dynamics state estimation and
localization for high performance race cars**research was supported by the basic research fund of the
institute of automotive technology of the technical university of munich. IFAC-PapersOnLine, 52(8):154–
161. 10th IFAC Symposium on Intelligent Autonomous Vehicles IAV 2019.

Yellman, M. A. (2022). Motor vehicle crash deaths—United States and 28 other high-income countries,
2015 and 2019. MMWR. Morbidity and Mortality Weekly Report, 71.

Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., & Darrell, T. (2020). Bdd100k: A
diverse driving dataset for heterogeneous multitask learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2636–2645.

How to cite this article: Raji, A., Caporale, D., Gatti, F., Giove, A., Verucchi, M., Malatesta, D., Musiu, N.,
Toschi, A., Popitanu, S. R., Bagni, F., Bosi, M., Liniger, A., Bertogna, M., Morra, D., Amerotti, F., Bartoli,
L., Martello, F., & Porta, R. (2024). er.autopilot 1.0: The full autonomous stack for oval racing at high speeds.
Field Robotics, 4, 99–137.

Publisher’s Note: Field Robotics does not accept any legal responsibility for errors, omissions or claims and
does not provide any warranty, express or implied, with respect to information published in this article.

Field Robotics, January, 2024 · 4:99–137

