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Abstract: Autonomous motorsports aim to replicate the human race-car driver with software and
sensors. As in traditional motorsports, Autonomous Racing Vehicles (ARVs) are pushed to their
handling limits in multiagent scenarios at extremely high (≥150 mph) speeds. This Operational
Design Domain (ODD) presents unique challenges across the autonomy stack. The Indy Autonomous
Challenge (IAC) is an international competition aiming to advance autonomous vehicle development
through ARV competitions. While far from challenging what a human race-car driver can do, the
IAC is pushing the state of the art by facilitating full-sized ARV competitions. This paper details
the MIT-Pitt-RW Team’s approach to autonomous racing in the IAC. In this work, we present
our modular and fast approach to agent detection, motion planning and controls to create an
autonomy stack. We also provide analysis of the performance of the software stack in single and
multiagent scenarios for rapid deployment in a fast-paced competition environment. We also cover
what did and did not work when deployed on a physical system (the Dallara AV-21 platform)
and potential improvements to address these shortcomings. Finally, we convey lessons learned and
discuss limitations and future directions for improvement.
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1. Introduction
Historically, motorsports have been a venue for advancing automotive technology in the name of
competition and brand recognition. Teams develop increasingly sophisticated technologies to shave
off seconds from lap times. Over time, technology and lessons learned from car racing have been
commercialized and adopted in standard passenger vehicles. With the advent of Autonomous Vehicle
(AV) technology, motorsports are poised to play a similar role in its development. Autonomous
Racing Vehicle (ARV) leagues, such as the Indy Autonomous Challenge (IAC) and Roborace, are
challenging software, not drivers, to operate a vehicle at the performance limit.

Apart from motorsports, AVs are starting to be adopted for public use (DMV, 2021). These
conventional AVs are either specially retrofitted passenger vehicles, typically deployed in urban and
suburban environments, or tractor-trailers, customized for and deployed in long-haul, highway, and
interstate environments. In all of these domains, safety under all conditions and circumstances is
vital; however, no matter the size and scope of any test program, edge cases, by the very nature
of their rarity and difficulty, will continue to challenge safety verification and necessitate further
development.

The three broad tasks commonly associated with software for AVs and ARVs are Sense, Think,
and Act. Figure 1 shows the relationship between the three tasks.

Sense uses sensors to measure the state of the environment. Sensors in ARVs detect and track
the opponent and measure the specific gravity and angular rate of the ego vehicle. In the case of
a conventional AV, sensors detect and track pedestrians and other vehicles on the road. However,
unlike an ARV, AVs typically localize themselves onto high definition (HD) maps, which act as a
strong prior to understand the environment, rules, and semantics of the road. For an ARV, prior
information about the track bounds, banking, and theoretical maximum dynamic limits can be
precomputed for locations along the track. Figure 2 shows some of the challenges sensors encounter,
such as occlusions, degraded sensor quality, and high aliasing due to high acceleration and noise.
ARV sensors must have fast processing to handle conditions akin to highways, such as unexpected
events, previously unseen agents, or high speeds. While the environment of an ARV has fewer actors
at any given time, those actors are capable of extremely high (over 20 m/s2) accelerations and speeds.
This demands low latency and long-range perception to allow other modules ample time to react.
Lastly, high speeds and accelerations introduce noise and unique physical challenges to sensors that
often require robust software solutions.

Think processes sensor information into a prediction of how the environment will evolve,
ultimately deciding the best course of action to take next. For example, in the case of an ARV,
it may be whether or not an opponent is attempting an overtake and whether or not it should

Figure 1. Autonomy for AVs and ARVs is typically distilled into three broad tasks: Sense, Think, and Act.
Sense is measuring the state of the environment. Think is deciding the best course of action to take. Act is
executing on that course of action.
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Figure 2. Example of perception challenges faced by Autonomous Racing Vehicles (ARVs). (Left) Speed deltas
between agents can be enough to cause motion blur. (Right) As the other agent passes, their acceleration is
kicking up significant dirt, dust, and debris, which challenges LiDAR detection. Overall, sensor noise impairs
robust detection and localization of opponent ARVs.

defend against it. However, for an AV, the question may be whether or not it is safe to take a left
turn. In both scenarios, significant uncertainty exists in how the world will evolve into the future,
complicating decision-making. However, in an ARV, an additional layer of uncertainty is considered
because agents are capable of very high accelerations (over 20 m/s2) and are operating in direct
competition with one another. Higher speeds often mean that over a given distance traveled, there
are fewer measurements of the other agent’s motion, meaning that a prediction must be made in
less time with less information. Additionally, predictions can become obsolete rapidly, as the other
agent may rapidly change its motion and trajectory. Finally, intelligently predicting what an agent
will do over the next N seconds is complex in urban or highway environments, where rules and
regulations guide what slower-moving actors can and will do. In racing, there is an added layer of
complexity due to every actor attempting to win and far fewer rules dictating appropriate behavior.
Deciding the best actions to take must consider multiple potential futures and which one will result
in the greatest chance of winning.

Act executes the actions that were decided upon. For both ARVs and AVs, this involves taking
the sequence of actions decided upon (typically a target space-time trajectory) and determining
the optimal set of control commands to follow it safely. A traditional AV must often navigate
complicated and crowded environments, react quickly to commands, and handle changing road and
environmental conditions, such as snow and ice. Safely navigating while slipping on snow and ice
is still an open area of research, as it requires advanced vehicle dynamics modeling and control
techniques (Cole, 2022). While they are not driven in snow, race cars are pushed to their handling
limits, to the point that simple kinematic and dynamic models begin to fall apart, much like in
slippery conditions. The highly nonlinear tire dynamics, aerodynamic interactions, effects of track
temperature and surface, and more begin to break down the assumptions made in these models.
Additionally, these effects are not constant, changing as the race progresses. For example, a worn-out
tire on a race car is like a typical passenger vehicle trying to drive through snow: both are prone to
slipping at any moment. Any controller navigating an ARV at the physical limits of handling must
understand and account for these dynamics to balance high performance and safety.

1.1. Related work
The call for advancing autonomous vehicle technology has been present since the early twenty-first
century when the Defense Advanced Research Projects Agency (DARPA) launched the 2004 and
2005 DARPA Grand Challenges (Behringer et al., 2004), (Buehler et al., 2007). These challenges,
shown in Figure 3, demonstrated some of the capabilities of AVs. The teams in the Grand Challenge
autonomously navigated across southern Nevada on a 132-mile course of rugged desert terrain.
Succeeding the Grand Challenges was the 2007 DARPA Urban Challenge (Buehler et al., 2009),
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Figure 3. DARPA Grand and Urban Challenges, two prize competitions for American autonomous vehicles. The
Challenges were created to spur the development of autonomous vehicle technologies capable of completing a
substantial off-road course, and later an urban environment course, within a limited time. Images from (Ackerman,
2017)(University, 2007).

which introduced a time-based competition focused on city driving. This competition maintained
the competitive nature of completing a course, but focused on navigating an urban environment.
Each team needed to stop at stop signs, yield for oncoming traffic, complete U-turns, and obey all
other traffic laws. These challenges were the first full-scale autonomous racing competitions and laid
the groundwork for future AV research and development.

Since then, there have been several autonomous racing competitions, such as Formula Student
(Kabzan et al., 2019), (Vázquez et al., 2020), Roborace (Rieber et al., 2004), (Betz et al., 2019), and
now the Indy Autonomous Challenge. Moreover, companies such as Argo AI, Motional, Waymo, and
many more have been publicizing and realizing AV development around the globe. These companies
have tasked themselves with challenges to motion plan in dynamic, unpredictable environments and
perceive in inclement conditions. The challenges ARVs face differ, focusing on detecting vehicles,
planning motion, and actuation while driving at speeds over 150 mph. Unlike AVs that operate
in an open world, ARVs do not need to worry about cyclists on the road (Ahmed et al., 2019) or
pedestrians crossing a street; however, the issue of making quick and accurate detections and actions
remains a nontrivial problem still under research.

Perception (sense). Although there is substantial work demonstrating perception in conven-
tional AVs, less work has been published discussing the deployment of perception algorithms for
autonomous racing. In Formula Student Driverless, the ARV drives on the track alone and is solely
tasked with detecting white and blue cones (Kabzan et al., 2019), (Vázquez et al., 2020). Currently,
there are few works that present full perception stacks for detecting other agents for autonomous
racing. One such work is (Wischnewski et al., 2022a), which presents a full perception stack
that utilizes camera, radar, and LiDAR sensors. Improving perception efficiency is an extensively
researched topic in AV development. The point-cloud clustering-based detection system in (Verucchi
et al., 2020) is fast and efficient at detecting other actors. Works such as (Li et al., 2020) and (Yang
et al., 2022) focus on Streaming Perception, which emphasizes combining latency and accuracy
when developing benchmarks for computer vision algorithms. multimodal perception is also a very
well-studied area of research. The work in (Li et al., 2022b) fuses LiDAR and camera features with
a learned cross-modal attention alignment. In (Liu et al., 2022b), a combined LiDAR-camera birds-
eye-view (BEV) projection is generated efficiently and can be used for downstream tasks such as
object detection. In both works, multiple sensor modalities are fused early in the detection pipeline.

Planning (think). Motion planning involves determining the best sequence of actions to be taken
and generating a trajectory to execute those actions. For oval racing, it is possible to distill the
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problem in a series of action primitives, including maintaining the current trajectory behind an
opponent, e.g., “trailing” or passing. One way to approach the passing problem is to treat it as a
sequence of lane changes, where the ego vehicle merges between several lanes of travel on the track.
Lane merging is a well-studied area, with previous work utilizing polynomials (Liu et al., 2022a),
splines (Stahl et al., 2019), (Funke and Christian Gerdes, 2016), or Bézier curves to parameterize
paths (Zheng et al., 2020). In (Ticozzi et al., 2022), 5th order polynomials are generated within a
Darboux frame using a convex combination of the origin and target paths. Heading and curvature
continuity is guaranteed for any lane change maneuver without numerical differentiation. In addition,
compliance with track boundaries is also guaranteed a priori.

Controls (act). While AVs cannot yet legally drive faster than 80 to 130 mph, depending on locale
and road conditions (De Leonardis et al., 2018), the operating domain for ARVs is typically 100
to 200+ mph. This sizeable difference dictates the differences in vehicle architectures, modeling,
and controller techniques. Additionally, at higher speeds, assumptions made in vehicle dynamics
models may not apply, necessitating better vehicle modeling. Some works have explored addressing
this problem by combining a model predictive controller (MPC) with a deep-learning-based model
(Kuutti et al., 2021), (Zanon et al., 2014). Other works, such as (Hermansdorfer et al., 2019), look
to estimate tire friction parameters online for use in an MPC controller. Finally, due to model
limitations at higher speeds, the controller must be robust and capable of reasoning about potential
bounds on actual dynamics. Works such as (Wischnewski et al., 2022b) address this with a Tube-
MPC controller that can reason about uncertainty in the dynamics. Additional work, such as (Raji
et al., 2022), layout a whole navigation stack for use in an ARV. Finally, for our approach, we looked
to robust and fast controllers, such as linear-quadratic regulators (LQR) and iterative LQR control
(Ma et al., 2020), (Chen et al., 2019).

1.2. Overview and Key Takeaways
Our approach follows two main themes: modularity and speed. We have developed every portion of
our software stack (hereinafter referred to as “the stack”) to be stand-alone, allowing for replacing
modules as requirements change. Since very little prior work existed with racing at the speeds the
competition demands, it is challenging to develop a one-size-fits-all approach. There is a high level
of uncertainty because of the many unknowns regarding how sensors or the vehicle will behave at
higher speeds. Additionally, with a fast-paced competition and prototype hardware, requirements
change day-to-day, necessitating frequent modifications to core functionality.

Secondly, we define our approach by its speed. When racing at high speeds, algorithms must finish
execution quickly and deterministically, i.e., sudden high execution times can be disastrous if they
lead to instability. For example, our motion controller uses a dynamics motion model to generate
an optimal feedback policy that is cheap and fast to compute, allowing for a high rate of execution
with little deviation, which is vital for navigating at very high speeds and accelerations. However,
our approach does not sacrifice quality to achieve its speed and efficiency; instead, the key challenge
has been to choose algorithms intelligently and design efficient architectures around them.

In this work, we present a detailed description of our approach and system design for a full
ARV software stack for the Indy Autonomous Challenge (IAC). We will also elaborate on successes,
failures, and lessons learned during extensive field testing on oval race tracks over two competition
seasons. Finally, we will provide insights in our design process across the whole stack and results
from this approach. Overall, our stack demonstrates the following capabilities.

• Stable trajectory tracking at speeds over 150 mph while maintaining reasonable lateral devia-
tions from the desired trajectory

• Reliably detecting and tracking an opponent ARV at over 100 m away, even at high speeds
(i.e., ≥125 mph)

• Safely passing and trailing an opponent ARV vehicle at high speeds (i.e., ≥125 mph)

Field Robotics, January, 2024 · 4:1–45



6 · Saba et al.

Table 1. The Indy Autonomous Challenge (IAC) has held four events thus far,
at three different tracks, with two formats. Season Two saw a continuation of the
passing competition introduced at the AC@CES2022 installment in Las Vegas. For
Season Two, the defender is given more freedom on the racing line they may take,
which makes passing more challenging.

Indy Autonomous Challenge Events
Season One (2021-22)

Track Event Format
Indianapolis Motor Speedway (IMS) Single-Agent with static avoidance
Las Vegas Motor Speedway (LVMS) Passing Competition

Season Two (2022-23)
Texas Motor Speedway (TMS) Passing Competition, relaxed racing lines
Las Vegas Motor Speedway (LVMS) Passing Competition, relaxed racing lines

2. The Competition
The MIT-Pitt-RW autonomous racing team is a team of students forming one of the nine teams
that have successfully qualified to participate in the Indy Autonomous Challenge (IAC). The IAC
is a global competition in which university teams compete to develop software for a standardized
ARV platform named the Dallara AV-21. To date, there have been two seasons with two physical
installments each, as seen in Table 1. The first installment was a single-agent, fastest-lap competition,
and the following installments have been two-agent passing competitions. These installments have all
been on oval superspeedways which has dictated the strategies for developing the stack. Before the
in-person installments, there were multiple simulation practice events and a simulation competition,
where the teams verified their software in single and multiagent scenarios. All instalments of the
competition have been supervised and executed by “race control,” managed by the IAC. During
competition, the race flags and team roles are remotely controlled by race control, allowing for
minimal human intervention during the race.

The multiagent passing competition (Challenge, 2022) assigns one competitor the “attacker” role
and the other the “defender” role. During each lap, the defender is remotely assigned a speed at
which the attacker must pass the defender within two laps. If the pass is successful, the roles are
exchanged and the defender’s speed is incrementally increased (125 mph, 135 mph, etc.). A pass is
complete once the attacker gains its position in front of the defender with a longitudinal gap of at
least 30 m. If an attacker fails to pass at a certain speed, the roles are exchanged. The winner of
the round is determined once one of the attackers cannot complete a pass. If both teams cannot
complete the pass, the round ends in a draw. Figure 4 shows a breakdown of the track and the
possible paths to take into consideration.

There are two factors the attacker must consider while deciding to make a pass: safety and dy-
namic limitations. The attacker must maintain safe lateral and longitudinal separation from the de-
fender at all times. Additionally, when considering a pass, the attacker must ensure its trajectory will
keep the car within the dynamic limitations of the vehicle and not result in loss of control. Combining
the two, the attacker must ensure that the accelerations and decelerations are timed appropriately
to stay within the dynamic limits of the vehicle. As the passing competition progresses, it becomes
more difficult for the attacker to exceed the defender’s speed, particularly in corners of the track.

In addition to these considerations for the attacker, the defender can make passing more difficult
for the attacker by adjusting their position within their lane, as long as they maintain rule
compliance. For example, if the defender moves outwards, the attacker has to travel more distance to
complete the pass. A winning strategy for an attacker is to maintain the minimum allowed distance
to the defender and to initiate the pass whenever the attacker can maneuver it safely. Completing
a pass is also further complicated if the attacker starts the pass too late; they may get trapped
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Figure 4. Racing lanes for the Autonomous Challenge @CES at the Las Vegas Motor Speedway (January
2022/January 2023).

too far out on the outer lane into the corners, thereby increasing the distance they need to cover.
Prediction and motion forecasting of the opponent agent is imperative to make intelligent strategic
decisions.

In this work, we present our approach to the Indy Autonomous Challenge (IAC) for both the
2021-22 and 2022-23 Seasons (“Season One” and “Season Two,” respectively). Table 1 shows a
timeline of the four IAC events. The results shown here are from the Las Vegas event in Season
One and the Texas and Las Vegas events in Season Two. The overall approach was the same for
all four events, but more mature and better tested by the Season Two, evidenced by the more
than doubling of our highest achieved speed from 69 to over 150 mph. This multiseason evaluation
provides a unique perspective into a continual and evolving engineering and testing process, with
numerous lessons learned along the way.

2.1. AV-21 platform
The Dallara AV-21 is the official vehicle of the Indy Autonomous Challenge (IAC). Every competitor
must use the same hardware, including vehicle setup, autonomy sensors, and compute. The vehicle
is a modified version of the Indy Lights IL-15 chassis, retrofitted with a package of automated
vehicle sensors, drive by wire, and compute. The engine is a 4 Piston Racing-built Honda K20C.
Sensors onboard the AV-21 include 3 Luminar Hydra LiDARs, 3 Aptiv Medium Range Radars, 2
NovAtel PwrPak7D-E1 GNSS, and 6 Mako G-319 Cameras. In total, these sensors provide redundant
360◦ coverage and over 200 m of sensing range. Figure 5 shows the AV-21 platform and sensor
locations.

Between Seasons One and Two of the IAC, the AV-21 underwent a hardware refresh that included
the addition of a VN-310 Vectornav GNSS system and an update to the main compute platform.
In Season One, the main compute was an ADLINK AVA-3501 with an 8 core, 16 thread Intel Xeon
CPU and an NVIDIA Quadro RTX 8000 GPU. In Season Two, a dSPACE AUTERA AutoBox with
a 12 core, 24 thread Intel Xeon CPU and an RTX A5000 NVIDIA GPU served as the main compute
platform. The AutoBox provided many advantages over the ADLINK, including automotive-grade
ruggedness, higher available networking bandwidth, and CAN channels built into the computer.
However, these automotive features came at the cost of slower single threaded performance, which
necessitated critical engineering design decisions to accommodate all critical software pieces onto a
single computer. A full breakdown of the compute platform differences can be seen in Figure 6.
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Figure 5. Sensors on the AV-21. Six cameras and three LiDARs provide redundant 360◦ coverage and over 200 m
of sensing range.

Figure 6. Main compute platforms for Seasons One and Two of the IAC. Each platform has numerous advantages
and disadvantages when compared to one another. While the AutoBox provides automotive-level reliability and
integration, its slower per core clock speeds resulted in worse single threaded performance. Since many critical
core algorithms are fundamentally single threaded (i.e., controller calculations, state estimation updates, etc.),
careful considerations were made into what ultimately ran on vehicle to ensure enough capacity for the entire
stack. Specifications and images taken from respective product websites (Adlink, 2022)(dSpace, 2023).

3. Approach
3.1. Stack Overview
Our software architecture follows a typical, standard autonomy software design, with localization,
perception, tracking, prediction and motion planning, and controls. The Robot Operating System
(ROS), specifically ROS 2 Galactic, is used for communication between each process, or node. Vari-
ous libraries and frameworks are utilized from ROS for visualization, math utilities, communication,
and more. Figure 7 shows the data flow of the whole stack. All modules run asynchronously with
one another, usually on a preset frequency, except for perception and portions of localization, which
are driven by sensor data arrival.

3.2. Perception
3.2.1. Challenges and Requirements
The AV-21 is capable of very high accelerations (greater than 20 m/s2) and speeds (greater than 180
mph), meaning LiDAR or camera frame-to-frame movement can be significant. Additionally, there
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Figure 7. Overview of the complete stack. The perception module in particular is designed to be modular itself,
allowing multiple algorithms developed over time to be substituted for one another. This modularity, present
throughout the whole stack, proved invaluable, as it provided the maximum flexibility in deciding what runs on
the vehicle. The trade-off, however, is duplication and a potential sacrifice on peak performance.

Figure 8. Red bounding box is from a data-driven detector (PointPillars) and blue is from clustering. Clustering
is susceptible to detecting dust and noise as other agents. Clustering is unsupervised, but, as a result, is unable
to differentiate between other agents and dust and debris. This motivated our final data-driven approach shown
in Figure 9.

are no existing data sets for detecting AV-21s and little data showing the performance of sensors,
such as LiDARs and cameras, at our target speeds. As a result, initially, data-driven approaches
were not feasible, and the performance at higher speeds could not be immediately evaluated.

Initial efforts. Due to the lack of training data, our initial LiDAR perception approach for Season
One utilized an unsupervised clustering algorithm. A Cloth Simulation Filter (CSF) (Zhang et al.,
2016) was used to remove ground points and a density-based clustering technique, DBSCAN (Ester
et al., 1996), was used to identify obstacles of specific dimensions within the bounds of the track.
While seemingly viable, this approach proved to have many failure cases, such as identifying dust
above the track as an obstacle, shown in Figure 8. By observing these failures and the potential
to break down at higher vehicle speeds, the need for a robust, efficient, learning-based perception
approach was evident.

Field Robotics, January, 2024 · 4:1–45
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Figure 9. Perception stack overview. Because the sensors are processed independently, detection results are not
dependent on the other sensor operating. This allows for a modular stack that is robust to a sensor modality
failing. For example, if the cameras were not functioning correctly, the camera pipeline can easily be disabled
without the rest of the stack being affected.

Figure 10. Perception stack challenges. Lens flare, vibrations and motion blur, glare, and other challenging
light and environmental conditions make camera detection challenging. Additionally, dust challenges simpler,
unsupervised LiDAR detectors, such as clustering, but requires robust data engineering to ensure a robust deep
neural network model. Note: Point cloud is colorized on the z-axis.

3.2.2. Overview of Approach
Final perception stack: Figure 9 shows our final perception stack’s decoupled and multimodal
approach to accurately detecting and localizing all other agents on the track, which notably, no
longer makes use of clustering. On the AV-21 Platform (Figure 5), there is an assortment of LiDARs,
cameras, and radars, each with advantages and disadvantages. For example, cameras alone do not
give an accurate depth estimation but can operate at a much higher frame rate (up to 75 Hz)
and resolution (2064× 960) than LiDARs. A camera-based detection pipeline can provide a higher
frequency update on our belief of the world and has the potential to see other agents from further
away. Figure 10 shows some additional challenges faced with perception. To best exploit the sensors’
strengths and for robustness and redundancy, our perception stack uses each sensor independently
and in parallel and feeds all localized detections to our tracking stack.

3.2.3. Camera
For full coverage and maximum range, the two front-facing cameras utilize a narrow lens to improve
far-field resolution. The four remaining cameras use a wider field of view (FOV) to provide 360◦
coverage around the vehicle. Due to the lower effort required to label 2D bounding boxes, YOLO
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Figure 11. Camera Detection Results.

v5 (Jocher et al., 2020) was chosen for our initial approach. The model was trained on a custom,
hand-labeled data set of other AV-21 vehicles, with images taken from onboard our vehicle. Because
the model outputs 2D bounding boxes, other assumptions and processing is required to provide a
3D pose of the other agents. By exploiting the fact that the size and shape of the vehicles are known,
we can estimate a depth from the 2D bounding boxes from the model by using a standard pinhole
optics model (Forsyth and Ponce, 2011):

Depth = (Heightknown ∗ f)
Heightpixels

, (1)

where f is the calibrated focal length of the camera, Heightknown is the known height of the
vehicle in meters, and Heightpixels is the detected height of the detected vehicle in pixels. This
monocular algorithm yields accurate results for mid/far-field detections; however, the error increases
proportionally with the real-world distance between the camera and the other agent. While far-field
detections (>100 m) tend to be less accurate, the additional sensor modalities, including LiDAR,
cannot see as far as the camera with nearly the exact resolution and fidelity, so some measurement
is better than none. As the other agent gets into the LiDAR operating range, we refine the estimates
using these detections, and our confidence in the agent’s position increases. The unique long-range
capability of the camera perception pipeline can provide motion planning more time to respond to
agents in our path. Figure 11 shows the result of the camera detection pipeline.

3.2.4. PointPillars
The AV-21 platform has three Luminar Hydra LiDARs(Luminar, 2022) positioned in a triangular
fashion. Each LiDAR has a field of view (FOV) of 120◦, together allowing for 360◦ coverage around
the vehicle. Each LiDAR is capable of excellent coverage at over 100 m, thereby providing an over
200 m radius circle of coverage around the track. Since the track is only so wide, this cloud is cropped
further to being 200 m× 40 m. An example cloud can be seen in Figure 12.

Numerous Deep Learning methods of object detection using LiDARs have shown promising
results, such as VoxelNet (Zhou and Tuzel, 2017), PointRCNN (Shi et al., 2018), SECOND (Yan
et al., 2018), and others. Low-latency inference and accurate detections are of the utmost importance
for our use case of high-speed autonomous racing. For this reason, PointPillars (Lang et al., 2018)
serves as our primary detection method, capable of reliably detecting vehicles at ranges up to 100
m away. The birds-eye-view projection and 2D convolutions used within PointPillars allow for the
removal of computationally expensive and time-consuming sparse 3D convolutions performed by
other LiDAR networks.

Figure 13 shows the outcomes of PointPillars. To reduce processing time, our PointPillars
implementation is single-sweep, meaning we do not accumulate scans over time before running
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Figure 12. Pointcloud from all three Luminar LiDARs. The LiDARs each can see over 100 meters. The clouds
are combined and cropped to provide coverage of 200 m× 40 m.

Figure 13. PointPillars Processing Time (latency) from the semifinals match in Season Two in Las Vegas. (Top
left) Total processing of a single LiDAR scan, over the course of the run. (Bottom left) Number of LiDAR points
in each scan being processed. (Top right) Histogram of processing time over the whole run. (Bottom right)
Histogram of total time from the timestamp of the oldest point in the point cloud to when a detection result is
sent downstream. The right histograms show that, on average, PointPillars processing time is about 47 ms and
the time from when the first LiDAR point is scanned until a detection is produced is on average 105 ms.

inference. Additionally, to further simplify the pipeline, inference is done directly on the raw scans,
after down-sampling and applying a crop. We explicitly chose to not compensate for distortion
caused by the ego vehicle’s motion. Based on the data observed and practical considerations within
the larger stack, motion compensation was deemed not worth the additionally complexity and
processing time required. The scanning rate (∼50 ms from top to bottom) is faster than other
LiDARs, which results in less distortion. Additionally, the LiDAR data is only used for detection
and the relative speed between agents is low enough that the error due to motion distortion can be
ignored. The potential gains do not outweigh the additional latency. Finally, work had been done to
implement distortion correction, but was removed due to integration and performance issues, which
will be discussed further in Section 4.

Our implementation of PointPillars uses many of the same underlying optimizations seen in (Liu
et al., 2022b), such as heavy utilization of Torch Sparse (Tang et al., 2022), a high-performance
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Table 2. Breakdown of label sources for training the initial Point-
Pillars model. Later iterations incorporated many more labels from
the real vehicle. Having a better model produces better autolabels,
thereby speeding up the data collection and training process.
Source Number of Labels Percent
Simulation 6744 92.2%
Real Vehicle 570 7.8%
Total 7314 100%

Figure 14. Comparison of PointPillars detections against the measured trajectory of the opponent ARV in
Season Two at Las Vegas. The ego and opponent ARV positions are obtained using GPS with RTK corrections
applied, which provides centimeter-level accuracy. Also shown are the track bounds (black) and the ego vehicle
trajectory. Finally, this snapshot of the run was when the ego vehicle was traveling at over 59 m/s, completing a
pass of the opponent vehicle.

neural network library, specializing in point cloud processing. This allows for fast and efficient
inference time, even with a Python-based implementation.

3.2.5. Data Collection, Labeling, and Training
No dataset exists that contains AV-21s racing head-to-head. Adequately training PointPillars
required developing a large and robust dataset. Initially, data was collected in simulation, which
helped developed an initial model. The first model dataset is broken down in Table 2. The simulation
environment did not match the vehicle setup perfectly. In particular, while the range and coverage
were similar, the point cloud was less dense than in real life. Interestingly, we found that the initial
model trained off of this data transferred to detecting AV-21s on real data, especially at longer
ranges, where the cloud is less dense. Figure 14 shows a comparison of PointPillars detections
against the measured trajectory of an opponent ARV.

With an initial model, it was now possible to do “autolabeling,” where the model is used to
generate new labels that are then hand-verified by a human annotator. Because the model often
provides a detection that is close to ground truth, the workload on the human annotator is reduced.
Additionally, by using the existing model to label more data, labels can be focused on the areas
where the model performed most poorly.

3.2.6. Discussion: Strengths, Limitations, and Future Work
Given the prototypical nature of the AV-21 platform, the sensor plate must be disassembled every
time the autonomy components need servicing. As a result, the extrinsic calibration between the
cameras and the LiDARs changes frequently. This is less of an issue with the LiDARs, as they are
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Figure 15. Onboard image from the first known major autonomous, multiagent, head-to-head collision. The
competition-style run had both vehicles acting as both Defender and Attacker. In this instant, the opponent
AV-21 was attempting an overtake; however, when doing so, the vehicle commanded a very sharp acceleration
and lost traction. This resulted in the vehicle spinning out of control and piercing the side of the AV-21. The
resulting damage included a fried battery isolator, a destroyed alternator, torn timing belt, pierced side pod,
several fuel injectors, a severed engine wiring loom, numerous severed fuel and oil lines, destroyed coolant tubes,
and more. To repair the damage, the entire vehicle was disassembled, including removing the transmission and
engine, then disassembling the cockpit and autonomy hardware suite. The vehicle was repaired and running again
48 hours later, in time for the competition the next day.

all firmly fastened to the same aluminum plate. Additionally, the extreme operating conditions of
the AV-21 platform (i.e., high speeds and accelerations) also necessitate re-calibrating the sensors
regularly, even if the sensor plate has not been removed. Small extrinsic calibration errors can lead to
very large projection errors, especially for distant objects. This problem is not exclusive to ARVs and
is an active area of research (Team, 2023)(Li et al., 2022a). Future work will center on streamlining
the calibration process and developing systems that are less brittle to small errors.

Finally, due to a severe crash less than 72 hours before the competition in Season Two at Las
Vegas, the camera detection pipeline was disabled for the competition events. An image from the
footage of the crash, recorded by an onboard GoPro camera, can be seen in Figure 15. With the
focus being repairing the AV-21 vehicle, no time was available to properly calibrate the sensors
and the potential for projection errors outweighed the benefits. Because of the modular design of
the perception stack, it was trivial to make such a drastic change. In a fast-paced competition
environment, this modularity and flexibility proved paramount in allowing the vehicle to operate
during the competition. While the redundancy and peak performance of the stack was compromised,
as shown later in Section 4, the vehicle was still able to autonomously compete in three rounds,
winning the first two, and losing the third after running out of fuel after attempting an overtake at
over 150 mph.

3.3. Tracking
3.3.1. Challenges and Requirements
Tracking within an ARV software stack serves to provide downstream tasks with a single belief
of the states of other agents within the world. Different perception modalities capture different
portions of a given agent’s state space. For example, the monocular camera perception provides
a noisy estimate of an agent’s position, but cannot accurately predict its orientation. Our LiDAR
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perception produces full pose estimates of other agents, but currently does not infer the agent’s
velocity. While using only one of these detection methods will yield a belief that is severely limited
by the outlined weaknesses, the effective fusion of both can result in each modality compensating
for the drawbacks of the other.

Our implementation allows for the fusion of multiple sensing modalities in a straightforward
manner, and serves to provide downstream planning tasks with the state of all perceived agents. Our
decoupled approach to perception requires our tracking stack to meet the following requirements:

1. incorporate all modalities from perception, including LiDAR and monocular camera detec-
tions;

2. estimate positions, velocities, and orientations in the world of all tracked agents;
3. provide a precise and accurate state estimate of the opponent agents;
4. provide a consistent measure of the uncertainty of the agents’ state estimates; and
5. be robust to false positives, missed detections, and drop-outs from one or more sensor

modalities.

Finally, tracking must perform all of the above while ensuring as little additional latency as possible,
handling measurements from perception asynchronously and out of order, and compensating for any
delay between sensor measurement and tracking.

3.3.2. Overview of Approach
Our approach consists of three main components: filtering, association, and fusion. Filtering removes
outliers. Association determines whether or not a detection is of a previously seen agent. Fusion is
incorporating new measurements of agents’ states. In order to minimize processing latency within
the tracking stack, well-researched, efficient algorithms are leveraged for each module. Figure 16
presents the Tracking pipeline architecture.

Filtering. Detections filtered by a confidence threshold, a hyperparameter within our tracking stack,
tuned empirically by analyzing the false positives and associated confidence produced by perception.
Additionally, any detection that falls outside of the track bounds is ignored. The combination of
these two filtering steps helps to ensure that only valid detections are processed and used to generate
tracked agents.

Association. AB3DMOT (Weng et al., 2020) provides the data association module utilized by
tracking stack. By employing two computationally efficient algorithms, the Hungarian algorithm
for data matching (Kuhn, 1955) and the Kalman filter (Kalman, 1960) for fusion and prediction,
the authors demonstrate strong results on multiple open-source data sets while also providing
high-frequency predictions. In practice, we observed that the Hungarian algorithm with Euclidean

Figure 16. The Tracking pipeline architecture, from detection inputs to state estimate for a single opponent
ARV. Our approach consists of three main components: Filtering, Association, and Fusion. Filtering removes
outliers. Association determines whether or not a detection is of a previously seen agent. Fusion is incorporating
new measurements of agents’ states.
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distance often resulted in poor data association, especially during temporary sensor drop-out.
Therefore, our implementation uses simple greedy matching with the Mahalanobis distance (Maha-
lanobis, 1936), which performed better in testing.

Track births and deaths. To reduce the probability of false positives becoming valid tracks,
a new potential track is instantiated (born) only after two detections (from successive sweeps)
are associated with it. This hyperparameter provides a means to balance between the quality and
confidence of tracks and end to end latency in reacting to other agents. Finally, any tracks that
have not had a detection associated with it within the last five seconds are also removed (killed) to
prevent stale tracks from influencing future associations.

Fusion. Once detections have been associated with an existing tracked agent, or have been repeat-
edly observed and classified as a new agent, we begin tracking the agent using fused multimodal
perception outputs. Again, we utilize a modified version of (Weng et al., 2020) as the Kalman filter
for performing sensor fusion. Since incoming detections from the camera perception pipeline have
already been projected into a 3-dimensional position and transformed into a common frame, both
LiDAR and camera measurements can be used to update the internal Kalman filter for a given
tracked agent. In this way, sensor fusion becomes a simple task that can be asynchronous across the
two modalities, and the states of tracked agents can be published at the receipt of each incoming
detection.

3.3.3. Discussion, Limitations, and Future Work
The tracking pipeline meets all requirements and is sufficiently accurately and performant to handle
the IAC Passing Competition. Our modular design was especially important when the camera
perception was disabled on race day, outlined in detail in Section 3.2.6. Given these successes,
however, our system has not been robustly tested against multiple agents, specifically agents that are
close together (i.e., ≤5 m). In traditional motorsports, humans drive aggressively in close proximity
to one another. While the competition format is far from this style of racing, future works will need
to handle such operating domains in order to challenge professional drivers. Multiple agents in close
proximity are more difficult to track, due to higher association ambiguity and occlusions.

Finally, a Kalman filter will be replaced by an Extended Kalman filter (EKF) to enable a nonlinear
motion model. With an EKF and a better motion model (i.e., constant curvature), predictions
of agent tracks will be more accurate, which is especially important during periods of infrequent
detections (i.e., the other agent is in the blind-spot produced by the rear wing of the vehicle).

3.4. Planning
3.4.1. Overview
We developed a fast, modular motion planning stack capable of predicting agent behavior and safely
trailing and passing other agents. Figure 17 shows a high-level overview of the motion planner. The
path planner identifies the agent’s position at points in the track where it is most optimal to pass
and extrapolates its position in the following lap. We have based our path planning approach on a
set of primitive behaviors from which higher-level strategies can select. These primitive behaviors
include opponent trailing, raceline following, and lane switching. This modularity allows for a clean
separation between high-level decision-making and trajectory selection and generation.

We also take advantage of knowing the track geometry and develop a set of strong priors in
the form of a trajectory bank. Offline, trajectories are generated for various lanes along the track,
providing different levels of clearance from the inner and outer track boundaries. Online, the planner
selects the best trajectory from the bank based on the selected action primitive.

3.4.2. Offline Trajectory Generation
The raceline generation is a two-step process that begins with defining a set of waypoints on
the track. Afterward, splines are interpolated on these waypoints to ensure continuity. This
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Figure 17. Planning is comprised of offline and online stages. Waypoints are chosen at critical points along the
track within the offline portion. Next, a raceline generator fits a spline to these points to generate a trajectory.
This is conducted for an arbitrary number of lines. A higher-level behavior module selects the best action to take
in the online portion. This action incorporates the previous action, race state, and the locations of other agents.
Given a passing or merge action, a trajectory is selected and interpolated from the current trajectory. Finally, this
resulting trajectory is velocity profiled and passed onto controls.

Figure 18. A visualization of the raceline generation for the inner lane.

process relies heavily on the manual selection of waypoints at apexes to properly leverage spline
properties.

For the overtaking competition, waypoints were selected manually from two lanes. We consider
a lane to be defined as a path with both an inner and outer boundary and derive a center-line
equidistant from the two boundaries. We obtain these two lanes by dividing the width of the track
in half along the full length. Within these lanes, the process of manual sampling begins. A series
of N waypoints, (q1, . . . , qN ), are used to interpolate closed Spiro splines (Levien, 2009). Figure 18
displays waypoint selection and the interpolated raceline for the inner lane.

While the tracking controller is compatible with any reasonably smooth raceline, the Spiro spline
family is well-suited for several reasons. Firstly, Spiro splines maintain G4-continuity, meaning
that the second derivative of curvature is continuous. In addition, Spiro splines are an efficient
approximation of the Minimum Variation Curve (MVC), which minimizes the integral of curvature
rate (Levien, 2009), corresponding to minimizing the steering effort of the vehicle. By selecting
waypoints at apexes, the above properties make a raceline generated from a Spiro spline effective
at minimizing downstream instability, reducing steering effort, and resulting in faster lap times
and smoother driving than naively selecting waypoints alone. Future work includes incorporating
the Spiro spline representation within a larger optimization, such as the work in (Heilmeier et al.,
2020) and (Christ et al., 2021), to eliminate the need for manual waypoint selection and ensure
time-optimal trajectories.

3.4.3. Online Action Selection
The multiagent passing competition sets two roles for the competitors: “defender” and “attacker.”
As defined in Section 2, the attacker passes the defender that is maintaining a raceline within the
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inside lane of the track (see Figure 4). The attacker is also responsible for maintaining a safe distance
from the defender. We define a set of Action Primitives to encode these maneuvers.

• Maintain:
maintain the current raceline at a given speed.

• Trail:
maintain a fixed distance behind the opponent vehicle on the current raceline.

• Safe Merge:
merge between arbitrary lanes safely (i.e., avoid collisions with other agents).

Selection of the primitives is dependent on the current role (defender or attacker) and the current
Track Condition (i.e., Green, Yellow, Red, Waving Green), which are both defined by flags sent to
the vehicle from Race Control.

Attacker:

• under a Green Flag, the Attacker must close the gap with the defender (Trail);
• under a Waving Green Flag, the Attacker may initiate the pass (Safe Merge);
• under a Waving Green Flag and after the Attacker has passed the opponent by at least 30 m,

the Attacker must “Close the Door” by merging back to the inside lane (Safe Merge);
• under a Green Flag, the Attacker has the freedom to take any lane, but may not begin passing

until explicitly allowed (Trail or Safe Merge).

Defender:

• under a Green Flag, the Defender must move to the inside lane and maintain the speed set for
that round (Maintain).

While this logic is simple for the passing competition, the use of these primitives can scale to
more complex logic. For example, rewards and costs could be assigned to each of these primitives
which are then utilized by a search-based planner or a reinforcement-learning algorithm to estimate
expected rewards and costs by taking a set of actions and to determine the best solution given
the scenario. By structuring the planner around a modular set of action primitives, we can explore
multiple solutions to the behavioral decision-making problem very easily. Additionally, it is easy to
add more primitives in the future when necessary.

3.4.4. Online Raceline Merging
Merging between inner and outer racelines (i.e., “Safe merging”) is accomplished by first calculating
the closest pose on the inner raceline qink corresponding to every pose on the outer raceline qoutk .
Next, given a start and a final interpolation pose, qink and qoutk , as well as the corresponding twist, the
spline optimization formulation in Section 3.2 of (Veerapaneni, 2017) is used to generate a minimum
jerk merging trajectory. Time intervals hk between consecutive time stamps can be decreased as
desired to generate a sufficiently smooth raceline between qink and qoutk . This interpolation can be
seen in Figure 19.

3.4.5. Results and Discussion
Figure 17 displays a comprehensive flowchart of the mentioned approach and highlights the offline
and online computations. Tasks performed by individual components of the planner are agnostic to
the actions performed by other components. This includes adding or removing additional raceline
primitives as well as action primitives, making this architecture highly modular. Future work on the
planner includes automating the process of waypoint selection based on given inside and outside
lines, which would consider varying track curvature. Finally, this approach is very fast, efficient,
and able to easily execute at 20 Hz (and capable of a much higher execution rate). Action selection,
safe-merge trajectory interpolation, and velocity profiling are all very inexpensive to compute online.
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Figure 19. Visualization of planning strategy. Red lines represent the wall boundaries. The light blue line
represents the current trajectory on the inner raceline. Dark blue represents the outer raceline the vehicle will
merge to for passing the opposing agent. Green line represents the resulting safe-merge trajectory.

Figure 20. Controller stack overview.

3.5. Controls
3.5.1. Overview of Approach
Our controls architecture was designed for speed and modularity. To achieve this, we decompose
our control task of path tracking into three tasks—lateral control, longitudinal control, and gear
selection. Lateral tracking generates a steering angle such that the vehicle converges to the path.
The longitudinal controller maintains a particular longitudinal velocity. The gear-shifting controller
is responsible for selecting the optimal gear for maintaining the current vehicle speed. The majority
of the content in this section will focus on the lateral tracking element of the vehicle’s controller. The
architecture of the stack is described in Figure 20. Finally, the work presented here is a continuation
of our previous work in (Spisak et al., 2022).

Longitudinal Control and Gear Shifting. The throttle and brake control utilizes a simple
P control scheme paired with a feed-forward term to account for drag. This is expressed within
Algorithm 1 line 6, which returns a command value. This command is then interpreted as either
a throttle or brake command depending on whether the command is positive or negative, using
a scaling factor on the brake signal to account for differences in magnitude between the throttle
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Algorithm 1. Longitudinal Tracking Algorithm
1 kp, kfeed forward, αbrake, δthrottle, δbrake ← loadParams();
2 throttle_previous, brake_previous← 0;
3 while t rue do
4 x , y, ẋ , ẏ , ψ, ψ̇ ← getState();
5 vtarget ← getTarget();
6 command← kp(vtarget − ẋ )+ kfeed forward ∗ vtarget;
7 throttle, brake← 0 if command ≥ 0 then
8 throttle← command;
9 else

10 brake←−αbrakecommand;
11 end
12 throttle← smooth(throttle_previous, throttle, δthrottle);
13 brake← smooth(brake_previous, brake, δbrake);
14 comamnd(throttle, brake);
15 throttle_previous← throttle;
16 brake_previous← brake;
17 end

and brake. Smoothing on the throttle and brake signals prevents instantaneous acceleration or
deceleration to help prevent vehicle instability. Algorithm 1 summarizes this algorithm.

The gear-shifting strategy is based on a simple lookup table where the optimal gear is computed
given the current velocity of the vehicle. This gearing table was generated based on a model of the
engine and track parameters to maximize torque, the computation of which is outside the scope of
this paper.

Lateral LQR Control. The lateral controller is built around a Linear-Quadratic Regulator (LQR)
that generates an optimal feedback policy based on a nominal vehicle dynamics model. LQR was
chosen because (1) it is inexpensive and fast to compute the desired controls online and (2) it is
optimal given the vehicle dynamics model. However, one downside is that LQR does not reason
about actuation constraints and only considers the error concerning the reference at the current
time step. However, the vehicle primarily drives on an oval race track where only a few degrees of
steering are required even for the most aggressive maneuvers. Hence, LQR can stably control the
vehicle and meet the reference tracking requirements to safely avoid the other agent, track barriers,
and maintain the desired trajectory.

Given a continuous-time linear system of the form in Equation 2 a quadratic cost function such as
Equation 3 can be defined which is constrained by Equation 2. Equation 3 also has the constraints
that Q = QT ≥ 0 and R = RT ≥ 0.

An optimal feedback policy can be derived such that the cost function in Equation 3 is minimized
over an infinite time horizon. Solving this problem is trivial and can be done using Matlab’s lqr
function as well as many other available solvers such as ones detailed in (Benner et al., 2020). This
resulting feedback policy takes the form of Equation 4.

ẋ(t) = Ax(t) +Bu(t), (2)

J =
∫ ∞
t=0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt, (3)

u∗(t) = K(t)x(t). (4)

Dynamic Bicycle Model. We utilize a four-state dynamic bicycle model from (Rajamani, 2005),
shown in Equations 5 and 7. As noted in Section 3.5.1, we decompose the problem into separate
lateral and longitudinal controllers. The lateral controller reasons about the vehicle’s lateral position
y and yaw angle ψ in the Local Tangent Plane (LTP) frame provided by localization. The input for
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Table 3. Dynamic bicycle model parameters.
Symbol Parameter Units
Vx Vehicle Speed m/s
m Vehicle Mass m

Iz Moment of Inertia About Z Axis kg m2

Cαf Cornering Stiffness of Front Tires N/rad
Cαr Cornering Stiffness of Rear Tires N/rad
lf Distance from Center of Gravity to Front Axle m
lr Distance from Center of Gravity to Rear Axle m

Figure 21. Vehicle coordinate system.

this system is the steering angle δ. It also assumes some constant velocity Vx, which is the forward
component of the speed ignoring lateral slip. The Cαf and Cαr parameters are the cornering stiffness
of the front and rear tires respectively, which reflect the ability of the tires to resist deformation
while the vehicle corners. In addition, lf and lr represent the length of the vehicle from the center
of gravity to the front and rear axles, respectively. The parameter Iz is the scalar moment of inertia
about the z axis, and m is the mass of the vehicle. The coordinate system is displayed in Figure 21
and vehicle parameters are summarized in Table 3.
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To use this dynamics model with the LQR formulation above, we re-parameterize the state
space as the lateral error (e1) and yaw error (e2) with respect to a target point along the raceline
provided by planning

[
x∗ y∗ ψ∗ ψ̇∗

]
as well as the vehicle position in the LTP frame provided

by localization
[
x y ẋ ẏ ψ ψ̇

]
:


e1
ė1
e2
ė2

 =


(x∗ − x) sin(−ψ∗) + (y∗ − y) cos(−ψ∗)

ẏ + ẋ(ψ − ψ∗)
ψ − ψ∗

ψ̇ − ψ̇∗

 . (6)
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With this, we can derive the error dynamics for which we solve the LQR problem to get the optimal
stabilizing controller gain K to drive the error to zero.
ė1
ë1
ė2
ë2
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 δ. (7)

This model makes several assumptions, including small angle assumptions on the steering angle,
which hold well on ellipsoidal tracks where we command a maximum steering angle of approximately
0.1 [rad]. The model also assumes constant velocity. A reformulation to a linear time-varying model
could allow for varying velocity. However, we accept that assumption and mitigate it with a series of
feedback controllers derived at different velocities for simplicity. For greater detail on this formulation
of the dynamics see (Rajamani, 2005).

Pure Pursuit, LQR Tracking Algorithm. Given the model formulation and the LQR formula-
tion, we can make a lateral tracking algorithm by combining a pure-pursuit style look-ahead point
and a feedback mechanism similar to Equation 4 generated using LQR. The look-ahead point is
queried simply by looking for the point on the raceline provided by planning that is ahead of the
vehicle a given distance d away. LQR requires an A, B, Q, and R matrix to generate the feedback
policy. The A and B matrix can be obtained using the dynamics from Equations 5 and 7. The Q
and R matrices can be obtained empirically where the diagonal Q matrix defines the weights on the
error terms in Equation 6, and the scalar R matrix defines the weight on the steering angle that
acts as a dampening factor to prevent oversteering.

A different parameter set p = (Qv(0,0), Q
v
(1,1), Q

v
(2,2), Q

v
(3,3), R

v
(0,0)) is utilized depending on the

current velocity v of the vehicle as shown in Table 4. Offline, the velocity bracket ranges [ẋlow, ẋhigh)
are defined to cover the range of velocities the vehicle is expected to cover, or generally the range
[0,∞) with no overlap between them.

The speed brackets serve two purposes: first, it provides linearization points across a range of
velocities to account for the constant velocity assumption in the dynamics model. Secondly, as the
vehicle reaches higher speeds, the expectation is that the dynamics model mismatch is greater.
Additionally, it is preferred that the controller is less reactive at higher speeds. By varying the
R gain, we can tune the controls to be less aggressive as we reach higher speeds. By varying the
Q matrix, we can provide different emphases on the various components of our error, i.e., lateral
and yaw deviations and their derivatives. Empirically, we have found that, at higher speeds, the
vehicle is more stable when the yaw and yaw rate error consists of a higher overall emphasis in the
resulting control output than the lateral deviations. Finally, the pure-pursuit look-ahead distance
is also varied as a function of speed where d = dbase + kv,dẋ. These parameters provide numerous
knobs for a controls engineer to rapidly tune the controller to achieve the desired performance.

The LQR tracking algorithm runs as follows. First, it initializes by loading in all velocity brackets
and the associated parameters. It then generates the feedback policies K for each bracket using the
average velocity of the bracket. Note that if one of the bounds is ∞, the lower velocity is utilized.
Next, at each time step, given the current state of the vehicle and a raceline, it performs a look-ahead
query on the raceline to get the goal point. Using this goal point and the current state, an error
state can be generated. Finally, with the current vehicle velocity, it queries the velocity brackets for
the relevant feedback policy which is applied to the error state to get the optimal steering angle.
This algorithm is summarized in Algorithm 2.

3.5.2. Results and Discussion
The controller stack shown in Figure 20 was evaluated over several performance laps at the LVMS
with velocities ranging between 25 and 60.5 m/s. We experienced the worst performance at the
highest speed targeting 60 m/s. We plot velocity and cross-track error (CTE) for the portion of
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Table 4. LQR controller speed brackets. By tying controller parameters
to the vehicle’s current velocity, better performance and stability can be
achieved. Varying the Q matrix adjusts the relative weight to the yaw and
lateral errors and their derivatives. The R gain provides a penalty on control,
thereby adjusting how reactive the controller is. Empirically, these “knobs”
have proven effective for tuning the vehicle to be stable while also tracking
effectively enough to be within our desired safety margins.
Velocity (m/s) Q R

[0-10)


Q10

(0,0) 0 0 0
0 Q10

(1,1) 0 0
0 0 Q10

(2,2) 0
0 0 0 Q10

(3,3)


[
R10

(0,0)

]

[10-20)


Q20

(0,0) 0 0 0
0 Q20

(1,1) 0 0
0 0 Q20

(2,2) 0
0 0 0 Q20

(3,3)


[
R20

(0,0)

]

[20-25)


Q25

(0,0) 0 0 0
0 Q25

(1,1) 0 0
0 0 Q25

(2,2) 0
0 0 0 Q25

(3,3)


[
R25

(0,0)

]

. . .

. . .

. . .

[55-60)


Q60

(0,0) 0 0 0
0 Q60

(1,1) 0 0
0 0 Q60

(2,2) 0
0 0 0 Q60

(3,3)


[
R60

(0,0)

]

Algorithm 2. Lateral Tracking Algorithm.
1 P ← {(v1,low, v2,low,K1), . . . , (vn,low,∞,Kn)}

; /* We assume parameters have been loaded and the feedback policies generated. */
2 dbase, kv ,d ← loadParams();
3 while t rue do
4 x , y, ẋ , ẏ , ψ, ψ̇ ← getState();
5 τ ← getTrajectory();
6 d ← dbase + kv ,d ∗ ẋ ;
7 K ← getFeedbackMatrix(ẋ ,P );
8 x∗, y ∗, ψ∗, ψ̇∗ ← lookahead(x , y, d , τ );
9 e ← errorMatrix (x , y, ẋ , ẏ , ψ, ψ̇, x∗, y ∗, ψ∗, ψ̇∗);

10 u←−Ke;
11 commandSteering(u);
12 end

a run in which speeds of 138 mph were achieved in Figure 22. The maximum CTE experienced
was 1.3 m, which occurred around bends, while the mean absolute CTE was 0.323 m. Additionally,
the average CTE for several high-speed runs (138, 141, and 137 mph max speeds) at various speed
brackets are presented in Table 5. Notably, for the run on January 7th, the controller was tuned to
be less aggressive, which explains the degraded tracking.
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Table 5. Cross-track Eerror (m) over several speed brackets for various high-speed runs. The first
column provides an average error calculated over the entire run. The bottom row provides an average
of the error across all three runs for that bracket.
Date > 10 m/s > 60 m/s 55–60 m/s 50–55 m/s 45–50 m/s 40–45 m/s
12-30-2021 0.323 0.679 0.529 0.479 0.412 0.394
01-03-2022 0.244 0.540 0.457 0.573 0.456 0.403
01-07-2022 0.555 0.885 1.135 1.025 0.883 0.745
Average 0.372 0.689 0.832 0.653 0.519 0.476
Date 35–40 m/s 30–35 m/s 25–30 m/s 20–25 m/s 10–20 m/s
12-30-2021 0.413 0.260 0.281 0.060 0.048
01-03-2022 0.275 0.279 0.248 0.057 0.074
01-07-2022 0.733 0.587 0.512 0.210 0.100
Average 0.420 0.382 0.287 0.065 0.079

Figure 22. Controller performance from Season One. (Top) Cross-track error (CTE). (Bottom) Vehicle velocity.
The controller averaged between 0.5–1.5 m CTE while traveling between 45–60 m/s. The vehicle was only allowed
to command a max of 60% throttle, which is why the vehicle speed is not flat at approximately 700 seconds into
the run.

We also evaluate the controller on lane-change tasks on the same track. Results from Season One
are shown in Figure 23. Season Two results are show in Figure 24. The Season One results are from
running the planner and controller in the loop on the vehicle, but the opposing agent was simulated,
referred to as a “ghost” agent, as the vehicle will react to something that is not physically present.
Results from the semifinals match in Season Two, a real AV-21 multiagent passing competition
event, are also presented. Overall, the controller works very well in both seasons, with the CTE
during the lane change maneuvers, staying between approximately 0.5–1.5 m. In the Season Two
match, the vehicle reached lateral accelerations over 20 m/s2.

3.6. Localization and State Estimation
3.6.1. Challenges
To localize itself on the track, the AV-21 is equipped with two dual-antenna NovAtel PwrPak7D-E1
GNSS units with RTK, as well as individual wheel speed sensors (Table 6). However, the high
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Figure 23. Controller performance results from season one. (Top) Cross-track error (CTE). (Bottom) Vehicle
velocity. In this scenario, the ego vehicle is closing the gap and catching up to the other agent, a “ghost” vehicle.
Once caught up, the planner generates a smooth merging trajectory that returns to the inside line.

Figure 24. Controller performance results from season two. (Top left) Cross-track error (CTE). (Lower left)
Vehicle velocity. (Right) G-G diagram. This scenario depicts the performance of the controller during the semifinal
round of the passing competition in Las Vegas in Season Two, 2023.

Table 6. Localization measurement sources.
Measurement Source State Update Rate
BESTPOS < x , y, z > 20 Hz
BESTVEL < ẋ , ẏ , ż, ψ > 20 Hz
HEADING2 < θ > 1 Hz
IMU & Gyro < ẍ , ÿ , z̈, θ̇ > 125 Hz
Wheel Speed (x4) < ẋ , ẏ > 100 Hz
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Figure 25. Overview of localization pipeline. All raw solutions are first preprocessed by the Localization
Executive. The transformed and filtered measurements are then fused by an open-source Extended-Kalman Filter
(EKF) package. Finally, health status flags are communicated to the System Executive, which triggers a safety
response if needed.

speed and high acceleration nature of the competition necessitated a custom solution that is robust
to partial and total failures. In particular, a solution was needed that could meet the following
requirements, all while traveling at high speeds:

• detect partial and full failures of either unit finding an adequate GNSS solution;
• handled degraded position and/or heading estimates from one or both units;
• accurately estimate the vehicle pose, yaw, and velocity at 100 Hz, despite only receiving GNSS

measurements at 20Hz.

3.6.2. Overview of Approach
The Localization module is split into two main components: the Localization Executive and the
Robot Localization (Moore and Stouch, 2014) EKF Filter node. Figure 25 shows an overview
of the localization stack. On the AV-21 are dual NovAtel PowerPak Dual-Antenna RTK GNSS
systems with built-in IMU and Gyro. The NovAtels are configured to provide the best position
(20 Hz, velocity, and heading solutions). These measurements, from the varying sources, undergo
the following:

• transformed into a Local Tangent Plane (LTP) coordinate frame, if applicable;
• solution status flags, variance measurements, and other health indicators are tested against a

set of heuristics to verify that the measurement is good and worth fusing;
• finally, if the measurement meets quality checks, the measurement is converted to a standard

ROS message type and sent to the filter for fusion.

The node responsible for all of the above is called the Localization Executive. When building
the Localization Executive, it was important to have a flexible, generic, and modular framework for
defining sources, safety thresholds, and defining safety checks and heuristics. As testing progressed
and more track time was put onto the vehicle, we quickly learned and adapted our fusion strategies.
For example, the quality of the NovAtel with its dual antennas on the top and front nose of the
vehicle often produces an overall better heading and position result than the other unit, likely due
to a wider baseline. The Localization Executive’s modularity allows us to prioritize high quality and
filter out bad measurements on a persource (i.e., pose, heading, velocity) basis. An example of a
degraded source can be seen in Figure 26.

The resulting transformed and filtered measurements are then processed by Robot Localization
(Moore and Stouch, 2014), an open-source EKF package that provides a flexible and modular
interface for fusing an arbitrary number of odometry sources. Robot Localization was chosen because
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Figure 26. Localization handling degraded GPS measurements from one unit. The bottom graphs show variance
(red: longitude, black: latitude) in pose measurements from each GNSS unit. Top denotes variance in fused pose
(red: y , black: x). Note that at approximately 750 seconds into the run, the bottom GNSS unit starts reporting a
much higher variance, measured in meters. However, despite the degraded sensor, the localization stack ignores
this source and continues fusing the other unit. Once the unit has recovered, localization can fuse both again
and has full redundancy.

(1) it is very well tested and maintained in the robotics and unmanned vehicles community, (2) its
modular design provides extreme flexibility during development and testing, and (3) it works well
and exposes several tuning parameters and control, while able to update its state at 100 Hz and
fuse all incoming measurements asynchronously, including with the ability to handle out of order
measurements.

Finally, health status flags for the various sources and final odometry results are communicated
to the System Executive, the high-level arbiter of the stack. If any of the following scenarios occur,
the vehicle is brought to an immediate controlled stop:

• incoming measurements, from both units, do not meet a strict update rate requirement or cut
out completely;

• total connection loss from either GPS unit;
• loss of satellites or highest solution status, from both units;
• loss of RTK for a long enough time that the variance in the measurements exceeds safety

thresholds, for both units;
• fused odometry covariance exceeds the safety threshold.

If one unit is healthy, or if a combination of pose, heading, and velocity can be constructed from
measurements from both units, then the stack will continue operating normally. Additionally, all
health status flags are also communicated to the base station and presented in the interface, which
is presented in Section 3.7. If partial, but not disastrous, failures occur, it is the responsibility of
the base station operator decide whether to terminate the run or not.

3.7. System Monitoring (Base Station)
Developing an ARV stack requires monitoring software to ensure safe operations during high-speed
testing and live operation during races. In this section, we describe the base station, our multilevel
user interface for displaying the safety statuses of the vehicle and cumulatively all parts of the stack.
The role of the interface is to be able to see the entire overall health of the vehicle at a glance. If
any sensor or service goes offline, a quick look at the base station will clearly show what and where
the problem is. There are primary and secondary user interfaces, each serving a specific role and
level of surveillance over the stack and physical vehicle. Each interface is modular, meaning the
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Figure 27. Base station architecture. A UDP server and client on the AV-21 and the basestation communicate
via a lossy wireless connection, so network load must be managed to avoid overwhelming the network and only
transmitting the essential bits of information.

Figure 28. Primary interface for the Base Station.

operator can set what telemetry, track, and sensor data they want to see. There are no competition
requirements for either interface, but it is a useful tool for the operators in the pit lane to be able
to monitor the full health of the system at a glance.

Like all parts of the stack, the base station architecture, shown in Figure 27, was developed
with performance and reliability in mind. Existing solutions to rebroadcast ROS 2 DDS topics
over the track’s mesh network did not work reliably over the lossy wireless connection. High spikes
in network load resulted in a large number of dropped packets, impacting the operator’s ability
to communicate with the vehicle. Our solution was built on top of a UDP Server-Client solution
shared by the TUM Autonomous Motorsports. A raw UDP stream provided precise control over
how much bandwidth is utilized for telemetry and management of quality of service. The telemetry
nodes on the AV-21 and the basestation aggregate the desired information (i.e., vehicle odometry,
joystick override commands, etc.) and transmit the resulting telemetry packet using UDP, thereby
reducing network traffic. Once a telemetry packet is received by the base station, it is parsed and
then published back to ROS 2 for convienient integration with numerous open source visualizations
tools, including RViz and PlotJuggler, and a custom PyQT-based user interface.

3.7.1. Primary Interface
The primary interface displays track states, vehicle states and speeds, watchdog states, sensor
frequencies, GPS health, and the computer’s compute utilization. Figure 28 shows the display for
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Figure 29. Secondary interface for the Base Station.

the primary interface, made up of a GUI using PyQT and an odometry display using RViz. Using
PyQT, we can easily add or modify panel modules on the GUI to fit our area of concentration
for a test run or competition run. With RViz, we can visualize the path the vehicle is following,
the current vehicle odometry, and any agents we have detected and are tracking. RViz is easily
configurable for what topics and data we want to see. This interface is meant primarily to be an
information display and not to give base station operators control over vehicle functions.

Available telemetry information includes the state of the power train, vehicle position and speed,
and target speed. This information informs the operator if the vehicle is in a healthy state overall
and what is it trying to do. The CPU and memory usage is also displayed to ensure the computer
onboard is running smoothly. The watchdogs serve as surveillance agents over the stack, indicating
if any component of the stack fails or crashes. When a watchdog fails, the stack will intelligently
bring the car to a safe stop. All sensor frequencies are displayed, indicating if there are any current
or imminent problems within the perception or localization stacks. Colors vary based on different
safety thresholds (i.e., “good,” “warning,” “bad”). GPS health information is also displayed.

3.7.2. Secondary Interface
The secondary interface displays all incoming telemetry data and more readings, such as fluid
pressures and controller errors and commands. Figure 29 shows the display for the secondary
interface. Like the primary interface, the secondary is modular and easily configurable to fit the
area of concentration. It is constructed using PlotJuggler to plot all of the incoming telemetries.
The interface serves to provide a detailed live feed of the health and performance of the vehicle and
the stack, rather than serving as a quick-glance check. The benefit of the secondary interface is that
operators can monitor the trends of the vehicle, and determine possible impending issues.

4. Evaluation and Results
The aforementioned stack has been developed for and fielded on four different oval raceways across
two competition seasons and three years. Over that time, the AV-21 ARV has seen hundreds of
autonomous miles, in both single and multiagent scenarios. In this section, we present evaluations
of several real-world runs that demonstrate the stackś effectiveness and shortcomings.
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Additionally, between Seasons One and Two, while the overall approach and design of the stack
had not changed materially, the execution and implementation details have been improved based on
lessons learned from the first season. These insights are valuable for designing and fielding complex
autonomous systems.

First, we present results and analysis from runs in Season One. These runs are both single and
multiagent. We also evaluate a critical multiagent run, where the vehicle was unable to demonstrate
all requirements to qualify for the final competition event for the IAC@CES Event on January
7th, 2022. We lay out what failed and the key takeaways. Next, we present a similar analysis for
runs from Season Two, highlighting the key changes in the actualization of the stack that enabled
single-agent driving and head-to-head passing in speeds above 150 mph.

4.1. Season One: Single-Agent High-Speed Run and Spinout
In this evaluation, we will examine a single-agent run where the vehicle ultimately exceeded 140 mph
in top speed before spinning out of control. The hope is to present a thorough analysis of the LQR
Pure-Pursuit controller at higher speeds and demonstrate its strengths and weaknesses. Finally,
we will discuss some insights into controller design and deployment that are driving our current
development.

4.1.1. Run Objectives
The intended goal of the run was to perform a thorough verification of the controller’s performance
to maintain a fixed speed and its ability to quickly and safely slow down in the event of a safety
trigger, such as a communication or race control timeout. Because the track is severely banked (up
to over 20◦ in the steepest portions), too sudden of decelerations can result in a spin-out, as the
rear tires lose grip with the ground during a deceleration event, due to a forward shift in the mass
distribution of the vehicle. When the tires lose this grip, the vehicle is more prone to spinning out
and losing control. So, the controller must maintain safe, smooth decelerations at all times.

After verifying the speed controller’s performance, the run was supposed to progress onto
multiagent testing; however, the second team was not ready and our sing-agent run continued.
At this point, we set a goal to reach higher speeds (greater than 145 mph) and see the controller’s
performance above our previous record of 138 mph. While we did not achieve our original goal, the
insights gleaned from what ensued are likely valuable for future research.

4.1.2. Preinstability Performance
During the repeated braking events, the controller maintained stability. The speed controller still
needed more tuning, and the purpose of this run was to collect data to further tune the controller.
Notably, there was a point at about 700 seconds into the run where the braking resulted in some
traction issues, which corresponds to the jump in cross-track error as the vehicle slows to a stop.
Information like this helps provide an estimate of where the braking limits of the tires are. Overall,
as noted in Table 7, the average cross-track error (CTE) over the entire run was 0.244 m. When
traveling over 100 mph, the CTE was 0.501 m. At its worst, the CTE does not exceed roughly 1.25 m
when traveling around the corners (see Figure 30).

Table 7. Cross-track error (m) over several speed brackets. The value in bold represents the average
cross-track error when the vehicle was traveling at more than 45 m/s, or over 100 mph. Error over the
whole run, when the vehicle is moving above 10 m/s, is also provided.

> 45 m/s > 10 m/s > 60 m/s 55–60 m/s 50–55 m/s 45–50 m/s
0.501 0.244 0.540 0.457 0.573 0.456

40–45 m/s 35–40 m/s 30–35 m/s 25–30 m/s 20–25 m/s 10–20 m/s
0.403 0.275 0.279 0.248 0.057 0.074

Field Robotics, January, 2024 · 4:1–45



Fast and modular autonomy software for autonomous racing vehicles · 31

Figure 30. (Top left) Cross-track error. (Bottom left) Vehicle speed. (Right) G-G diagram showing the vehicle
acceleration, in m/s2. During this run, braking tests were conducted to identify the ability of the controller to
respond to instantaneous requests to stop the vehicle. The controller tracked the reference trajectory within
1.25 m cross-track error, up until the spin-out. Finally, the G-G diagram shows significant levels of longitudinal
acceleration while cornering.

The G-G diagram plots the longitudinal and lateral accelerations. As tires have a maximum
deformation, thereby maximum total force, it is important to evaluate what region the vehicle and
tires are operating in. For example, if the vehicle were braking or accelerating into a corner, a high
lateral and longitudinal acceleration is expected. However, if the vehicle is maintaining the same
speed while traveling around the track, the expectation is that the vehicle would not see as high
longitudinal accelerations, but still have significant lateral accelerations as it makes the turns.

In this run, due to the repeated speeding up and braking, the vehicle experienced a wide spread
of accelerations. As shown later, the vehicle was accelerating significantly even while going into
the corners, which is a precarious scenario because there is a risk of saturating the tires, which is
ultimately what happened. Preventing future events like this will require explicitly modeling the
tire limits and constraining the vehicle’s controls to stay within the dynamically feasible and safe
region. However, determining these limits is still an open area of research.

4.1.3. Spin-Out
The night before January 3rd at LVMS saw the weather settle down to freezing temperatures. As
it progressively turned colder, dipping to around 30 ◦F by morning, conditions on the track became
too cold to operate safely on. These conditions forced teams to shift testing operations to begin in
the afternoon when temperatures reached about 50 ◦F. The tires and power train of the AV-21 are
designed to operate in warmer conditions. Freezing temperatures, such as those seen on January
3rd, can negatively impact performance.

The most obvious consequence of lower-than-optimal tire temperatures on the AV-21 is reduced
tire traction and grip. In traditional motorsports, even when conditions are very warm, human
drivers must ensure their tires are brought up to an optimum temperature. A race car’s tires must
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Figure 31. (Top left) Average temperature of all four tires. (Bottom left) Vehicle position. Note the deviation
from the racing line when the vehicle spun out of control. (Top right) Controller cross-track error. (Bottom right)
Rear and Front wheel speeds and speed as measured by GPS. Notably, the rear wheels start to move much faster
than the front wheels and deviate from what GPS is measuring. This indicates an over-steering event, where the
rear tires lost traction and began to spin out.

be operating at a temperature of at least 175 ◦F to generate traction and grip (Smith, 1978). At the
time of the spin-out, the tires were only at about 29 ◦C, or about 85 ◦F.

In Figure 31, the vehicle is stable up until the point of failure. Notably, the tires were very cold
(about 84 ◦F); meanwhile, the vehicle was commanded to speed up very aggressively (command
increase of about 20 mph) while going into the corner. These commands were issued by the base
station operator. Additionally, given how the rear wheel speeds spike while the front wheels do not,
traction was lost on the rear tires, indicating an over-steering event. Finally, due to the decoupled
longitudinal and lateral controls, the steering controller was not able to dictate a more reasonable
velocity profile given the trajectory ahead. Instead, the base station operator was setting a speed,
and the speed controller was ramping up to meet it, regardless of where the vehicle was on track
and what trajectory it was taking.

4.1.4. Lessons Learned
Several insights and changes were made resulting from this incident, some software, others opera-
tional. First, the base station operator needs to verify that the tire temperatures are warm enough
before trying to command the vehicle to a high speed. At the time of the incident, the base station
did not display tire temperature. Moving forward, this feature has been added. Additionally, when
doing constant and high-speed tests, unless there is confidence in the vehicle’s ability to navigate
while maintaining that fixed speed, speed changes are avoided on turns.

Secondly, the development of improved tire modeling, with an online estimation component, is
underway. It is not enough to set tire model parameters pulled from a data sheet and expect the
vehicle to perform as expected all the time; rather, some online estimation of the tire parameters is
needed. This is not a novel idea; rather, it has been explored before (Hermansdorfer et al., 2019).

Finally, to take advantage of a better tire model, it is important to have a controller that can
better reason about the vehicle dynamics and can jointly optimize the vehicle speed, steering, and
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accelerations. Development is underway on a model-predictive controller (MPC) that can predict
and optimize the vehicle’s performance over a finite time horizon. With a better vehicle model,
controller, and better operating procedures, spinouts should be less common.

In terms of total cost and damage, the spinout was relatively minor, with a single bent rear
suspension piece. However, the data collected and insights are invaluable for future development
and testing. One of the operating limits of the tires has been found, a limit that would not have
been found otherwise. Because of the insights learned and data collected, this run was considered a
success by the team, despite the result.

4.2. Season One: Failed Qualification Run Evaluation
In this evaluation, we discuss the compounding issues that prevented the vehicle from detecting and
tracking an opponent vehicle, which ultimately led to the team being disqualified from participating
in the multiagent passing competition. Ultimately, the issues were narrowed down to perception and
tracking failures, which stemmed from a multitude of causes.

4.2.1. Perception and Tracking Failures
In the run-up to competition day, several of last-minute decisions and changes were made to the
software, vehicle and sensor configuration, and computer hardware. All of these changes compounded
and resulted in a total failure of our perception and tracking stack on the last day to qualify for
the head-to-head competition event. While disappointing, the lessons learned reached far beyond
software design and development.

4.2.2. Camera Hardware and Driver Changes
Due to issues with the network connections on the vehicle, camera drivers had to be reconfigured
to reduce their network bandwidth, resulting in the streaming of wrongly-cropped or poor quality
images. These images, examples shown in Figure 32, on top of a lack of training data from the
LVMS track, resulted in a higher-than-expected false positive rate.

4.2.3. Failed Motion Compensation Changes
Since the LiDAR is not scanning every point instantaneously, it is important to account for the
ego vehicle’s motion during the LiDAR scan for the highest-accuracy result. However, leading up
to the competition, the solution developed was not thoroughly validated on the vehicle while it was
under full system load. On the AV-21, there are three LiDARs, each scanning at 20 Hz. The motion
distortion node needed to combine all three clouds, project each point into the world to correct the
distortion, and, optionally, project the cloud back into a local frame of reference. ROS 2 provides

Figure 32. Examples of camera images from the qualification run. Additionally, due to incorrect network
bandwidth settings on the cameras, the frame rates were severely limited, operating under effectively 1Hz for
some cameras.
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a message synchronization library that gives a convenient interface to subscribe to multiple topics
and have all three topics delivered at the same time, in the same callback.

When under full system load, the DDS middleware and synchronization library was not delivering
every LiDAR measurement from all three LiDARs. Messages were frequently being dropped.
However, because the issue only showed up when the system was under load, it was not discovered
until deployed and run on the vehicle during the qualification run.

Due to the dropped messages, the effective LiDAR frame rate received by PointPillars dropped
to below 5 Hz. This corresponds to an average period of roughly 200 ms. Assuming sensor processing
is keeping up with the sensor frame rates, the expected period is 50 ms, as the LiDAR is scanning at
20 Hz. In actuality, the period between LiDAR measurements was very inconsistent, often spiking
over half a second (see Figure 33). This inconsistent and slow update rate compounded with other
issues with the tracker that resulted in very poor perception performance overall.

Figure 33. (Top) Frequency of LiDAR detections during the failed run. (Bottom) Frequency of LiDAR detections
during the semifinals match in Season Two. The time period between detections was calculated by taking the time
delta between sequential LiDAR detections. Since the LiDAR operates at 20 Hz, the expected frame-to-frame
period is 50 ms, assuming that detections process every frame. In the results from Season One, the time period
between detections was far longer (an average of 200 ms, or an effective frequency of 5 Hz), due to dropped data
packets arising from middleware library issues. As a result, the tracker had difficulty tracking the agent over time.
Note that the above detections may still have low processing latency (50 ms between the time the sensor data was
taken and the detection was computed, as shown in Figure 13), illustrating the difference between latency and
frequency. Finally, the results from Season Two show significant improvement, with LiDAR detections processed
half the time running at sensor frame rate and the other half with at most one detection missed. Occasionally,
additional missed frames were witnessed, but much less frequently than in Season One.
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Table 8. Competition Day Runs. Formats consisted of single-agent time trials and the Passing Competition
multi-agent events. The peak speed reached by the vehicle during the run is presented. Despite a challenging
five days of testing, that included three separate hardware failures and a disastrous crash (described in detail
in Section 3.2.6) less than 72 hours before competition, the team finished fourth overall.

Run Format Peak Speed [mph] Competing Team Result
1 Single-Agent 145mph —– Time Trial, Run One
2 Single-Agent 150mph —– Time Trial, Run Two
3 Multiagent 115mph KAIST Quarter-Final, MPRW Win
4 Multiagent 146mph KAIST Quarter-Final Re-Run, MPRW Win
5 Multi-agent —– Polimove Radio Died, MPRW Disqualified
6 Multiagent 153mph AI Racing Tech Fuel Depleted, MPRW Loss

4.2.4. Poorly Tuned and Flawed Outlier Rejection
With the camera pipeline producing false positives, albeit at a low rate due to network bandwidth
issues; and LiDAR running at a much lower frequency than what was expected, the fusion relied
primarily on the Radar for tracks. However, last-minute code changes and tuning resulted in poor
outlier rejection, which is especially important due to the high noise in radar tracks. While some good
tracks surfaced and were followed, tracking failed to prune too many false positives. Additionally,
the radar can only see in front of the vehicle, which is insufficient on its own for passing.

4.2.5. Lessons Learned
All three issues quickly compounded and it was clear to the base station operator that there were
too many false positives from the perception and tracking stack. As a result, a strategic decision
was made to terminate the run and have the vehicle return safely home. While a disappointing
result, the run provided invaluable data and insights into testing and deploying a full, complicated
system onto real hardware. Most importantly, this failure highlighted the importance of proper
integration testing to identify unexpected issues sooner. Additionally, the next section will address
the solutions that were developed and tested over Season Two and the resulting performance on
track in competition.

4.3. Season Two: IAC@CES 2023 Competition Performance
Six out of nine total teams qualified to participate in the passing competition at CES in Las Vegas.
In total, MIT-Pitt-RW (MPRW) had two single-agent runs, three successful multiagent events, and
one multiagent run where the primary communication radio on the vehicle failed, rendering the
car unable to compete. A full breakdown of every run, peak speed, and the result is presented in
Table 8. The following evaluations will focus on Runs 2 and 6 from the table above.

4.4. Season Two: Time Trial, Single-Agent Performance
To determine the starting brackets and run order, a time trial was held on the morning of the event.
Each team received two, single-agent runs, each consisting of up to ten laps. Then, the speed from
fastest lap time from each run was averaged to determine the team’s overall score and ranking.
MPRW finished fourth, coming within 0.6 mph of the third-ranking team, TII Euroracing. The full
rankings are presented in Table 9.

Overall, the controller was stable and able to navigate at high speeds. As shown in Figure 34, the
LQR controller balanced performance [maintaining ≤1.5 m cross-track error (CTE)] while navigating
turns with over 24 m/s2 of acceleration. The speed controller exhibited low-frequency oscillations
in tracking the desired speed, centered around the desired speed. Part of this failure is believed
to be a result of changed power train dynamics after the engine was repaired and the vehicle was
reassembled. Future work includes better power train modeling and improving the tuning of the
throttle controller. The data from this run in particular is instrumental for that future work.
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Table 9. Final Time Trial rankings and the average of the fastest
laps from two runs. To determine the starting brackets and run
order, a time trial was held on the morning of the event. Each
team had two single-agent runs, each consisting of up to ten laps.
The fastest lap time from each run was averaged to determine
the team’s overall score and ranking.
Ranking Team Name Average Speed (mph)
1 PoliMove 168.2
2 TUM 164.9
3 TII Euroracing 144.4
4 MIT-Pitt-RW 143.8
5 KAIST 138.2
6 AI Racing Tech 65.9

Figure 34. (Top left) Cross-track error. (Bottom left) Commanded and actual vehicle speed. (Right) G-G
diagram showing the vehicle acceleration, in m/s2. The vehicle reached a peak speed of over 67 m/s, which
equates to 150 mph. The cross-track error peaked at approximately 1.4 m. Lateral acceleration reached over
24 m/s2, or almost 2.5g′s of acceleration.

4.4.1. Discussion and Lessons Learned
The first time trial run (at 145 mph) broke the team’s speed record from the previous year (141 mph
before spinning out). The second run quickly broke the team’s record again, finally pushing through
the 150 mph barrier after more than three years of development. These milestones boosted team
morale, in preparation for the passing competition. It also set the team up for the quarterfinal
match-up against the KAIST team.

This run also validated that simple, feedback-based controllers could navigate an ARV at high
speeds on an oval race track. It is still unknown what issues will happen on more complicated
circuits, i.e., ones with sharp left and right turns. In particular, LQR on its own does not reason
about control limits, outside of a naive clamp. Additionally, because it is only ever trying to drive
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the current state error to zero, LQR can be myopic. On an oval track, this behavior does not cause
issues, as the vehicle rarely needs full control bandwidth. However, on more complicated circuits,
it is not uncommon to hit the steering limits. Future work is two-pronged: adding a feed forward
component to the control produced by LQR and developing a model predictive controller that
explicitly considers the maximum control constraints.

4.5. Season Two: Passing Competition, Multiagent Performance
After the radio failure in Run 5 Table 8, MPRW was disqualified and was not able to compete in the
finals. AI Racing Tech also experienced hardware issues earlier in the day, which prevented them from
a second time trial run, thus impacting their overall score seen in Table 9. As a consolation for the
hardware failures, the competition organizers had the two teams compete in a match for 3rd place.

In the match, both teams passed back and forth at the 80, 100, and 115 mph speed brackets. The
majority of the event was flawless, with only two minor issues, neither of which were the fault of either
team’s autonomy software. First, early in the run, communication was delayed with the vehicle, so
a warning was sent to Race Control as the behavior was similar to what was experienced when
the radio had died in the previous match. Race Control preemptively slowed down the AI Racing
Tech vehicle, but that was not needed as communication restored itself without any further issues.
The second issue was after the 115 mph bracket was successfully passed. Instead of maintaining the
round speed at 115 mph for AI Racing Tech, Race Control set the speed to 125 mph prematurely.
This was quickly communicated over the radio and Race Control remedied the issue by setting the
correct speed and allowing AI Racing Tech an extra lap before considering the round started.

In Figure 35, it is possible to see when the vehicle is “trailing” the opponent versus Defending.
Periods of a flat, constant commanded speed are when the vehicle is Defending. Periods of varying
commanded speed, followed by large spikes, are when the vehicle is trailing and then passing the

Figure 35. (Top left) Cross-track error. (Bottom left) Commanded and actual vehicle speed. (Right) G-G
diagram showing the vehicle acceleration, in m/s2. The vehicle reached a peak speed of over 68 m/s, which
equates to 153 mph. The cross-track error peaked at approximately 1.4 m. Lateral acceleration reached over
20 m/s2, or over 2g′s of acceleration.
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Figure 36. Sequences from “Defending” at the 125 mph speed. Each sequence is 7 seconds long. From left
to right, the opponent AV-21 starts from behind the vehicle, moves to the outside lane, and accelerates and
maintains a clear inside lane for our vehicle while completing the pass. Our AV-21 is able to detect and track the
opponent during the entire sequence, even when they accelerate to pass while our vehicle is maintaining a speed
of 125 mph. Finally, the planner followed all right of way rules dictated by the competition.

Figure 37. Sequences from “Attacking” at the 125 mph speed. Each sequence is 7 seconds long. During the
pass, the vehicle reached a peak speed of almost 150 mph. From left to right, the vehicle is preparing for the pass
by choosing to maintain the inside lane. By the time the vehicles enter the turn, our vehicle has completed the
pass and begins to drop back to the round speed. During the entire sequence, the stack is able to detect and
track the other agent, providing the planner a reliable belief of where the other agent is, allowing for a safe pass,
even at such high speeds.

other vehicle. In total, four passes were completed, and a fifth was initiated but not completed. When
attempting the final pass, a bug with the planner caused a drop in the requested speed. The planner
would oscillate between identifying the agent as being in front or behind the ego vehicle, which
resulted in an oscillating speed command. At the same time, the vehicle was also running out of
fuel. Immediately after falling back behind AI Racing Tech, the planner commanded a higher speed
to catch up; however, the vehicle ran out of fuel and could not maintain speed. It is unknown exactly
when the engine started experiencing a drop in fuel, as it could have been during the initiation of
the pass or after. Additionally, there is a possibility that if more fuel had been in the vehicle, the
vehicle would have been slower (due to increased mass), thereby changing the entire dynamics up
to this moment. Finally, this occurred in lap one of two, so the vehicle would have had a second
chance at completing the pass, but did not due to running out of fuel.

Figures 36–38 show 7 second long sequences from each of the speed rounds during the match.
The RTK GPS measurements from both ego and opponent vehicles are plotted, with the LiDAR
detections overlaid. The starts of the sequences are denoted by the vehicle graphics. The ego vehicle
is red and the opponent is green.

Figure 36 shows the performance of the vehicle while maintaining the Defender role. As Defender,
the vehicle must maintain a set speed and follow right of way, which depends on roles, relative
distances between cars, and where the cars are on the track. While in this role, our planner meets
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Figure 38. Sequences from “Attacking” at the 135 mph speed. Each sequence is 7 seconds long. Even at over
60 m/s, the vehicle continued to track the other agent very well. Not long after these sequences, the final pass
failed and the vehicle ran out of fuel, rendering the match over. In the second sequence, by the end of the straight,
the vehicles are nearly side by side, but the vehicle is not able to complete the pass and win the round.

these requirements. Additionally, the perception stack is able to reliably detect and track the other
agent, even during a pass. Figure 37 shows the vehicle passing another AV-21, reaching a top speed
of over 150 mph. During the sequence, the stack is again able to detect and track the opponent
and complete the pass safely. Finally, Figure 38 shows another pass sequence, but, in this attempt,
a combination of a planner bug and the vehicle running out of fuel, the pass is not completed.
During all of the sequences, the full stack is working well, able to complete all requirements of the
competition and pass another vehicle while traveling at very high speeds.

4.5.1. Discussion and Lessons Learned
In this run, the vehicle achieved a new personal record for its highest peak speed, and it was also
the only time the vehicle passed another car going over 125 mph. In the testing leading up to race
day, the fastest defender ever passed was maintaining 80 mph. Additionally, before race day, only
five passes were ever achieved, due in part to lost testing time from the crash a few days earlier. On
race day, we achieved the following:

1. three passes at 80 mph bracket;
2. two passes at 100 mph bracket;
3. two passes at 115 mph bracket;
4. one pass at 125 mph bracket.

In the end, an operational mishap was the deciding factor in finishing in fourth place. While it is
likely that the planner’s indecisiveness may have surfaced again, we will never know how the vehicle
would have performed if it had more fuel. However, in the end, the software stack demonstrated
strong performance in executing the IAC Passing Competition.

In the future, fuel consumption will be more carefully monitored and accounted for. Additionally,
further testing and focus will be on path planning, to help determine the root cause of the behavior
seen in the final pass attempt. As the IAC evolves and tackles more complicated operational design
domains (OODs), it is also important for the software stack to evolve as well. Future work will
dismantle the assumptions and simplifications to unlock more general, robust performance.

5. Lessons Learned
Keep it Simple At many critical points in the project, a decision had to be made on what direction
to pursue for specific portions of the stack. What kind of controller do we implement? How should
we do camera detection? What methods should we pursue for localization? The tendency was to
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pursue a complicated solution; however, we recognized that identifying a functional solution was
more critical than identifying the best possible solution from the outset. In doing so, we chose to
focus on simple solutions and build out complexity when necessary.

One example of this struggle was LiDAR object detection. This proved to be challenging, as
we recognized that clustering could be applied as a temporary solution, but was not intended to
be a long-term solution. We also recognized that by implementing clustering while simultaneously
building a parallel solution, we had a solution to fall back to. Eventually, with enough maturity, a
more complicated solution (PointPillars) was produced that met our requirements and was orders
of magnitude better than clustering. Additionally, this more complicated solution will scale better
as the competition travels to new circuits and incorporates more agents.

The Smallest Issues have the Largest Consequences. Issues with time synchronization,
balancing Ethernet network load across multiple links, cable and connector integrity, and more
can severely diminish system performance. For example, the first week of testing with our recently
assembled vehicle was progressing as planned, with quick integration and with the absence of major
issues. However, the very next week, when testing on the Indianapolis Motor Speedway for the first
time, the RTK GPS did not function properly. An entire test day, less than three weeks from the
first IAC event, was lost. Eventually, the root cause was traced to our RTK login being used by a
competitor’s unit, causing a conflict with the RTK service. This issue was not caught the week prior
due to our teams’ testing schedules being on alternating days.

In Field Robotics, deploying a system requires understanding how each component interacts and
what failures may occur. When many complicated pieces are combined into one package, it is easy
to overlook the tiniest details. How does the RTK service handle two units trying to communicate
to the server with the same license at the same time? How does DDS handle message delivery if a
ROS 2 node cannot keep up with the message rate? How does that library being called decide how
many parallel threads to use for processing and what are the downstream effects on other software
components running on the same system? All of these issues can destroy the performance of a whole
system, which is why testing and validation are so critical.

Know What to Test and Actually Do It. Due to the complexity of the systems being built, it
is important to have a rigorous and principled testing regime. The size, speed, and operating costs
associated with testing full-sized ARVs, such as the AV-21, make testing arduous, expensive, and
rare. Offline testing, such as in simulation or off of collected datasets, is critical to catching issues.
While the time pressures of a high-paced competition and the need to develop an entire ARV stack
can make thorough validation difficult, our experience has shown that it is imperative to successful
deployments. Balancing development and testing is nontrivial when working with limited resources.

Between Seasons One and Two, the team focused on identifying the software failures, and also
determining why our development practices failed. In particular, the testing of the perception stack
was completely revamped. Datasets were created by merging our log collections with logs from other
teams so that the perception detections could be compared against the RTK GPS of both vehicles
at any instant. Any perception code change was validated on this dataset and run on hardware
that matched the performance of the ADLINK from Season One (see Figure 6). A simulator was
developed to simulate the object detection pipelines, with customizable levels of noise, false positive
rate, and output “detection” rate, to aid the development and testing of the tracker pipeline. These
practices, and more, allowed the team to more thoroughly evaluate performance and prepare for the
Season Two events.

Autonomous Racing Demands Strong Algorithms and Systems. With this work, we are
beginning to address some of the largest challenges in Autonomous Racing. We recognize that there
are many failure modes with our approach and assumptions that it makes that only apply under
our Operational Design Domain (ODD). What has been achieved is a full, baseline stack that is
capable of participating in the Indy Autonomous Challenge head-to-head Passing Competition.
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However, in designing and building this software stack, it is clear that no one algorithm can
meet every requirement. For example, Model Predictive Control (MPC) is a state-of-the-art control
approach; but, a complex numerical optimization approach carries the risk of ill-conditioning or high
computation time. A potential solution is to use LQR as a fallback for MPC. For both LQR and
MPC, there still exists the potential for model mismatch, such as when driving at very high speeds,
or at the traction limits of the tires. Solving these problems requires exploring multiple solutions,
including designing better algorithms (i.e., robust MPC) and building better systems (i.e., safety
monitoring and response).

Designing the software stack requires a holistic approach. Individual components depend on a set
of assumptions about their inputs, the problem, and what their output should be. A misalignment in
assumptions between two successive components can lead to degraded performance. For example, a
planner may assume an upper bound on the quality of the incoming agent beliefs and a certain level
of performance from the trajectory tracking controller. If the planner is too optimistic, it may guide
the vehicle too close to other agents. A better algorithm at one level (i.e., using PointPillars over
clustering) allows dependent tasks to be more optimistic. Finding a good balance of performance
and understanding how to set assumptions is a nontrivial task in systems-level engineering.

6. Conclusion and Future Work
We have presented a modular and fast software stack for an Autonomous Racing Vehicle (ARV)
capable of navigating at high speeds with minimal lateral deviations, reliably detecting vehicles and
tracking an opponent ARV at over 100 m away, even at high speeds, and safely trailing and passing
opponent ARVs. Modularity, speed, and efficiency permeate the entire stack through our choices of
algorithms and the systems built around them.

With our approach, we have competed in the Indy Autonomous Challenge events in Indianapolis,
Las Vegas, and Texas, which will serve as the base for our entry into future competitions. As
MIT-Pitt-RW’s approach has evolved, the team’s performance has become increasingly competitive.
The results for the competition are as follows: Did Not Finish (DNF), Did Not Qualify (DNQ),
Quarter Finalist, and Semifinalist. The testing, lessons learned, and data gleaned over this series of
events, especially in Las Vegas, are informing future developments of the stack.

Moving forward, we intend to continue to validate our tracking and fusion stack and improve
its performance. Additionally, we will build new models with data collected from tooling for
autolabeling; and evaluation metrics built from opponent GPS data will increase our stack’s ability
to detect competitor ARVs. With a more robust data set, we can explore alternative approaches to
improve performance, particularly for long-range detection and velocity estimation. Finally, with a
more intelligent controller and the introduction of online vehicle model estimation, we can improve
our ability to navigate highly dynamic scenarios at even higher speeds.

Our current software stack addresses many of the challenges laid out previously but notably
does not address adversarial agents. Several research directions stem from interactions between
ARVs; including motion prediction and forecasting in highly dynamic scenarios, planning under
uncertainty in racing scenarios, planning to maximize the reward to the agent while minimizing
the risk of collision or instability at high speeds, and more. We hope to explore several of these
directions in the future to meet the challenges needed to solve full head-to-head autonomous racing.
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