
Field Robotics, June, 2022 · 2:1068–1104 · 1068

Special Issue: DARPA Subterranean (SubT) Challenge

Regular Article

Multi-Agent Autonomy: Advancements and
Challenges in Subterranean Exploration
Michael T. Ohradzansky1 , Eugene R. Rush2 , Danny G. Riley3 , Andrew B. Mills1 ,
Shakeeb Ahmad1 , Steve McGuire4 , Harel Biggie3 , Kyle Harlow3 ,
Michael J. Miles2 , Eric W. Frew1 , Christoffer Heckman3 and J. Sean Humbert2
1Aerospace Engineering Sciences, University of Colorado Boulder, CO, USA
2Mechanical Engineering, University of Colorado Boulder, CO, USA
3Computer Science, University of Colorado Boulder, CO, USA
4Electrical & Computer Engineering, University of California Santa Cruz, CA, USA

Abstract: Artificial intelligence has undergone immense growth and maturation in recent years,
though autonomous systems have traditionally struggled when fielded in diverse and previously
unknown environments. DARPA is seeking to change that with the Subterranean Challenge, by
providing roboticists the opportunity to support civilian and military first responders in complex
and high-risk underground scenarios. The subterranean domain presents a handful of challenges,
such as limited communication, diverse topology and terrain, and degraded sensing. Team MARBLE
proposes a solution for autonomous exploration of unknown subterranean environments in which
coordinated agents search for artifacts of interest. The team presents two navigation algorithms in
the form of a metric-topological graph-based planner and a continuous frontier-based planner. To
facilitate multi-agent coordination, agents share and merge new map information and candidate goal
points. Agents deploy communication beacons at different points in the environment, extending the
range at which maps and other information can be shared. Onboard autonomy reduces the load on
human supervisors, allowing agents to detect and localize artifacts and explore autonomously outside
established communication networks. Given the scale, complexity, and tempo of this challenge, a
range of lessons was learned, most importantly, that frequent and comprehensive field testing in
representative environments is key to rapidly refining system performance.

Keywords: subterranean robotics, motion planning, mapping, cooperative robots, exploration

1. Introduction
Subterranean environments pose a significant challenge for autonomous robotic exploration. Main-
taining consistent and accurate state estimates across long distances is critical to mapping and
planning, and is difficult without the aid of GPS. Varied lighting and other environmental conditions
such as heavy dust, smoke, or fog can degrade sensor measurements, and a range of sensing modalities

Received: 16 January 2021; revised: 20 August 2021; accepted: 06 September 2021; published: 7 June 2022.
Correspondence: Michael T. Ohradzansky, Aerospace Engineering Sciences, University of Colorado Boulder, CO, USA,
Email: Michael.Ohradzansky@colorado.edu
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2022 Ohradzansky, Rush, Riley, Mills, Ahmad, McGuire, Biggie, Harlow, Miles, Frew, Heckman, and Humbert
DOI: https://doi.org/10.55417/fr.2022035

http://fieldrobotics.net

https://orcid.org/0000-0002-6403-9137
https://orcid.org/0000-0001-9451-224X
https://orcid.org/0000-0001-5685-6666
https://orcid.org/0000-0003-4634-0484
https://orcid.org/0000-0002-6251-2146
https://orcid.org/0000-0003-4650-7950
https://orcid.org/0000-0002-6281-1218
https://orcid.org/0000-0002-9092-3655
https://orcid.org/0000-0003-2894-2449
https://orcid.org/0000-0003-3686-089X
https://orcid.org/0000-0002-9651-6866
https://orcid.org/0000-0002-0863-875X
mailto:Michael.Ohradzansky@colorado.edu
https://doi.org/10.55417/fr.2022035
http://fieldrobotics.net

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1069

may be needed to maintain accurate state estimates and maps. Diverse and sometimes hazardous
terrain present mobility challenges to ground platforms, and can require more complex path
planning and guidance algorithms or even specialized robots to navigate. Additionally, underground
environments generally make wireless communication difficult by limiting the range and bandwidth
that information can be transmitted. Depending on mission requirements, additional sensors may
be needed such as cameras for detecting visual artifacts or Bluetooth modules for detecting cellular
devices. Developing robots that are capable of overcoming all of the aforementioned challenges
requires rigorous testing in representative environments.

The DARPA Subterranean Challenge (DARPA, 2021) was created to spur the advancement
of novel approaches to autonomous mapping and exploration of underground environments and
is motivated by mission-critical scenarios such as disaster response and time-sensitive combat
operations. Teams are challenged with deploying robotic systems capable of navigating diverse
subterranean environments in search of artifacts. The challenge is split into three circuit events
(Tunnel, Urban, and Cave) and a final event that combines the challenges of all the subterranean
domains. To score points during a timed run, teams must detect and localize various types of
artifacts placed throughout the course within the time limit and report it to the DARPA scoring
server. Searching for artifacts efficiently requires intelligent exploration strategies accompanied with
able navigation and guidance. Terrain in the challenge includes flat concrete, soft dirt with rocks
and boulders of varying size and shape, aggressive slopes and stairs, and even areas of thick mud,
all of which provide unique planning and mobility challenges for different robot platforms. Varied
lighting conditions and severely limited communication makes artifact detection, localization, and
reporting a significant challenge. Competitors in the challenges are allowed one Human Supervisor
who can interact directly with the robots.

Team MARBLE has competed in the Tunnel, Urban, and virtual Cave circuit events to date.
At these events, the team deployed a heterogeneous fleet of ground and aerial robots with
autonomy stacks consisting of perception, localization, mapping, exploration, artifact detection,
communication, and multi-agent coordination algorithms. Our solution focuses on multi-agent
autonomy, where agents are able to explore unknown environments efficiently by sharing information
like maps and goal points. Generating consistent pose estimates is critical to coordination across
platforms, and our team uses the open-source LiDAR-Inertial SLAM package Google Cartographer
for localization (Hess et al., 2016). In our approach, each agent localizes independently. Other teams
have demonstrated distributed SLAM methods where incorporating localization information from
multiple robots can improve pose estimates (Ebadi et al., 2020), (Lajoie et al., 2020). For the
purposes of planning and situational awareness, a volumetric occupancy grid of the environment
is created in real time using the open-source octomap package (Hornung et al., 2013). Sharing
entire maps over limited communications networks is undesirable, and so additional features like
map difference segmenting and map merging were added to the octomap package. To facilitate
autonomous exploration, our team has developed graph and frontier-based path planning algorithms.
For the circuit events, our team’s focus has been on autonomy while other teams have relied heavily
on the Human Supervisor to coordinate the movements and actions of their systems (Rouček et al.,
2020) (Ots, 2020). To traverse the subterranean environments, our team has pursued development
of four-wheeled and tracked ground robots complimented with multi-rotor platforms. Other teams
have deployed four-legged quadrupedal robots (Miller et al., 2020), (Bouman et al., 2020) and blimps
(Huang et al., 2019).

In the following work, we present MARBLE, which is a multi-agent solution for autonomous
subterranean exploration and artifact detection. First, an overview of our platforms and autonomy
solution is presented in Section 2. In Section 3, a deeper dive into the mapping solution is provided
where the implementation and benefits of map-merging is discussed. Our team has developed several
planning strategies and solutions for the different subterranean environments, which are presented in
Sections 4 and 5. A vision-based method for detecting and avoiding obstacles onboard aerial vehicles
is discussed in Section 6. Section 7 contains a brief discussion on a UDP-based mesh communication
network for message passing between robots. A core capability developed by the team is a multi-agent

Field Robotics, June, 2022 · 2:1068–1104

1070 · Ohradzansky et al.

(a) (b) (c)

Figure 1. The robot fleet is composed of three classes of robotic agents: (a) Clearpath Husky, (b) Lumenier
QAV500, and (c) Superdroid HD2.

coordination algorithm, which is presented in greater detail in Section 8. Finally, lessons the team
has learned as a result of developing and deploying autonomous robot fleets for the DARPA SubT
Challenge are presented in Section 9.

2. System Overview
In the following sections, an overview of the hardware and software solutions is presented. The
following terms are used interchangeably to refer to the different systems: agent, robot, platform,
and vehicle. MARBLE robotic platforms are shown in Figure 1, and a general overview of the
multi-agent autonomy solution is shown in Figure 3.

2.1. Platforms and Hardware
Ground Vehicles: The Clearpath Husky operates as a general all-purpose platform with sufficient
payload, endurance, and customizability to support the team’s higher-level needs. The Husky
has proven to be a capable motion base, however, several aspects of the rugged underground
environments, such as the introduction of stairs and increasingly rough terrain, have led to greater
fleet diversification and specialization. The Superdroid HD2, a large tracked ground vehicle, was
incorporated into the fleet to address the Husky’s limitations. The ground vehicle platforms are
equipped with a range of sensors needed to support critical processes like localization, artifact
detection, and obstacle avoidance. The main sensor onboard is the Ouster OS1-64 LiDAR (Light
Detection and Ranging), which generates 3D pointclouds that are used for localization, mapping,
and obstacle avoidance. A LORD Microstrain 3DM-GX5-15 VRU provides inertial measurements for
state estimation. RealSense D435 cameras are used to generate color and depth images for artifact
detection, and are also used for object avoidance. An RPLIDAR S1 is placed at the front of the
vehicle for navigation and obstacle avoidance. Special-purpose sensors, such as a carbon dioxide
sensor and a Bluetooth module, have enabled agents to detect gas and cellphone artifacts during
past Circuit Events. All onboard processing is handled by a 32-core AMD Ryzen CPU equipped
with 128GB of RAM and 4TB of SSD storage. Artifact detection is performed on a NVIDIA GTX
1650 using 4 Gig-E cameras. To communicate with the mesh network, the ground vehicle’s have
their own router and high-power antenna. Each vehicle is equipped with approximately 940Wh of
usable battery storage in the form of four 7S lithium-ion packs. With all motors at stall torque and
the compute element fully loaded, the estimated runtime is one hour; in normal operations, the
platforms can run for approximately three hours. The fully outfitted ground vehicles are shown in
Figures 1(a) and 1(c).

Aerial Vehicles: The UAV assembly, which was deployed at the Urban circuit event, is based
on the Lumenier QAV500 airframe, and the frame shape is elongated to provide more space for
onboard sensing and compute. To achieve a suitable thrust-weight ratio, form factor, and endurance,
each UAV is outfitted with Tiger MN3510 700kV motors with 12′′×4′′ propellers and is powered

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1071

Figure 2. View of the MARBLE Base station GUI during a competition run.

by a 8000-mAh 4S LiPo battery. This design is rated to carry a maximum of 1600 grams per
rotor. Pixracer R15, a PX4 based flight controller, is used for attitude stabilization and velocity
control. To maximize UAV mission endurance, lightweight sensing and compute hardware has been
selected. Similar to the ground vehicles, the aerial vehicle has an Ouster and Lord Microstrain
IMU for localization. However, the aerial vehicles are configured with upward and downward-facing
Camboard pico flexx cameras instead of the heavier left-facing and right-facing RealSense D435
cameras. The Intel NUC 7i7DNBE operates as the onboard computer and is accompanied by a
NVIDIA Jetson Nano for visual artifact detection purposes. Similar to the ground vehicles, the
UAV is also equipped with a router for communicating with the mesh network. The UAV design is
shown in Figure 1b.

Beacons: The ground vehicles are outfitted with communications beacons that relay information
between robots and the Base station, as well a mechanism to deploy them. Beacons are deployed
by the multi-agent robot node described in Section 8 based on several different conditions including
distance, loss of communication, junction, turn, and Human Supervisor-commanded. In addition to
acting as a simple communications relay, a multi-agent node running on the beacons allow them to
act as a stationary agent. As agents enter communications range of a beacon, information is collected,
stored, and shared with other agents on the network. This allows the network to be more resilient
to intermittent communications and facilitates the sharing of information critical to coordination.
Examples of different communication beacon designs are shown in Figure 21 and examples of the
latest iteration can be seen on the back of the Husky in Figure 1a.

Human-Robot Interface: The MARBLE Base station and Graphical User Interface (GUI)
provides rapid situational awareness to the Human Supervisor and acts as a direct interface to the
DARPA scoring server. Through the GUI, the Human Supervisor is able to view received maps
and artifact reports from agents on the network. Similar to the beacons, the Base station runs a
special version of the ROS multi-agent node to facilitate information transfer in both directions.
The GUI allows high-level interactions with each robot and manages artifact reporting. A screen
capture of the GUI and RViz can be seen in Figure 2. High-level commands, including emergency
stop, manual goal points, return home, and beacon deployment, can be sent to agents across the
network. Additional features include the ability to reset the map each agent uses for planning and
a view of each robot’s position, intended goal, and current planned path within the map.

2.2. Architecture
To succeed in the DARPA Subterranean Challenge, the agents must have a number of different
capabilities. In order to score points, they must be able to detect and distinguish a variety of artifacts,
localize them in the environment relative to a fixed world frame, and report this information back to

Field Robotics, June, 2022 · 2:1068–1104

1072 · Ohradzansky et al.

Figure 3. General overview of the software pipeline on the ground platforms, aerial platforms, and base station.
Data sources are shown in green, Artifact Detection processes in purple, Localization and Mapping processes in
orange, Navigation processes in red, and Operational processes in blue.

the base station for final submission to DARPA. The RGB image is processed by YOLO (Redmon
et al., 2016), which produces a bounding box around the object with an estimated confidence score.
A local projection for the artifact is obtained by fusing the center of the bounding box with the
corresponding aligned depth measurement. The projection is then transformed into the fixed world
frame using the robot’s current state estimate. Over the different phases we have learned a great
deal about developing a flexible object detection system which we discuss in Section 9.1.

Artifact fusion is performed on each robot to aggregate individual detections from that robot.
The Base station merges incoming artifact reports from all robots into a single report. Artifacts with
similar positions and types are merged prior to manual submission. The Human Supervisor is able
to view artifact report images, as well as the robot’s map and odometry, which enables manual
corrections to the artifact location or classification before submitting the final report. Artifact
reports are transmitted over a deployable WiFi mesh-network, as well as map segments, global

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1073

robot positions, and other useful information for multi-agent coordination. The Base station does
not act as a central agent, however, it can relay information between robots as any other agent can.

Critical autonomy processes like mapping, navigation, and artifact localization rely on accurate
and reliable state estimation. The fleet has relied on Google’s Cartographer (Hess et al., 2016),
which uses LiDAR scan matching for local odometry, and scan-to-submap optimization to correct
for drift via global loop closures. Despite other LiDAR-inertial SLAM algorithms having greater
accuracy such as LOAM (Zhang and Singh, 2017), Cartographer was selected for its real-time loop
closure drift correction, ease of use, and thorough documentation.

Optimizing goal point selections and the paths to reach them is critical to exploration efficiency.
Custom solutions have been developed by our team for selecting new goal points and navigating
to them based on the expected topology of each circuit environment. A graph-based navigation
and exploration strategy was employed for the Tunnel circuit event. The environments for Urban
and Cave circuit events are more spatially complex than the tunnel environments, and so a more
comprehensive frontier-based exploration algorithm was developed. These solutions are discussed in
greater detail in Sections 4 and 5. To map the environment, the ground robots use the open source
package octomap (Hornung et al., 2013) to generate a probabilistic occupancy grid representation
of the world. To support the needs of our multi-agent solution, several additions like map-merging
were made to the octomap package and are discussed in Section 3.

Some of the processes, such as localization, global planning, and artifact detection are common
to both aerial and ground platforms with minor adjustments. However, the lower level subsystems
are designed separately. The aerial vehicles use Voxblox (Oleynikova et al., 2017), to generate a
Euclidean signed distance field representation of the environment, which is useful for generating
paths with sufficient clearance from obstacles. The UAVs also use upward and downward facing
depth sensors in addition to the horizontal Ouster LiDAR for mapping. This setup increases the
volumetric information gain in the vertical direction, which is essential in traversing shafts and stairs.
The UAVs also have a different local planning solution developed exclusively for 3D navigation, and
is based around planning within the depth image space. Detecting obstacles directly in the sensor
frame provides immunity to mapping and localization uncertainties to a large extent, serving as an
additional layer of safety while following the path. This is discussed in greater detail in Section 6.

3. Map Merging
Three-dimensional maps were required for our planning solution in Section 5, human supervisor
situational awareness, and for use by DARPA. The MARBLE mapping solution uses octomap
to generate 3D occupancy grid representations of the environment, which is a direct input to
global planning and provides situational awareness for the Human Supervisor. The octree structure
of octomap’s occupancy grids makes storing and transmitting maps more efficient than other
representations such as point clouds; this efficiency is highly desirable when trying to transmit maps
over wireless communication networks. While octrees are efficient data structures, transmitting
entire large-volume octomaps through bandwidth-limited communication networks can lead to
network congestion. For this reason, incremental map transmission can assist in efficient information
transfer (Sheng et al., 2004). A more complete view of the environment can be generated using
map data from multiple agents and merging maps from multiple robots can also reduce redundant
coverage (Ko et al., 2003; Simmons et al., 2000; Zlot et al., 2002). In addition to obtaining map
data from a direct neighbor, map data from other agents that the immediate neighbor has come
into contact with can also be added to the agent’s map (Howard, 2006).

Merging maps across robots is critical to our multi-agent coordination strategy, detailed in
Section 8, but merging is not a capability in the standard octomap package. Following lessons
learned discussed in Section 9.3, we developed our own mapping package (Riley and Frew, 2021),
which is a fork of octomap Server for real-time mapping with map merging built-in. Instead of
merging in maps from other robots after an agent’s self map has been generated, which would
require an additional iteration over an agent’s “self” map, new map sections are merged in at the

Field Robotics, June, 2022 · 2:1068–1104

1074 · Ohradzansky et al.

Figure 4. Example of a multi-agent merged map, from a field deployment at Edgar Experimental mine in Idaho
Springs, CO. This map was generated from a collection of diff maps from two robots.

Figure 5. Sequential diff maps from left to right, with the final map on the far right constructed in real time
for comparison. The diff maps can be merged to fully reconstruct the original map.

same time as new sensor data. By adding the merging functionality directly to the map creation
process inside of octomap, valuable computing resources can be conserved. Figure 4 illustrates
a merged map during a test deployment at Edgar Experimental mine in Idaho Springs, CO. The
lighter gray image represents the Cartographer map generated by one of the agents who explored
the left side of the mine. Another robot traveled to the right, and transmitted its map over the
communications network, creating the complete map shown.

Another desirable feature that is not provided with the stock octomap package is the ability
to generate differences between different map sections, or “diff maps”. octomap generates the
full Octree map structure, which can become prohibitively large to transmit for map sharing
purposes. While incremental point cloud transmission is a common technique, we are not aware of
another technique of breaking up octomaps for incremental transmission. In our modified octomap
package, diff maps can be created at a predetermined rate, and contains all the mapping data for
that time interval. The sum of an agent’s diff maps make up its “self” map. Having access to smaller
sections of an agent’s map allow the multi-agent node to transmit just the new diff maps over the
communications network, instead of the entire map. This also benefits the map merging process, as
smaller sections of the map are received for merging instead of the entire neighbor map, as seen in
Figure 5. Another example of the benefits of transmitting map diffs is demonstrated in Figure 19,
where one agent has started to explore and is sharing map differences back to the base station. This
allows the next agent to plan a path directly to a candidate goal point over sections of the map it
has received from another agent.

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1075

The majority of the mapping processes occur on both the robots and the Base station. Both
types of agents receive and transmit all diff maps for every robot, as communication allows. Robots
generate diff maps and merge map segments received from other robots and the Base station. The
Base station does not generate new map segments, but is able to re-transmit segments to robots that
need them, and also merges the maps for use by the Human Supervisor. The multi-agent framework
discussed in Section 8 uses a request/response method to retrieve any missing diffs. The diffs are
allowed to arrive out of order, and in the case where nodes have differing values, the latest sequence
number, which is embedded in the diff, is used to ensure the data are current.

Implementing differences maps resulted in a massive bandwidth savings over repeatedly trans-
mitting the entire map at the same intervals. For a typical one hour mission, a robot may produce
a two megabyte octomap, which when transmitted at 10 second intervals totals approximately
360 megabytes over the entire hour. The same map when transmitted as a differences map typically
requires more data due to the overlap that occurs when nodes change values across transmissions, and
is not a fixed rate; however observation showed differences maps average approximately 10 kilobytes
in size per transmission. Therefore a one hour mission totals approximately 3.6 megabytes, or about
1/100 of the repeatedly transmitted map. The diff map implementation also enables the removal
of “bad” map sections that have been shared to other agents. This is useful in cases when another
agent shares sections of a map that are misaligned or corrupted, which can occur for a number of
reasons including localization drift and sensor failures. In the case of narrow hallways, merging in
bad map sections from another agent can result in an inability to plan paths effectively. Through
the Base station GUI and the multi-agent node, the Human Supervisor is able to reset a particular
agent’s map on every other agent, effectively clearing bad map sections that have been shared
to other agents. Using diff maps, the Human Supervisor can be relied upon to resolve mapping
inconsistencies and potentially resolve otherwise mission-ending conflicts.

4. Metric-Topological Planning and Reactive Control
Subterranean environments are a challenging communications environment. It was determined that
our systems would need to be able to travel outside the communication range of the base station,
explore the environment, identify artifacts, and return to communications with the base station to
relay artifact information back. For these reasons, a heavy focus was placed on developing robust
exploration and navigation strategies that are entirely autonomous and can operate outside of
communications range of the Base station. Some exploration approaches represent the environment
through topological graphs (Dudek et al., 1991). It has been shown that graph-based exploration is
useful in tunnels (Thrun et al., 2004), indoor rooms (Bormann et al., 2016), and mazelike indoor
environments (Oleynikova et al., 2018). After a graph is built, it can be used to efficiently navigate
from one node to another (Brass et al., 2011). The centering algorithm used to traverse edges
of the graph is bio-inspired. Insects rely on patterns of optic flow to generate a centering flight
response (Srinivasan et al., 1998), which was tested in (Santos-Victor and Sandini, 1997) and
(Griffiths et al., 2006), whereas our systems rely on LiDAR depth measurements. Insects also rely
on optic flow for small-obstacle detection and avoidance (Alvarez et al., 2019), and which has been
demonstrated as a viable obstacle detection method onboard multi-rotor platforms (Ohradzansky
et al., 2018).

For the Tunnel circuit event, our team deployed a fleet of ground vehicles in a largely 2D
environment. The planning strategy assumed a 2D environment that could be approximated
accurately with a graph (vertices and edges), and that the graph could be traversed using the reactive
centering controller on edges. Tunnel environments fit reasonably well within this assumption with
a few exceptions in larger open areas. The approach relied on a binary image thinning algorithm
which we performed over a Gaussian-blurred occupancy grid image (Zhang and Suen, 1984). Then,
an image convolution is performed on the skeletonized map to detect vertices and edges. The results
of the approach can be seen in Figure 6 which shows sample graphs from Edgar Experimental and
NIOSH mines. Vertices are labeled differently if they contain 1 or 3 or more edges or if they are

Field Robotics, June, 2022 · 2:1068–1104

1076 · Ohradzansky et al.

Figure 6. Examples of the graph conversion from a blurred occupancy grid image. The two images on the left
are from the Edgar Experimental mine in Idaho Springs, CO, and the two images on the right are from NIOSH
mine during the Tunnel circuit event. In both sets, the left image is the raw binary occupancy grid generated by
the robot’s perception system and the right image is the resultant graph estimate. Edges are shown in white and
vertices are labeled with circles. Red circles are multi-edged vertices, blue circles are single-edged vertices, and
green circles are the ends of unexplored edges.

an unexplored edge. Estimating a graph using simple image processing proved quite effective at the
Tunnel circuit event.

To traverse the graph, the vehicles relied on a reactive centering controller operating on depth
scans from the front mounted RPLIDAR. Estimates of environment relative states, such as the
lateral and angular displacement of the vehicle from the centerline of a hallway, are extracted from
the depth scans using bio-inspired wide-field sensor integration methods. The estimates are used
as feedback to generate steering commands that drive the vehicle to the center of corridor like
structures. An additional steering controller is integrated with the centering controller for reactive
small obstacle avoidance. At vertices, a simple proportional steering controller was used to travel
to the center of each vertex, turn to face the desired new edge, and resume centering to the next
vertex.

An overview of the reactive centering controller is presented in Figure 7. On the left side of
the figure, a top down view of a ground robot in a hallway environment is shown. The robot has
both a lateral displacement δy and an angular displacement δψ relative to the center-line of the
hallway. These are the states we are interested in regulating for the purpose of centering. The robot
is equipped with a 2D depth scan sensor that measures depth d as a function of the viewing angle
γ and robot state x =

[
δy δψ

]
. Measured depth is hypothetically unbounded, and so the depth

scans are converted to nearness µ = 1
d , which is a bounded signal. Examples of nearness scans are

shown in the plot in the middle of Figure 7, where the red signal represents the measured nearness
of a robot with both lateral and angular displacements and the blue signal represents the measured
nearness of a robot that is perfectly centered in a hallway (δy = δψ = 0). Nearness scans are useful
in the case of centering because they encode the hallway relative states δy and δψ. Equation (1)
represents analytic nearness in an infinite hallway as a function of the hallway relative vehicle states
δy and δψ and the hallway half-width a.

µ(γ,x) =

−
sin(γ+δψ)
a+δy −π ≤ γ + δψ < 0

sin(γ+δψ)
a+δy 0 ≤ γ + δψ ≤ π

. (1)

By projecting the measured nearness signal onto different predetermined shapes, estimates of
the hallway relative vehicle states δy and δψ can be generated and used to produce the desired
steering response. This process is shown in the right side of Figure 7 where the measured nearness
signal is projected onto different shapes Fi. The scalar outputs of the projections, which represent
the environment relative states, are pooled through the gain matrix K to generate the different

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1077

Figure 7. Overview of the centering controller algorithm. (Left) Top-down view of a ground vehicle in a hallway.
The plots in the middle show examples of different nearness signals. A data flow for the controller is shown on
the right side of the figure.

Figure 8. Example trajectories from testing in Edgar Experimental mine (left) and a small section of Tunnel
circuit event at NIOSH mine (right). The centering controller guides the vehicle to nodes on the graph.

control signals. The generation of the steering command using the spacial inner product is detailed
in Equation (2), and the weighting shape that achieves a centering response Fuψ̇ is given in
Equation (3). In Equations (2) and (3), scalar gains k1 and k2 are used to adjust the responsiveness
of the steering controller to lateral and angular displacement, respectively.

uψ̇ = 〈µ, Fuψ̇ 〉 =
∫ π

-π
µ(γ,x) · Fuψ̇ (γ) dγ = k1b1 + k2b2 (2)

Fuψ̇ = k1 sin(γ) + k2 sin(2γ) (3)

This centering algorithm is well suited for environments that resemble hallways, but it is also able
to achieve a centering response in nonuniform environments as seen in Figure 8. Due to integrating
hundreds or thousands of sensor measurements, the generated control commands are robust to noise
in the measured nearness signal. The algorithm is also robust to small-obstacles in the measured
environment; small-obstacles, which produce perturbations in the measured nearness signal, do not
cause large deviations from the center of the environment. As a result, a separate small-obstacle
detection and avoidance algorithm is used in combination with the centering controller to ensure the
system avoids obstacles of all sizes while navigating the graph. The relative distance and angular
position of small obstacles in the environment are extracted from the depth scan through inhibition of
the measured depth scan with a blurred, low-frequency reconstruction of the scan. The small-obstacle
detection and avoidance process is presented in greater detail in (Ohradzansky et al., 2018), and the
complete navigation solution for the Tunnel circuit event is detailed in (Ohradzansky et al., 2020).

For determining the next best edge to explore, the team developed different exploration strategies.
Initially, a Silent Explore strategy was developed in which the different systems were completely
independent and did not share information. This exploration strategy was designed to keep the
vehicle moving quickly through the environment while it searches for artifacts. Once an artifact is

Field Robotics, June, 2022 · 2:1068–1104

1078 · Ohradzansky et al.

Table 1. Linear distance traveled in meters, of MARBLE’s three-
Husky fleet, during the NIOSH Experimental mine (EX) and Safety
Research mine (SR) deployments at Tunnel circuit event.

Run Course H01 H02 H03
1 SR - - -
2 EX 150 840 450
3 EX - 1595 953
4 SR - 420 445

Figure 9. UGV agent trajectory (yellow) and OCTOMAP (rainbow) during autonomous exploration mission at
NIOSH Experimental mine in Bruceton, PA.

detected, it switches its current mission mode from “Explore” to “Report,” and a path is planned
back to the base station to relay the artifact information back. The second strategy was Greedy
Explore, which requires a more robust communications network. This allowed the robots to explore
deeper into the environment without returning all the way to the base station to report artifacts and
maps. This was implemented primarily through the communications beacons detailed in Section 7,
to increase the range of network, but they were not required to partially implement this strategy, as
the robots themselves could also act as a relay. In this strategy, like the previous, when an artifact
was detected, the robot entered Report mode and began a path toward the base station. However,
once a robot received acknowledgement from the base station that an artifact had been reported,
the robot returned to Explore mode and continued to explore the environment until the next artifact
was found. The Greedy Explore method was used through all phases of the competition, although
communications beacons were not deployed during the initial tunnel event.

Experimental results from the Safety Research (SR) and Experimental (EX) section of NIOSH
mine are presented in Table 1. We had difficulty getting our systems localized against DARPA’s gate
during the first run, and we were unable to deploy any vehicles in the time limit. During runs where
we were able to get our systems out of the gate, we averaged just under 700m of linear distance
traveled per vehicle. Figure 9 shows a run in the Experimental section where the system covered
1.6 linear kilometers in under an hour. Figure 6 shows the graph structure generated from a single
agent during another Tunnel competition run, as well as a deployment at Edgar Experimental mine
in Idaho Springs, CO. We had not developed a multi-agent coordination strategy fully at the time,
and so our agents often cover the same areas. A similar graph-based exploration approach was used
by Team CERBERUS, and the results from larger scale experiments inside different subterranean
environments, including Tunnel circuit, are presented in (Dang et al., 2020). In their ground vehicle
tests, their systems are able to cover hundreds of meters in one hour deployments. Team EXPLORER
deployed a graph-based exploration strategy at Tunnel circuit, the results of which are summarized
in (Miller et al., 2020). While Team CoSTAR used a frontier-based exploration strategy at Tunnel

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1079

circuit, they were able to cover an impressive amount of the course in the time limit (Ots, 2020). For
our graph-based approach to perform robustly in more complex 3D environments, a more generic
graph-building process could be adopted as a part of the team’s future work.

5. Continuous Frontier View Planning
The graph-based planning approach presented in Section 4 assumes that the environment is readily
approximated by a graph. For more general 3D environments, previous works have looked at
representing the environment using occupancy grids (Hornung et al., 2013) and signed distance fields
(Oleynikova et al., 2017). Given a continuous map representation, a robot can explore an unknown
environment by consistently navigating towards the frontier, or the threshold between the observed
and unobserved (Yamauchi, 1999). Although this can be effective in 2D, the frontier is often sparse
in 3D environments because of gaps in depth sensor fields of view and noise in the observed map. As
a result, modern exploration approaches focus on exploring the environment by selecting trajectories
or goal poses that maximize information added to the map (Palazzolo and Stachniss, 2017) (Charrow
et al., 2015). This is often accomplished by considering an outward expanding network of motion
primitives (Dharmadhikari et al., 2020) or trajectories generated through an RRT* (Bircher et al.,
2016; Schmid et al., 2020). These approaches generate efficient exploring behaviors when the edge
of the map is in close proximity to the robot, but they can struggle to break out of local planning
minima when reaching dead-ends in larger environments.

The MARBLE 3D exploration solution is an integrated planning approach that considers the
map information of frontier-facing goal poses with a rapid cost-to-go calculation using fast marching
methods that works on both air and ground vehicles. By limiting the sampling domain to frontier-
relative goal poses, the robot’s attention is constantly focused on the edge of the environment
resulting in navigation away from dead-ends and local information minima. Although frontiers can
be sparse in 3D, we utilize a two filtering methods to focus on frontiers that are connected to other
frontiers. The frontier view planning strategy takes as input a mapM, of the environment and the
current vehicle pose x, and outputs a utility table. The map M is a 3D voxel representation of
the environment where each voxel contains an occupancy probability and Euclidean signed distance
to the closest obstacle. This utility table is a list of goal poses, their utilities, and paths from
the current robot pose to each goal pose. Global planning is split into two phases: (1) frontier
view sampling, where frontiers are filtered and goal poses are sampled relative to the frontier and
(2) utility optimization, where the utility of each sampled goal pose is calculated by dividing the
information gain of each goal pose by a multi-goal cost-to-go calculation.

5.1. Planning preliminaries
To understand the approach taken in this section, it’s important to establish some preliminary
definitions. The map M is a set of voxelized grid cells c, defined as

M = {c : c ∈ Z3, c � 0, c � cmax}, (4)

where Z is the set of all integers and cmax is an upper bound on the map dimensions. The map,
M, can be separated into two subsets, the seen space, S, and the unseen space, U . Within the seen
space, voxels are either free, c ∈ Sf , or occupied, c ∈ So. More formally, these subsets are defined
below

M = S ∪ U ,
S = Sf ∪ So,
So = {c : c ∈M, O(c) ≥ pocc},
Sf = {c : c ∈M, O(c) ≤ pfree},
U = {c : c ∈M, pfree < O(c) < pocc},

(5)

Field Robotics, June, 2022 · 2:1068–1104

1080 · Ohradzansky et al.

where O(c) ∈ [0, 1] is the probability that the voxel cell c is occupied, and pfree and pocc are the
thresholds for considering a voxel free or occupied respectively. In addition to occupancy probability,
the distance to the closest occupied voxel D(c) is defined at each map voxel. Occupancy probability
at each map voxel is stored in the merged octomap data structure maintained by our mapping
solution and the distance transform of the occupancy grid is stored and updated incrementally by
running an efficient Euclidean distance transform function at regular map update intervals (Zhao,
2007).

The set of traversable voxels, T , are the set of voxels containing valid robot poses. For a quadrotor
this is defined as

Tquad = {c : c ∈ Sf , D(c) ≥ rsafe}, (6)

where rsafe is some safety radius. The safety radius should be a bit larger than the radius of a
sphere containing the quadrotor. For a ground vehicle, free voxels with a bottom neighbor voxel,
N(c)bottom, that is a member of the ground voxel set, G, are considered traversable. A ground voxel
is an occupied voxel whose local surface normal vector’s z component, Normal(c)z, is greater than
or equal to some threshold, nz,ground. A formal definition is shown below.

Tground = {c : c ∈ Sf , N(c)bottom ∈ G},
G = {c : c ∈ So,Normal(c)z ≥ nz,ground}.

(7)

This restricts the ground vehicle’s planned motion to surfaces below a certain inclination. When
computing the Euclidean distance transform for ground vehicle planning, we ignore voxels in the
ground voxel set so that D(c) is the distance from the nearest occupied voxel that is not in the
ground voxel set {So \ G}.

5.2. Goal pose sampling
The first phase of the global planning algorithm is goal pose sampling. Goal poses are sampled
relative to the frontier, F , which are free map voxels adjacent to an unseen voxel. This is defined
below as

F = {c : c ∈ Sf and (0 <
∑

n∈N(c)

1U (n))}, (8)

where Sf is the set of map voxels that are seen and free, U is the set of unseen map voxels, N(c) are
the neighbors of voxel c, and 1U is the indicator function for membership in the unseen voxel set.
Frontier voxels are labeled by the FindFrontierVoxels(M) method on line 2 of Algorithm 1. In 2D
this is often sufficient for finding potential robot goal points, however in 3D the raw frontier voxels
are often spurious and can lead to observing little unseen map volume. For this reason, our approach
filters the frontier voxels before sampling goal poses in a two step process. Due to the way our 3D
LiDAR sensors are mounted on our platforms, it can be difficult to observe frontier voxels along the
ceiling or negative space near the ground plane. Frontiers whose local plane fits have a large normal
z-component can often be difficult to view with a sensor field of view aligned with the x-y plane and

Algorithm 1. Frontier View Planner (M, x, rnormal, nz,max, nz,min, Nc,min, rcontig, rgroup)

1: path← {}
2: F ←FindFrontierVoxels(M)
3: F ←FilterFrontierNormals(F , rnormal, nz,min, nz,max)
4: F ←FilterFrontierContiguous(F, Nc,min)
5: P ←SampleGoalPoses(F , rgroup)
6: T ←ComputeCostToGo(M, c(x))
7: pgoal ← maxp∈P U (p, x)
8: path←FollowGradient(c(pgoal), c(x))

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1081

Algorithm 2. SampleGoalPoses(F, rgroup)

1: P ← {}, Groups ← {}
2: while {F \Groups} 6= {} do
3: cg ← Sample({F \Groups})
4: Gnew ← {}

5: for c ∈ GetFrontierNeighbors(cg, rgroup) do
6: if c /∈ Groups then
7: Gnew ← [Gnew; c]
8: end if
9: end for

10: Groups ← [Groups; Gnew]
11: end while

12: for G ∈ Groups do
13: while True do
14: psample ← SamplePose(c̄g,FoV)
15: if CheckAdmissible(psample) then
16: if !CheckOcclusion(psample, c̄g) then
17: P ← [P; psample]
18: Break
19: end if
20: end if
21: end while
22: end for

lead to sampling goal poses with small information gains, and so they are filtered out. Similarly,
frontier points that are not part of a larger contiguous cluster often produce goal poses with little
map information, and so voxels are filtered to eliminate spurious frontier voxels that are not part
of a larger cluster. Frontiers are filtered by the FilterFrontierNormals and FilterFrontierContiguous
methods on lines 3 and 4 of Algorithm 1. rnormal is the frontier plane fitting radius, [nz,min, nz,max]
is the range of acceptable z components for the local frontier plane normal vector, and Nc,min is the
minimum number of contiguous frontier voxels to form a cluster.

After filtering the frontier voxels in the map, the planner samples candidate goal poses relative to
those frontier voxels. This procedure is detailed in Algorithm 2. The goal sampling algorithm starts
with a greedy grouping procedure where frontier voxels are randomly sampled from the ungrouped
set, {F \Groups}, and grouped with their frontier neighbors within a radius of rgroup that have not
yet been added to the grouped set. Once every frontier voxel is grouped, candidate goal poses are
sampled relative to each group centroid c̄g, until an admissible and nonoccluded goal pose psample is
found for each group. Admissible poses have a position within a traversable voxel. Poses are sampled
uniformly in polar coordinates relative to the corresponding group centroid. The sampling radius,
azimuth, and elevation ranges are bounded such that the group centroid is within the sensor field
of view of the robot at the sampled pose. A 2D example is shown in steps 3 and 4 of Figure 10. The
colored rectangles in step 3 are grouped frontiers and the purple circles in step 4 are the sampled
poses relative to those groups. This grouping and pose-sampling procedure was derived and adapted
from an approach used by underwater surface inspection robots (Englot and Hover, 2013).

5.3. Utility optimization and cost evaluation
After candidate goal pose destinations are sampled, the planner evaluates the poses using a simple
mapping rate utility function defined below

U(p,x) = FrontierInFoV(p)
Cost(p,x) , (9)

where p is a candidate goal pose, x is the current robot pose, FrontierInFoV(p) is the number of
frontier voxels visible from the candidate goal pose, and Cost(p,x) is the approximate travel time
to get from the current goal pose to the candidate goal pose. This is required to select the best
utility among the candidate goal poses (line 7 in Algorithm 1). Other approaches have looked at
information-theoretic utility functions that consider the entropy reduction of a particular path or
pose. These approaches consider the value in obtaining more accurate occupancy estimates of the
seen voxels in the map. However, for the purpose of exploring the environment as quickly as possible
we assume the only valuable voxels to see within the map are those adjacent to unseen portions of
the environment.

In order to evaluate the utility function at each candidate goal pose, we first need the cost to
get there. Line 6 in Algorithm 1, ComputeCostToGo(M, c(x) evaluates the cost for each candidate

Field Robotics, June, 2022 · 2:1068–1104

1082 · Ohradzansky et al.

Figure 10. A 2D drawing of the frontier view pose sampling and planning approach. (1) The robot builds an
occupancy grid of the environment. White cells are free, black cells are occupied and gray are unseen. (2) Frontiers
are labeled in green as free cells adjacent to unseen. (3) Frontiers are clustered based on contiguity (orange, red,
and purple) and filtered if the clusters do not contain a minimum number of cells (2 cells in this example).
Clusters are further divided into groups, denoted by the colored lines, using a greedy sample-based grouping
algorithm. (4) Groups are used to sample informative goal poses (purple circles) relative to the each group’s
centroid. Information gains are calculated based on cells in the sensor field of view at each goal pose. (5) A fast
marching method is used to calculate the cost-to-go to each goal pose and the gradient of the wavefront is used
to generate a path to each pose that the front reaches. (6) A list of the best n goal poses is published where n
is the number of robots within comms. The green path is selected in this n = 1 example.

goal pose according to the equation below.

Cost(p,x) = T (c(p)) + |ψx − ψpath,0|+ |ψp − ψpath,f |
ψ̇max

. (10)

The first term T (c(p)) is an approximation of the travel time from the robot’s current position to
the voxel position of the candidate goal pose c(p), using a multi-stencil fast marching method. The
second term is the time required for the robot to turn in place from its current heading, ψx, to
align with the initial path heading ψpath,0, added to the time required to turn from the final path
heading ψpath,f to the final goal pose heading. Fast marching is a level set method that calculates
the arrival time T of a wave front starting at the robot’s current voxel location c(x), to each voxel
in the set of traversable voxels, c ∈ T . This is calculated using a fast approximation of the solution
to the Eikonal equation

|∇T (c)|S(c) = 1, (11)

where S(c) is the wave propagation speed at voxel c (Sethian, 1999; Kroon, 2020). A constant
speed map yields a fast approximation of the cost-to-go to each voxel in the map equivalent to
Dijkstra’s algorithm. The safety of the resultant path produced by the planner can be augmented
by computing a speed map at each voxel, c, according to the following equation

S(c) = 1
2 [tanh(D(c)− e) + 1], (12)

where D(c) is the distance to the closest occupied cell. This function maps the distance to the closest
occupied voxel to a speed in the range [0, 1], resulting in paths that are obstacle-aware. This means
that the planned paths will tend towards the medial axis of the environment, which is analogous

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1083

to the middle of a hallway, whenever possible (Lee, 1982). Algorithm 1 finishes by computing paths
to the best candidate goal pose(s) by following the gradient of the wave front arrival time T (c)
from each pose back to the robot’s current voxel. This is quickly done by evaluating the 3D Sobel
operator on the 26-voxel neighborhood of each voxel from the candidate goal pose back to the robot.

Although this guarantees that the planner will find the candidate goal pose that minimizes the
proposed utility function, calculating the fast marching cost-to-go to every goal pose can become
prohibitively expensive if some of the candidates are far away from the robot’s current position. For
this reason, there is a stopping criterion based upon the best possible utility of any candidate goal
pose that has not been evaluated, maxp∈Pne U(p), is bounded according to the equation below:

max
p∈Pne

U(p) ≤ maxq∈Pne FrontierInFoV(q)
T (cFMM) + 2π/ψ̇max

. (13)

This bound exists because the current fast marching voxel wavefront arrival time T (cFMM) is
an increasing function with algorithm run time. If we consider the worst possible heading penalty
term, 2πψmax, the best utility of any remaining candidate goal pose must be below this bound. The
fast marching algorithm stops if the current best goal pose utility among those evaluated is better
than any remaining goal pose utility. This extends naturally to the case of multiple robots. Fast
marching evaluates until the M best candidate goal poses that are some minimum distance apart
are evaluated, where M is the number of neighboring robots. Then the global planner returns the
M best poses, utilities, and paths for the coordination scheme. Paths are followed using a simple
steering controller driven by the vehicle’s heading error with respect to a look-ahead point a fixed
distance down the path.

5.4. Experimental performance
Examples of planned paths on the UGV in the Edgar Experimental mine and GeoTech warehouse
environments are shown in Figures 11b and 12b. As shown in these two map images, the robot
successfully plans over the mapped obstacle environment to a candidate goal point 10s of meters
away. Figure 12a shows the full route taken by an agent when exploring the 100m × 80m × 6m
GeoTech warehouse, which is an extremely cluttered environment. Examples of deployments at
SATSOP nuclear facility for the Urban circuit are shown in Figures 13 and 14. Figure 4 shows a
map of sections of the Edgar Experimental mine that was generated by two separate robots who were
planning over a shared, merged map using this exploration method. This global planning method

(a) (b)

Figure 11. RViz views of a single agent exploring the Edgar Experimental mine in Idaho Springs, CO. (a)
Example of the Euclidean distance transform [D(c)] map generated during the planning phase. The color of the
voxel encodes distance to the nearest occupied cell with red being next to an occupied cell and green / blue
voxels as far away from occupied cells. (b) Example of a path planned over the speed map to a cluster of frontier.
Colored voxels represent occupied cells in the occupancy grid, opaque white voxels represent frontier, and the red
line the is planned trajectory to the next goal point.

Field Robotics, June, 2022 · 2:1068–1104

1084 · Ohradzansky et al.

(a) (b)

Figure 12. RViz views of a single agent exploring the 100 m× 80 m× 6 m GeoTech warehouse in Denver, CO.,
where (a) is a top-down view of the final map after a 25-minute deployment, and (b) show the agent actively
planning a path. Colored voxels represent occupied cells in the occupancy grid, opaque white voxels represent
frontier, and the red line the is planned trajectory to the next goal point. Planned paths tend towards the medial
axis of the obstacle environment, but here we see the path hug the left side of the corridor due to a false obstacle
in the underlying distance transform.

(a) (b)

Figure 13. RViz views of a single agent exploring the Beta Course at SATSOP nuclear facility in Elma, WA,
during the Urban circuit event where (a) is a top down view of the map with the red dot indicating the location
of (b) a third person perspective.

(a) (b)

Figure 14. UGV trajectory (yellow) and OCTOMAP (rainbow) during autonomous exploration mission, shown
both at an (a) top-down and (b) angled views. This field deployment took place in Alpha Course at SATSOP
nuclear facility facility in Elma, WA, during the Urban circuit event.

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1085

was also tested on our aerial vehicle in the GeoTech warehouse. The results of this test are shown in
Figure 17 where the aerial vehicle was able to explore about a fifth of the entire warehouse during
a single 10 minute flight. As can be seen in these figures, both air and ground vehicles successfully
map a reasonably large portion of these cluttered environments with a minimal amount of overlap
of previously explored locations.

A similar approach to exploration is used in (Charrow et al., 2015), where 2D exploration is
demonstrated in an office like environment with a ground vehicle and 3D exploration is demonstrated
in an indoor stairwell with an aerial vehicle. In (Schmid et al., 2020), a comparison of the performance
of different exploration algorithms in a 40 m × 40 m × 3 m maze environment is presented. Team
CoSTAR presented their results from Tunnel circuit in (Ots, 2020) where they use a frontier-based
exploration algorithm when navigating outside of communication range and cover an impressive
amount of ground during their runs. One area of opportunity for our frontier-based planner lies in
determining what terrain is actually traversable for each of our platforms and incorporating this
information into path generation. Due to the size of our map voxels (.15m) and the relatively low
ground clearance of our UGVs, it can be difficult to discern precisely which sections of terrain will
cause the vehicle to get physically stuck. Team CoSTAR has presented their results from Urban
circuit in (Bouman et al., 2020) where they use a quadrupedal robot and a traversability focused
local planner to avoid hazardous terrain and navigate stairs.

6. Aerial Vehicle Vision-Based Local Control
Typical motion planners in the literature rely on an environment map to plan a guidance path
followed by trajectory optimization to obtain a feasible smooth motion plan for the robot (Gao
et al., 2018; Debord et al., 2018; Liu et al., 2018). In an extreme environment where reliability
is of major concern, this approach alone poses several safety challenges. During field testing, we
found that uncertainty around the locations of obstacles can lead to collisions, especially in confined
and extremely cluttered spaces. Sources of uncertainty include localization and mapping errors
during agile maneuvers, as well as small and thin obstacles that may go undetected by the map.
Moreover, if the environment becomes too complex, the continuous optimization runs into a risk of
not being able to converge to a feasible solution within the limits of imposed constraints. Tuning
constraints on such a problem is often nontrivial and highly dependent on the environment. The
concept of planning, based on direct high resolution depth information, has been explored in past
in the context of bio-inspired obstacle avoidance (Ohradzansky et al., 2018; Alvarez et al., 2019;
Ohradzansky et al., 2020) and lookahead planning within a depth image (Matthies et al., 2014;
Dubey et al., 2017; Ahmad and Fierro, 2019). These methods, however, are either only suitable
for 2D navigation or are based on lookahead planning. On the contrary, our vision-based obstacle
avoidance method is well-suited for 3D and senses and avoids obstacles actively, making it more
resilient to a changing environment, localization uncertainty and imperfect path following due to
model uncertainty.

We proposed and implemented a potential-based solution that directly utilizes high resolution
depth information for actively sensing and avoiding local obstacles while following a global path.
The controller ensures that the vehicle kinematics are respected during path-following and the
heterogeneous perception scheme (map-based and direct vision-based) improves the perception
reliability. Each MARBLE UAV utilizes a two-tier planning strategy: direct vision-based local
control and map-based global path planning. The frontier view planner from Section 5 is leveraged
to generate a global path for a UAV. A lookahead point is calculated along the path such that
the point keeps a fixed distance from the robot at all times until the end of path. The lookahead
point serves as the goal point for the local controller. The two-tier planning strategy is depicted in
Figure 15.

We assume that the UAV follows the unicycle nonholonomic kinematics where the system inputs
are the forward, vertical and steering velocity commands in the robot’s body frame. The goal of
the MARBLE UAV local planner is to complement the global planner by avoiding small obstacles

Field Robotics, June, 2022 · 2:1068–1104

1086 · Ohradzansky et al.

Figure 15. A depiction of the UAV motion planning strategy. The map-based frontier view planner generates a
global path at each replan time instant. A lookahead point is chosen along the path that is a constant distance
away from the robot at all times. The reactive controller relies on direct depth sensor information to avoid
obstacles that are not captured by the map due to localization and mapping uncertainties. The lookahead point
moves along the path as the UAV follows and serves as the goal for the reactive controller.

that do not appear in the map, and obstacles that become close in proximity due to mapping and
localization uncertainty. It is also important to note that the path generated by the frontier view
planner is geometric. The local controller is responsible to generate the velocity control commands
to respect the vehicle kinematics during path following.

The depth images come from all of the onboard depth cameras for the vision-based reactive
control. The depth cameras are assumed to follow the pinhole model. For a small 3D object projecting
to N depth image pixels, the repulsive vector is calculated as

urep =
N∑
i=0

krep

(
1

pmax
z

− 1
piz

)
p̂i, (14)

where krep is the user-defined gain to tune the aggressiveness of the repulsive potential, pmax
z is the

maximum range of the depth camera and piz is the depth of the ith pixel. In this two-tier planning
setup, the goal point, or lookahead point, for the reactive controller is continually updated to be
a fixed distance away from the robot, and resides along the global path. The resultant vector is
calculated as

ures = (1− |urep|/|umax
rep |)x̂lookahead + urep/|umax

rep |, (15)

where x̂lookahead is the direction of the lookahead point in the vehicle’s body frame and |umax
rep | is the

maximum magnitude of the repulsive vector. The term 1− |urep|/|umax
rep | regulates the speed of the

robot depending upon the proximity of the obstacles. As the vehicle enters an increasing level of
clutter, the effect of the repulsive vector becomes more dominant. The resulting velocity commands
for the UAV are calculated as

vx = vmax
x uxres,

vz = vmax
z uzres,

vθ = vmax
θ

1
π

atan2(uyres, u
x
res), (16)

where vx, vz, and vθ are the forward, vertical and steering velocity commands respectively. The
maximum velocities for each axis are defined by vmax

x , vmax
z , and vmax

θ .
In order to evaluate the effectiveness of the reactive controller in an isolated manner, we first

carried out several flight tests in the presence of a single obstacle. These tests were carried out in
a simpler lab space with MARBLE UAV completely relying on the onboard sensor stack. A small

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1087

(a) (b) (c)

Figure 16. Results from a single obstacle local planner flight tests. The black circles represent the UAV physical
bounds. The black lines show the path followed by the UAV during each of the maneuvers with red arrows
representing the repulsive vectors. The UAV starts from the respective start locations for each of the runs and
maneuvers towards the goal points that are (a) 2 m behind the obstacle, (b) 5 m behind the obstacle, and (c) 4
m behind the obstacle. The approximate obstacle location is overlaid on the plots.

obstacle was placed in the middle of the lab and the start and goal points were set on the opposite
sides of the obstacle. Results from three of the tests are shown in Figure 16.

Existing long-range UAV planning methods in the literature such as (Bircher et al., 2016;
Dang et al., 2019; Dang et al., 2020; Dharmadhikari et al., 2020) have been demonstrated in
underground tunnels over distances around 150 m or small confined nearly-empty rooms. These
environments exhibit general predictable structures, for instance, underground mines typically
consist of long corridors connected through junctions with most of the obstacles appearing close
to the walls. We carried out flight tests using both global and local planners integrated to explore
the GeoTech warehouse facility in Denver, Colorado. Unlike corridor-like environments which are
primarily composed of 2D structures, the complex 3D nature of the warehouse environments makes
them challenging for autonomous exploration. This particular environment is highly cluttered and
heterogeneous since it houses manufacturing activities. Looking up, steel-truss ceilings support the
roof, featuring exposed sprinkler, ductwork, and conduit networks, as well as light fixtures and
ceiling-to-floor electrical cabling. In case of a UAV navigating in such an environment, even a single
close contact of the robot with an obstacle, for instance an electric cable, can prove detrimental to the
exploration mission safety. Our two-tier planning setup demonstrated safe and reliable exploration
through the environment (Ahmad et al., 2021a). One of the runs is highlighted in Figure 17 in which
the UAV navigated around 300 m with a full battery pack which amounted for 11 minutes of flight
time.

While this solution significantly improved the safety of the UAVs, it had difficulty navigating
narrow corridors, discerning thin obstacle from erroneous noisy returns in the depth image, and
assessing the quantity and size of local obstacles. In order to overcome these limitations in the
Urban circuit event, the UAV local planning method was overhauled with a probabilistic technique
that explicitly tracks individual obstacles within the depth image. Each input depth image is first
discretized in a 2.5D fashion. This implies pixel discretization along the x and y axes and depth
discretization along the z axis of the depth image. Each voxel inside the 2.5D voxel grid is considered
a potentially occupied region. We based our probabilistic observation and state transition models
on the number of depth image points inside each voxel and the ability of an occupied voxel, hence
an obstacle, to move inside the depth image respectively. The latter is modelled as a Gaussian
governing the expected speed of an obstacle inside the voxel grid. We then used the Sequential
Importance Sampling (SIR) technique (Smith, 2013; Doucet et al., 2000) which follows a two-step
process, prediction and update, to find the posterior of the occupied voxels given a history of depth
images. By formulating the problem as a Partially Observable Markov Decision Process (POMDP),

Field Robotics, June, 2022 · 2:1068–1104

1088 · Ohradzansky et al.

(a) (b)

Figure 17. The OCTOMAP and flight path of a ten-minute autonomous exploration mission for the GeoTech
warehouse in Denver, CO are presented from both a (a) rotated and (b) top-down perspective. The UAV travelled
approximately 300 m within 30 m × 60 m × 5 m volume. The ceiling from the original map is removed for better
visibility.

we utilized the occupancy probability distribution (SIR posterior) over the voxel grid to generate
robot velocity actions. In order to achieve real-time execution of the method onboard the MAV,
we used the QMDP approximation to solve the POMDP problem (Littman et al., 1995; Smallwood
and Sondik, 1973; Littman, 1994). The reward function is chosen to be the sum of potentials along
the path if a given control input is followed for a fixed horizon. The action space is discretized
and the action that best reduces the potential over the fixed horizon is the preferred solution to
the POMDP. This technique provides us a robust and more flexible framework to generate robot
actions directly from a depth image stream, rectifying major issues with the local planner faced at
the Urban circuit. Deeper insights into this motion planner are provided in (Ahmad et al., 2021b;
Ahmad et al., 2021c). Using this approach, we could actively localize obstacles as thin as 8 mm in
diameter relative to the robot.

7. UDP-Mesh Based Communications
Implementing effective communication systems in subterranean environments is challenging for
a number of reasons, including sudden lost-comm situations and potentially fleeting windows of
connectivity. Within the structure of the competition, artifact reports are high-value data, whereas
mapping and coordination data are relatively low-valued. This disparity in data importance suggests
an operational requirement for quality-of-service prioritization and message delivery guarantees.
Meanwhile, using ROS (version 1 unless otherwise specified) for system message passing presents
practical challenges to implementing these operational requirements due to inherent architectural
limitations. Alternative message transport mechanisms exist; in particular, the transport-agnostic
design of ROS21 has the potential to provide a quality-of-service guarantee at the transport layer
in addition to other desirable services such as discovery and name resolution. However, ROS2 was

1 https://design.ros2.org/

Field Robotics, June, 2022 · 2:1068–1104

https://design.ros2.org/

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1089

insufficiently developed to meet our needs without major porting efforts; instead, a replacement
system was designed to leverage the advantages of ROS2 in a ROS1 environment.

Per design, ROS connections between nodes are not aware of one another. Initial system
development utilized the multimaster_fkie package2 to bridge topics between ROS masters in
a master-per-robot configuration. Under the multimaster_fkie architecture, standard TCPROS
transport is still used for inter-node communication; nodes subscribing across robot boundaries
are not aware of the potential for network saturation. For low-bandwidth topics such as telemetry,
where message size and update rate (1 Hz) require less than 1kB/s, this behavior is acceptable.
However, as the total bandwidth required increases, there is no method for prioritizing topics among
one another. In practice, this lack of prioritization manifested as message latency spikes, in which
large map data transmissions (several megabytes in size) prevented reception of artifact reports and
telemetry (under 1 kB each, exclusive of artifact images) due to channel saturation. While the map
data were in transit, other higher-priority data were delayed. Traditional methods of implementing
quality-of-service are not possible in the ROS environment; for example, methods utilizing specific
ports are not implementable due to ROS’ usage of independent links between every publisher and
subscriber. Limitations of existing ROS infrastructure necessitate the use of some other transport
to provide prioritization services.

The core innovation in our networking stack is the implementation of a custom ROS transport
solution based on UDP, called udp_mesh. Udp_mesh provides discovery services and reliable delivery
using UDP datagrams compatible with any underlying layer 2 mesh networking solution without
requiring any changes to ROS nodes or inspection tools. As an example of a customization for
our particular network environment, udp_mesh was implemented without utilizing multicast traffic
to recognize the limitations of multicasting over wireless meshes. Udp_mesh implements standard
services such as discovery, address resolution, ROS message encapsulation, point-to-point transport,
point-to-multipoint transport, and quality-of-service prioritization. Fundamentally, udp_mesh cre-
ates a single node on each ROS master through which all nodes attached to that master transmit
and receive arbitrary ROS messages through the mesh. Udp_mesh handles fragmentation, transport,
and reassembly of ROS messages ranging from single-byte messages up to approximately 2TB per
single message. Since all messages are now routed through a single node, traffic shaping can be
readily implemented. While independently conceived and implemented, udp_mesh improves upon
the Pound (Harms et al., 2017)3 package by adding additional quality-of-life services such as name
resolution and removing a requirement that topics and priorities need to be declared at compile
time. Other competitors faced similar limitations with bandwidth and the ROS networking stack. In
(Mascarich et al., 2020) both low frequency radios for high priority topics, and high frequency radios
for low priority topics were used in conjunction with open source nimbro_network4 package to solve
the ROS transport and prioritization problems. Udp_mesh allows us to control the prioritization of
our data at a software level.

8. Multi-Agent Coordination
Rapid situational awareness of subterranean environments can be difficult to achieve depending
on the size of the environment in question. Having multiple agents can increase the amount of
area covered, but they must share information in order to reduce overlap in exploration. Our
overall strategy relies on multi-agent coordination through data sharing and goal deconfliction,
in order to take advantage of the use of multiple robots with different capabilities and reduce
redundant coverage. The primary challenge was designing a multi-agent system that could handle
robots frequently leaving communications, due to the difficult communications coverage in the
environments. Multi-agent coordination can be effectively divided into implicit methods, where

2 http://wiki.ros.org/multimaster_fkie
3 https://github.com/dantard/unizar-pound-ros-pkg
4 https://github.com/AIS-Bonn/nimbro_network

Field Robotics, June, 2022 · 2:1068–1104

http://wiki.ros.org/multimaster_fkie
https://github.com/dantard/unizar-pound-ros-pkg
https://github.com/AIS-Bonn/nimbro_network

1090 · Ohradzansky et al.

Figure 18. MARBLE Multi-Agent Framework.

information such as map data is shared and reasoned over (Yamauchi, 1999), and explicit methods,
where shared data is used to direct individual agents (Burgard et al., 2002). Centralized coordination
requires a robust communications network, so limited communications environments such as those
in the Subterranean Challenge can benefit from a decentralized approach. Although auctions, or
market-based coordination (Gerkey and Mataric, 2002), are typically thought of using a centralized
auctioneer, decentralized systems may also use a market-based approach, such as through an internal
single-item auction (Smith and Hollinger, 2018) or Broadcast of Local Eligibility (Werger and
Mataric, 2000).

The multi-agent framework in Figure 18 evolved throughout the competition from simply
handling message transmission between agents to providing the full mission management solution
for each agent, including both implicit (through map sharing) and explicit coordination (through
goal deconfliction)(Riley and Frew, 2021). The framework provides efficient and reliable sharing of
information between robots as well as with the Human Supervisor.

Each robot’s multi-agent node compiles local information such as odometry, artifacts, current
goal, and number of map diffs available. It packages these data, along with the most current data
for any neighbor it is aware of, into a small message that is broadcast to every other agent (robots,
beacons and base station) every second. Remote agents compare their own stored data for this agent
and if necessary request missing map diffs and artifact images. This ensures any robot has the poten-
tial to eventually transmit all data for another robot back to the base station and Human Supervisor.

The multi-agent agent node is responsible for the task management of the robot. Potential tasks
include explore, report artifacts, deploy beacon, and process commands from the Human Supervisor.
Furthermore, the explore task includes goal selection among several potential goals provided by the
global planning node described in Section 5. The selected goal’s path is relayed to low-level control,
as well as whether to transition to trajectory following mode to return home. The multi-agent node
also monitors when the robot is not able to reach a goal, and marks the area to prevent global
planning from continuing to attempt to plan there.

Explicit Coordination: The goal selection algorithm also includes a deconfliction process
with other robots’ goals through an internal market-based auction (Riley and Frew, 2021). The
frontier-based exploration algorithm described in Section 5 produces an array of goal points Ga

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1091

Algorithm 3. G ← GoalSelect(Ga, NeighborGoal s)

1: if NoNeighbors or OneGoal then
2: G ← Ga[0]
3: else
4: conf l ict ← true
5: i ← 0
6: while conf l ict and i < Length(Ga) do
7: for n in NeighborGoal s do
8: if GetDistance(Ga[i](posit ion), n(posit ion)) < Deconf l ictRad ius and Ga[i](cost) > n(cost) then
9: conf l ict ← true

10: break
11: end if
12: conf l ict ← false
13: end for
14: i ← i + 1
15: end while
16: if conf l ict then
17: G ← Ga[0]
18: else
19: G ← Ga[i − 1]
20: end if
21: end if
22: return G

ordered by cost. The number of goal points is based on the total number of robots in the system, and
each goal point is separated by a minimum distance. These goals are used in Algorithm 3 to select the
best goal G. Initially, each agent chooses its lowest cost goal point, where cost is a function of path
distance, and broadcasts it to other agents. Each agent compares any received goals NeighborGoals
to each potential goal. If the received goal is within the minimum distance DeconflictRadius, and
the received cost is lower than its own cost, the agent moves down the list until it finds a goal that
does not conflict with another agent. If all goals conflict, it continues to its own lowest cost goal. If a
received goal is within the minimum distance, but its own cost is lower, it similarly broadcasts its in-
tention. The other agent who broadcast that conflicting goal either receives that goal and performs an
identical calculation, causing it to move down its own list; or if communication is broken, it continues
to its best goal as if there were no coordination, and in this case both agents navigate to the same area
until new goals are found. This selection method does not require a central coordinator or require
the agents to wait for responses from others; however, it does not guarantee an optimal solution.

Our algorithm allows coordination without relying on back-and-forth communication. If messages
are lost due to communications errors or no communications, then the agents just act as if there
were no coordination and proceed to their lowest cost goals. During simulation this method was
highly effective in preventing agents from duplicating exploration. However, during competition this
was not well-observed due to limited deployment of robots. The largest multi-agent gains were seen
due to implicit coordination through map merging, discussed in Section 3, which allowed the robots
to plan over maps received from other agents. This was most evident at the starting gate, where the
first robot would pass its map back to the next robot in line, and instead of planning a goal point a
few meters in front of it, the next robot could create a plan along the entire length of the hallway
right from the start. This scenario is shown in Figure 19.

9. Lessons Learned
9.1. Artifact detection
Initial Evaluation: Object detection is a well researched problem in computer vision and we
evaluated state of the art methods for both 2D and 3D detectors. Common 2D detectors such as

Field Robotics, June, 2022 · 2:1068–1104

1092 · Ohradzansky et al.

(a) (b)

Figure 19. Example of multi-agent coordination in the SATSOP nuclear facility. (a) One agent has already been
deployed and has reached the purple dot. It has shared its map, frontier, and candidate goal points to the second
agent, who is able to plan a path from the start point (blue) to an unexplored room (red). (b) Close up of the
generated path and a first person view of the environment in the top-left corner.

region proposal based networks like Fast R-CNN (Girshick, 2015) require multiple passes over an
image to classify an object and then detect where the object is in the image. In contrast, YOLO
(Redmon et al., 2016) performs both classification and detection in a single regression making it a
significantly faster detection (0.5 FPS for Fast R-CNN and 45 FPS for YOLO). Various methods
exist for classifying objects from 3D point clouds (Maturana and Scherer, 2015; Qi et al., 2017).
While methods such as Pointnet have been shown to run efficiently on powerful GPUs, they are
still limited to classification and not full detection. Extensions such as Voxelnet (Zhou and Tuzel,
2018) and PointRCNN (Shi et al., 2019) have been made to perform object detection however, they
require powerful GPUs which are impractical for mobile robots. As a result, we chose to perform 2D
detection using the latest YOLO model (Farhadi and Redmon, 2018). Since the challenge requires a
singular point estimate within a 5m radius of ground truth, for each artifact we are able to perform
depth estimation using external depth data after the initial detection in a 2D image. We shifted
our classification hardware from a NVIDIA Jetson TX2 to an NVIDIA GTX 1650 with TensorRT
acceleration (Vanholder, 2016), allowing for classification at 60FPS using the YOLO V3 model
(Farhadi and Redmon, 2018) at a resolution of 608×608. As a result of increased inference rate and
resolution, artifact filtering/fusing can conclude faster before the robot moves out of view, and do
so with a lower false-positive rate.

Over four runs at the Tunnel circuit event, in which our team took the fourth place, we successfully
scored 17 artifacts and falsely reported 7 artifacts which did not correspond to a true artifact. Of
the 17 successful reports, 8 were originally reported at an incorrect location as a result of orientation
error in the initial robot to DARPA artifact frame transform computed at the gate, and required
the Human Supervisor to adjust the location in order to score the points. Our ability to score points
at the Urban circuit was limited due to mobility issues, which prevented us from reaching many
artifacts.

Artifact Fusion: Despite training the network in the presence of various conditions (motion
blur, dim/intermittent lighting, camera angle, robot platform, etc.), the classifier network cannot
completely capture these effects, and so the confidence of a single classification can vary. Therefore,
during this filtering/fusing step, we require a sequence of consistent positive classifications in order to
file a single artifact report. This approach enables us to train the network using typical metrics and
then independently tune the filtering/fusing such that the false-positive rate is within an acceptable
range for a given robot in a given scenario (rather than requiring us to re-train the network several
times). For example, during the Tunnel and Urban circuit events, our Human Supervisor filters
incoming artifact reports before submission, and so a higher false-positive rate reduces the chances
of missing an artifact; however, during virtual circuit events, the limited number of artifact reports

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1093

are autonomously submitted, and so a low false-positive rate is necessary. Nevertheless, in the spirit
of the competition, we tune our algorithm such that only highly confident artifact detections are
forwarded to the base station for reporting.

Camera Configurations and Algorithm Modularity: As we progressed through the chal-
lenges, we learned that each new subterranean environment presented new challenges for detecting
artifacts. Originally, our artifact detection solution was completely coupled with the use of a
Realsense D435, which the team found to be unreliable. The team decided to pursue an artifact
detection and localization solution that was agnostic to camera and depth sensor selections. We
obtain an artifact depth estimate by projecting the located artifact in 2D image space into the
generated 3D octomap. Depth computation is done by casting a ray towards the direction of the
center of a bounding box produced by the YOLO V3 model and returning the first intersecting voxel.
By using an octomap, the framework is agnostic to the type of depth sensor used. However, our
depth accuracy is then limited by the resolution of the octomap. Based on the competition accuracy
requirement of 5m, the resolution limitation was accepted. By using our projection framework, the
system operates with any calibrated RGB camera that has a known transformation to the robot’s
map frame. This flexibility enables us to test our artifact detection pipeline on any RGB camera
setup without any significant software changes and more readily adapt to changing subterranean
environments.

9.2. Localization
Robustness in Austere Environments: One of the major challenges in the DARPA Subterranean
Challenge is achieving reliable localization performance in austere environments. Vision-based
solutions have traditionally dominated this space (Leutenegger et al., 2015; Nobre et al., 2017;
Qin et al., 2018) due to the maturity of computer vision feature extraction (Cheung and Hamarneh,
2009; Bay et al., 2008; Zhan et al., 2018). It was expected that the maturity of visual-inertial
SLAM packages (Nobre et al., 2017; Qin et al., 2018) would translate to greater algorithm stability.
However, we learned that performance in the lab did not transfer to the field. At the SubT
Integration Exercise (STIX), visual-inertial SLAM was unstable at times, losing tracking and
entering unrecoverable states. Specular highlights caused by reflective surfaces and inadequate
lighting, as well as feature-poor scenes, were chiefly responsible for tracking failures. Because the
robot fleet needs to be able to localize in a wide variety of previously-unknown austere environments,
reliance on visual sensing modality was deemed too large a mission risk. While research in overcoming
these issues is ongoing (Kasper et al., 2019), agents were transitioned to LiDAR-inertial localization
strategies. Field testing has shown that relying on visual or LiDAR sensing modalities alone may not
be sufficient to localize a robot through fog, dust, or smoke. Recent work focusing on multi-modal
sensor fusion (Khattak et al., 2020) and robust state estimation (Santamaria-Navarro et al., 2020)
are inspiring for future research directions.

Computational Efficiency: During the Tunnel and Urban circuit events, the team leveraged
a 2D version of Cartographer, constraining the vehicle to a plane, and making it computationally
faster. However, during hour-long missions in more complex environments, Cartographer 3D faced
computational limitations with its loop-closure scan-to-map global optimization routine. Minute-
scale latency during field tests was not compatible with the rapid mission tempo, and sometimes a
lack of convergence led to large uncorrected heading errors. More recently, LIO-SAM (Shan et al.,
2020) pushes toward higher real-time performance by reducing raw scans to planar and edge features
similar to LOAM (Zhang and Singh, 2017), and simplifying loop closure optimization via scan-to-
scan matching. Since real-time localization is the backbone of our autonomy stack, agents may be
transitioned to LIO-SAM if proven reliable in a diverse array of underground environments.

Multi-Robot Alignment and Localization: When deploying multiple robots, there are
several advantages to having them coordinate and share information, as discussed in Section 8.
Sharing information is often more beneficial if the information shares a common reference frame.
DARPA provides several options for localizing against a global reference frame including Apriltags

Field Robotics, June, 2022 · 2:1068–1104

1094 · Ohradzansky et al.

(Malyuta et al., 2019; Brommer et al., 2018; Wang and Olson, 2016), generic retroreflectors, and
survey reflectors. Transforms from the targets to the origin are provided by DARPA. The individual
teams are responsible for sensing the various targets and using them to align their robots to the
global reference frame. Of the provided options, the survey reflectors gave the most accurate and
consistent transforms for our systems. Separate analyses concluded that the position variance
of Leica prisms is on the order of millimeters (Lackner and Lienhart, 2016), consistent with the
centering accuracy specified by Leica (Leica Geosystems, 2020), whereas Apriltag variance is on
the order of centimeters (Abbas et al., 2019). Each system is equipped with a set of three survey
prisms, and both the robot and gate transforms are estimated in the survey station’s frame using
Horn’s absolute orientation method (Horn, 1987). This information is used to create an estimate of
the robot’s pose in the global reference frame.

Multi-robot alignment requires highly accurate orientations; as the distance increases from the
origin, minor orientation errors in initial map to world transformation can lead to increasing
position errors relative to the world frame across robots. Across ten tests surveying a transform
estimate from the same three prisms our chosen method showed a standard deviation between
the transforms of 0.06 deg of roll, 0.05 deg of pitch, and 0.09 deg of yaw and an average roll and
pitch estimate of −0.07 deg and 0.05 deg respectively relative to a gravity aligned global frame.
Horn’s method outperformed numerical methods used during the Urban circuit event, which varied
significantly despite relatively small differences in the robot’s initial orientations. This was due
to local minimum inherent to the nonconvexity of rotation estimates. The survey prism-based
alignment also outperformed estimates of alignment using Apriltags locations derived from the
robot’s forward-facing camera. Pose estimates generate from Apriltags had high variance since the
robots’ front facing camera could only localize all three Apriltags far from any tag and the camera
viewed the left and right Apriltags with yaw from the tags center. Both a sensor’s distance (Wang
and Olson, 2016) and yaw angle (Abbas et al., 2019) are known to decrease estimated pose accuracy,
and even these relatively minor effects led to significant pose estimate errors. For the first Tunnel
Circuit deployment ICP alignment conducted after the fact estimated the difference between the
first robot’s map and the third robot’s map in the world frame was 0.0527 deg of roll, 3.9215 deg of
pitch, and −0.4105 deg of yaw in the worst case.

9.3. Mapping
Map Merging Efficiency: As discussed in Section 3, the ability to merge maps is critical to our
multi-agent strategy. Originally, we used a custom merging node that accepted octomaps from
the multi-agent node as well as the standard octomap Server running locally on the robot. A
full merge of each map was performed every second. This proved to be computationally intensive
as the map size increased, and so a method of comparing the growth of the maps was added to
eliminate unnecessary map merges. If the map of a neighboring robot stopped growing, because
the robot stopped moving or it lost connection with the communications network, that map was
no longer merged, as it was already part of the local merged map. This drastically reduced the
computational requirements. We later developed the diff map solution because this solution still had
high computational requirements and more importantly, high communications requirements. Our
original design transmitted the entire map for each robot every second, while our diff map aware node
only transmitted small differences maps every 10 seconds. Compared to transmitting the full map
at 10 second intervals, diff maps used an average of 1/100 the bandwidth of our full-map solution.

Self-Prioritization: Maps were not re-aligned prior to merging, as it was assumed the robots
were already in a common reference frame with small error. We were using a voxel size of 0.15m for
the maps, and so it was necessary for each robot to have an initial world to map transform with under
0.075m of translation error to ensure map data is merged properly. However, during testing prior to
competition, it was found that small alignment errors could cause obstacles from a neighboring map
to block open space for the robot that performed the merge, and thus preventing the robot from
planning any further. A self-prioritization feature was added to combat this failure mode. Instead

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1095

(a) (b)

Figure 20. Example of merged maps: (a) without prioritization (b) with self-prioritization.

of a full merge, only an append of new information would be performed. In essence, the robot would
generate two maps, one using its own sensor data as a truth source, and another merged map where
it only appended cells from other maps in “unknown” areas, and never overwrote its own “seen”
data. This would prevent misalignment, most frequently caused by poor gate localization, from
creating obstacles over free space.

During the Urban circuit event, an error in gate detection resulted in almost exactly the exact
scenario used in simulation during development. In Figure 20a, the two maps are fully merged, and it
can be seen that the first robot (the left corridor) creates a wall in the middle of the second robot’s
map. This would have prevented the robot from being able to plan a path through the hallway.
Figure 20b shows the self-prioritized map where the robot is trusting its own representation of free
space more than merged map data. The first map still can be seen outside of the walls, but it does
not hinder the robot from navigating down the hallway. A future opportunity is to leverage iterative
closest point (ICP) techniques to align the map of a neighboring agent prior to merging.

9.4. Navigation
Graph-Based Navigation: The most common failure mode leading to a stuck robot was when the
graph-based planner generated an edge that the local centering controller could not navigate over.
Often, this was a result of rough terrain or an inconsistency in the map. If the vehicle attempted
to traverse the edge and failed, but the edge is left as unexplored, the system could enter a loop
of attempting to explore an edge that is not traversable. This exact situation occurred a few times
during the Tunnel Circuit event, and resulted in the agents wasting valuable exploration time.
Although the fleet moved on from this approach in the Urban circuit event, this fault could be
remedied by maintaining a list of recently visited vertices and the edges left and arrived on. Then, if
an edge could not be traversed by the centering controller, the planner would ignore it as a possible
destination. Overall, this approach is very successful in the NIOSH competition environment and
in the Edgar Experimental mine due to their graphlike structures.

Planner and Controller Disagreements: We have learned that one of the most challenging
aspects of path planning for ground vehicles in cluttered, subterranean environments is generating
safe paths. We noticed during initial testing of the global planner describer in Section 5 that the
generated global paths to the goal points were sensible and avoided large obstacles in the map.

Field Robotics, June, 2022 · 2:1068–1104

1096 · Ohradzansky et al.

Algorithm 4. RecedingHorizonStitching(M, x, u, 1thorizon)

1: pathRH ← {}

2: [path, pgoal]←FrontierViewPlanner(M, x, ...)
3: pathRH ←path
4: while True do
5: xRH ←FindLookahead(path, pgoal, x, u, 1thorizon)
6: [path, pgoal]←FrontierViewPlanner(M, xRH, ...)
7: pathRH ← [pathRH,−21thorizon:xRH ;path; pgoal]
8: end while

However, they did not take into account different aspects of the terrain like small to medium size
rocks or raised sections of concrete. As a result, the robot could wind up physically stuck if it followed
a path over terrain it actually could not navigate. To solve this problem, our team developed a
reactive controller based around high density depth sensor data of the ground immediately in front
of the robot. This helped the robot avoid obstacles not accounted for by the global planner, or stop
the vehicle if it was too close to a hazardous obstacle. Similarly, our aerial platforms required the
development of additional obstacle avoidance capabilities in order to effectively follow planned paths
safely through cluttered environments. The vision-based local controller presented in Section 6 has
proved to be an adequate solution for detecting and avoiding small obstacles along planned paths.
The team is working on improving the current planning algorithm to produce more terrain aware
paths for ground vehicle navigation. The main lesson here is that path planning algorithms developed
for cluttered subterranean environments needs to consider the inherent limitations in mobility and
sensing of the platform in order to ensure safe and traversable paths.

Path Stitching: When planning over a large horizon, the robot may travel a significant distance
in the time it takes our fast-marching based planning algorithm to generate a feasible path. We
learned that this can cause undesirable motion when the system transitions from following the old
path to the new path, depending on how far the robot has deviated from the new path in the time
it has taken to plan it. As a result, it’s necessary to plan from where the robot is expected to be
as opposed to where it is when the planning process begins. To this end, a receding horizon path
stitching algorithm has been added to plan from where the robot will be if it continues to follow the
previous path over a short-time horizon δthorizon. This process is detailed in Algorithm 4. Here the
stitching algorithm takes as input the current map,M, robot pose, x, robot speed, u, and stitching
horizon and outputs a path at regular planning intervals that contains a segment of the previous
path, pathRH,−2∆thorizon:xRH , connected to the new path segment planned from a stitch point, xRH
close to where to robot will be in δthorizon.

9.5. Communications
An initial review of the difficulties in underground communication (Zhang et al., 2001; Boutin
et al., 2008) led us to a strategy of “backbone,” where the goal was to create a basic communication
network stemming out from the base station. Agents needed to be completely self-sufficient in a
lost-comm condition. In general, each mobile vehicle would explore until certain criteria are met
(artifact discovered, etc.), returning to communications range when needed. This strategy allowed
us to accept an incomplete coverage map and provides a natural progression of capability through the
use of deployable relay beacons to extend the communications backbone back to the human operator.
Our communications solution has undergone three versions to date, corresponding to Circuit Events.

Version 1: Tunnel: The initial beacon design for the Tunnel circuit was designed to be small
and disposable. Small housings with minimal elevation (Figure 21, left) were used to house a
low-power radio. Meshing functions were provided by the open-source B.A.T.M.A.N stack in a
custom OpenWRT-based firmware. While other radios with superior properties from Silvus, Rajant,
and others were considered, cost considerations necessitated a commodity solution. To function
effectively within the backbone strategy, reconnect times were required to be as quick as possible

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1097

Figure 21. Custom communications beacons designed and built for the (left) Tunnel, (middle) Urban, and
(right) Cave circuit events.

in response to a topology change, which occurs when a robot returns to communication range.
B.A.T.M.A.N is not optimized for this use case, necessitating a replacement mesh solution. Further,
the low-power radios paired with quarter-wave antennas resulted in poor network performance,
leading to observed behavior of robots returning to the Base Station frequently to report artifacts.

Version 2: Urban: Version 2 beacons shown in the center of Figure 21 consisted of an extensible
power mast with half-wave antennas, a battery, a high-power rugged radio, a single-board computer
and support electronics all enclosed in an acrylic case. Meshing was provided by a custom mesh
networking system called meshmerize that prioritizes reconnection times instead of optimal routing.
Beyond online coordination with the base station, an offline command and data relay system drawn
from UAV studies (Frew and Brown, 2009) was implemented onboard the beacons’ single-board
computer. Version 2 beacons are more capable than Version 1, however several operational problems
became apparent in testing and competition. The extensible antenna necessitated a minimum
vertical size of the beacon, which had several negative consequences downstream; in particular,
the size of the beacon had a negative impact on maximum traversable pitch of the carrier robot.
The new meshing solution performed extremely well, transferring well over a gigabyte of data over
the course of one particular one-hour run and allowing ground vehicles to act as relays for one
another with reconnection times on the order of milliseconds.

Version 3: Cave/Final: The Version 3 beacons were designed to be more compact and still
retain high-level functions, resulting in the beacon in the far-right of Figure 21. Instead of acrylic, a
NEMA-rated aluminum enclosure was used to provide durability and ‘puddle-proof’ water intrusion
protection. The radio is cooled through a thermally conductive bonding to the metal lid of the case.
The extensible mast and support electronics were removed and replaced with a PCB to facilitate
faster assembly of new beacons; existing radios, battery, and single-board computer components
were re-used.

Initial testing with the udp_mesh transport layer, described in Section 7, and meshmerize mesh
layer have yielded performance improvements compared to our original solutions. In one lab test to

Field Robotics, June, 2022 · 2:1068–1104

1098 · Ohradzansky et al.

determine maximum performance, we observed that our ROS message throughput is limited by the
underlying meshmerize mesh layer at approximately 20 Mbit/s. Operational testing with high and
low priority data streams reveals that udp_mesh has eliminated the previously observed latency
issues, an improvement over our previous implementation. As a robot explores an environment, the
telemetry and artifact reports are nearly instantaneous, while map portions fill in as bandwidth
allows; these tests validate both the efficacy and usefulness of our prioritization method. Moreover,
when robots returned to within communications range, we observed reconnection times on the order
of one second, in stark contrast to the tens of seconds that B.A.T.M.A.N. required. Mechanically,
by reducing the beacon size, previous issues with vehicle pitch handling have been eliminated.

9.6. Multi-agent coordination
Multi-agent Communications Hopping: The ability to store messages and relay commu-
nications through other robots greatly improved information sharing across the network, and
demonstrated one of the benefits of multiple robots even without coordination. On multiple
occasions, robots were able to transmit artifact reports back to the base station through a “hop”
and then continue exploring deeper into the environment.

Data Prioritization: Field deployments provided meaningful feedback regarding communi-
cation bottlenecks within the fleet. The original multi-agent system consisted of low-bandwidth
messages similar to those described in Section 8 as well as high-bandwidth messages, which
included merged octomaps and artifact image data. This technique works well in short-range,
high-bandwidth environments, but when bandwidth is highly constricted, the larger data messages
prevented priority data such as artifact reports from being delivered. As a consequence, the multi-
agent framework was streamlined to use the map diffs described in Section 3 and use a combination
of broadcast, for low-bandwidth data, and point-to-point messages, for map diffs and artifact images.
These changes led to reduced traffic and more reliable transmission, with success rate for artifact
image transmission increasing from 30% to 100%. In most situations this hybrid approach is a good
compromise and still allows the robots to tolerate intermittent communications connectivity.

9.7. Human - robot interface
Human Interactions: As stated in the Introduction, teams are allowed a single human supervisor
that is allowed to interact with the robots after they have been deployed into the environment. As
the number of robots and functionality of each robot increases, the potential load on the human
supervisor increases as well. Reducing the reliance of the fleet on the human operator is challenging.
A solution to this challenge is presented in (Olson et al., 2012), where a system for controlling a
fleet of 14 robots is presented. Interactions between a human supervisor and differing fleets of robots
is explored in (Wang and Lewis, 2007). Providing an interface that is user friendly is also key to
improving the management of a fleet of robots (Nevatia et al., 2008).

For our solution, early design decisions focused on very limited human interaction with the robots,
as the fleet relied on a fully autonomous solution. However, during field deployments, it became clear
that certain scenarios can benefit swift Human Supervisor intervention. The information transfer
from the robot fleet to the DARPA command post was originally designed as a rigid process.
However, during the first field deployment at the Tunnel circuit event, the Human Supervisor
detected that robots were sometimes reporting erroneous artifact locations and types. Adding
flexibility into the reporting system provided the Human Supervisor the opportunity to discern
reliable information from unreliable information, and ultimately modify that information before
sending it up the chain of command. Additionally, functionality was added to allow the Human
Supervisor control over the robots via a joystick as well as manual goal point in the GUI. While
manual control is not desired for normal operation, there have been unexpected events in which it
was the only method of recovering an agent and resuming exploration. Manual goal points can be
useful when the Human Supervisor identifies an area of interest for the robot to inspect further.

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1099

Remote Oversight: As the fleet grew in size and complexity, the workload of the Human Su-
pervisor increased substantially. The GUI and RViz were modified to provide dedicated information
on each agent, as well as a main window with all agents in the merged map. With the introduction
of the survey operator during robot startup, it became valuable for the Human Supervisor to have
a visualization, in order to verify accurate gate localization. These seemingly small improvements
worked to drastically reduce the Human Supervisor workload while providing greater oversight of
the robot fleet and the overall mission.

10. Conclusion
This paper has presented our continued work to address many open areas of robotics research
including platforms design, object detection and classification, path planning and navigation, multi-
agent coordination, communications, and human-robot interaction. Specifically, we have presented
several novel extensions of state-of-the-art research and a complete field robotics solution for multi-
agent autonomous subterranean exploration and rapid situational awareness.

The graph-based exploration strategy detailed in Section 4 performed well in the narrow, tunnel-
like environments found in Edgar Experimental mine and NIOSH Safety mine. The frontier-based
exploration strategy from Section 5 also performed well in the Edgar Experimental mine, and
allowed agents to explore larger environments like the GeoTech warehouse and the SATSOP nuclear
power facility. The team has learned that we need to improve our terrain awareness when planning
paths through cluttered environments. The circuit events have presented challenging communication
environments and our team has learned to overcome network saturation and reliability problems
through the implementation of a UDP-Mesh communication solution presented in Section 7. Sharing
information across agents is critical to improving exploration efficiency and providing situational
awareness, and generating and transmitting map differences versus entire maps decreases the risk of
network saturation as demonstrated in Section 3. Artifacts in the competition are generally spaced
far apart, making it difficult for a single agent to find them all in the time limit. By sharing map
differences and candidate goal points through our multi-agent coordination scheme from Section 8,
agents are now able to coordinate their exploration, ultimately increasing the amount of space seen
and the potential to find artifacts.

One of the most significant lessons from this research effort is that developing robust autonomous
platforms for rapid situational awareness in subterranean environments requires significant and
frequent field testing. In isolated lab testing, it is nearly impossible to recreate all conditions inherent
to underground environments that make multi-agent autonomy so challenging. An integrative
approach involving frequent submodule and full-system evaluations in subterranean environments of
representative topology, complexity, and scale is invaluable to the development of robust multi-agent
autonomy.

Acknowledgments
This work was supported through the DARPA Subterranean Challenge, cooperative agreement
number HR0011-18-2-0043 as well as the National Science Foundation project numbers 1764092
and 1830686. A special thanks to Daniel Torres, Cesar Galant, Zoe Turin, for assisting with the
design, testing, and deployments of our platforms and algorithms. Thank you to the Colorado
School of Mines and the Edgar Experimental Mine for allowing us to conduct mock deployments
in the mine. Special thanks also to Simon Wunderlich and his team at Meshmerize GmbH for their
mesh networking support. Finally, thank you to all of the DARPA staff who have planned and
executed absolutely incredible Subterranean Challenge system track circuit events.

ORCID
Michael T. Ohradzansky https://orcid.org/0000-0002-6403-9137
Eugene R. Rush https://orcid.org/0000-0001-9451-224X

Field Robotics, June, 2022 · 2:1068–1104

https://orcid.org/0000-0002-6403-9137
https://orcid.org/0000-0002-6403-9137
https://orcid.org/0000-0001-9451-224X
https://orcid.org/0000-0001-9451-224X

1100 · Ohradzansky et al.

Danny G. Riley https://orcid.org/0000-0001-5685-6666
Andrew B. Mills https://orcid.org/0000-0003-4634-0484
Shakeeb Ahmad https://orcid.org/0000-0002-6251-2146
Steve McGuire https://orcid.org/0000-0003-4650-7950
Harel Biggie https://orcid.org/0000-0002-6281-1218
Kyle Harlow https://orcid.org/0000-0002-9092-3655
Michael J. Miles https://orcid.org/0000-0003-2894-2449
Eric W. Frew https://orcid.org/0000-0003-3686-089X
Christoffer Heckman https://orcid.org/0000-0002-9651-6866
J. Sean Humbert https://orcid.org/0000-0002-0863-875X

References
(2020). Supervised Autonomy for Communication-degraded Subterranean Exploration by a Robot Team.

IEEE Aerospace Conference Proceedings.
Abbas, S. M., Aslam, S., Berns, K., and Muhammad, A. (2019). Analysis and improvements in apriltag

based state estimation. Sensors, 19(24).
Ahmad, S. and Fierro, R. (2019). Real-time quadrotor navigation through planning in depth space in

unstructured environments. In 2019 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 1467–1476. IEEE.

Ahmad, S., Mills, A. B., Rush, E. R., Frew, E. W., and Humbert, J. S. (2021a). 3d reactive control and
frontier-based exploration for unstructured environments. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE.

Ahmad, S., Sunberg, Z. N., and Humbert, J. S. (2021b). Apf-pf: Probabilistic depth perception for 3d
reactive obstacle avoidance. In 2021 American Control Conference (ACC), pages 32–39. IEEE.

Ahmad, S., Sunberg, Z. N., and Humbert, J. S. (2021c). End-to-end probabilistic depth perception and 3d
obstacle avoidance using pomdp. Journal of Intelligent & Robotic Systems, 103(2):1–18.

Alvarez, H. E., Ohradzansky, M., Keshavan, J., Ranganathan, B., and Humbert, J. S. (2019). Bio-inspired
approaches for small-object detection and avoidance. IEEE Transactions on Robotics.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (SURF). Comput.
Vis. Image Underst., 110(3):346?359.

Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Siegwart, R. (2016). Receding horizon “next-best-
view” planner for 3d exploration. In 2016 IEEE international conference on robotics and automation
(ICRA), pages 1462–1468. IEEE.

Bormann, R., Jordan, F., Li, W., Hampp, J., and Hägele, M. (2016). Room segmentation: Survey,
implementation, and analysis. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1019–1026, Stockholm, Sweden.

Bouman, A., Ginting, M. F., Alatur, N., Palieri, M., Fan, D. D., Touma, T., Pailevanian, T., Kim, S.-K.,
Otsu, K., Burdick, J., and akbar Agha-mohammadi, A. (2020). Autonomous spot: Long-range autonomous
exploration of extreme environments with legged locomotion.

Boutin, M., Benzakour, A., Despins, C. L., and Affes, S. (2008). Radio wave characterization and modeling
in underground mine tunnels. IEEE Transactions on Antennas and Propagation, 56(2):540–549.

Brass, P., Cabrera-Mora, F., Gasparri, A., and Xiao, J. (2011). Multirobot tree and graph exploration.
IEEE Transactions on Robotics, 27(4):707–717.

Brommer, C., Malyuta, D., Hentzen, D., and Brockers, R. (2018). Long-duration autonomy for small
rotorcraft UAS including recharging. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, page arXiv:1810.05683. IEEE.

Burgard, W., Moors, M., and Scheider, F. (2002). Collaborative Exploration of Unknown Environments with
Teams of Mobile Robots, volume 2466 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Charrow, B., Liu, S., Kumar, V., and Michael, N. (2015). Information-theoretic mapping using cauchy-
schwarz quadratic mutual information. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 4791–4798. IEEE.

Cheung, W. and Hamarneh, G. (2009). n0-sift: n -dimensional scale invariant feature transform. IEEE
Transactions on Image Processing, 18(9):2012–2021.

Field Robotics, June, 2022 · 2:1068–1104

https://orcid.org/0000-0001-5685-6666
https://orcid.org/0000-0001-5685-6666
https://orcid.org/0000-0003-4634-0484
https://orcid.org/0000-0003-4634-0484
https://orcid.org/0000-0002-6251-2146
https://orcid.org/0000-0002-6251-2146
https://orcid.org/0000-0003-4650-7950
https://orcid.org/0000-0003-4650-7950
https://orcid.org/0000-0002-6281-1218
https://orcid.org/0000-0002-6281-1218
https://orcid.org/0000-0002-9092-3655
https://orcid.org/0000-0002-9092-3655
https://orcid.org/0000-0003-2894-2449
https://orcid.org/0000-0003-2894-2449
https://orcid.org/0000-0003-3686-089X
https://orcid.org/0000-0003-3686-089X
https://orcid.org/0000-0002-9651-6866
https://orcid.org/0000-0002-9651-6866
https://orcid.org/0000-0002-0863-875X
https://orcid.org/0000-0002-0863-875X

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1101

Dang, T., Khattak, S., Mascarich, F., and Alexis, K. (2019). Explore locally, plan globally: A path planning
framework for autonomous robotic exploration in subterranean environments. In 2019 19th International
Conference on Advanced Robotics (ICAR), pages 9–16. IEEE.

Dang, T., Tranzatto, M., Khattak, S., Mascarich, F., Alexis, K., and Hutter, M. (2020). Graph-based
subterranean exploration path planning using aerial and legged robots. Journal of Field Robotics,
37(8):1363–1388.

DARPA (2021). DARPA ubterraneanubterranean Challenge. https://subtchallenge.com.
Debord, M., Hönig, W., and Ayanian, N. (2018). Trajectory planning for heterogeneous robot teams. In

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 7924–7931.
IEEE.

Dharmadhikari, M., Dang, T., Solanka, L., Loje, J., Nguyen, H., Khedekar, N., and Alexis, K. (2020).
Motion primitives-based path planning for fast and agile exploration using aerial robots. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 179–185. IEEE.

Doucet, A., Godsill, S., and Andrieu, C. (2000). On sequential monte carlo sampling methods for bayesian
filtering. Statistics and computing, 10(3):197–208.

Dubey, G., Arora, S., and Scherer, S. (2017). Droan?disparity-space representation for obstacle avoidance.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1324–1330.
IEEE.

Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1991). Robotic Exploration as Graph Construction.
IEEE Transactions on Robotics and Automation, 7(6):859–865.

Ebadi, K., Chang, Y., Palieri, M., Stephens, A., Hatteland, A., Heiden, E., Thakur, A., Funabiki, N.,
Morrell, B., Wood, S., Carlone, L., and Agha-Mohammadi, A. A. (2020). LAMP: Large-Scale Autonomous
Mapping and Positioning for Exploration of Perceptually-Degraded Subterranean Environments. IEEE
International Conference on Robotics and Automation, pages 80–86.

Englot, B. and Hover, F. S. (2013). Three-dimensional coverage planning for an underwater inspection
robot. The International Journal of Robotics Research, 32(9-10):1048–1073.

Farhadi, A. and Redmon, J. (2018). Yolov3: An incremental improvement. Computer Vision and Pattern
Recognition, cite as.

Frew, E. W. and Brown, T. X. (2009). Networking issues for small unmanned aircraft systems. Journal of
Intelligent and Robotic Systems, 54(1-3):21–37.

Gao, F., Wu, W., Lin, Y., and Shen, S. (2018). Online safe trajectory generation for quadrotors using fast
marching method and bernstein basis polynomial. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 344–351. IEEE.

Gerkey, B. and Mataric, M. (2002). Sold!: auction methods for multirobot coordination. IEEE Transactions
on Robotics and Automation, 18(5):758–768.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pages 1440–1448.

Griffiths, S., Saunders, J. D., Curtis, A., Barber, D. B., McLain, T. W., and Beard, R. (2006). Maximizing
miniature aerial vehicles obstacle and terrain avoidance for mavs. IEEE Robotics and Automation Letters.

Harms, H., Schmiemann, J., Schattenberg, J., and Frerichs, L. (2017). Development of an adaptable
communication layer with QoS capabilities for a multi-robot system. In Iberian Robotics conference,
pages 782–793. Springer.

Hess, W., Kohler, D., Rapp, H., and Andor, D. (2016). Real-time loop closure in 2d lidar slam. In 2016
IEEE International Conference on Robotics and Automation (ICRA), pages 1271–1278.

Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quaternions. Josa a, 4(4):629–642.
Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013). octomap: An efficient

probabilistic 3D mapping framework based on octrees. Autonomous Robots. Software available at http://
octomap.github.com.

Howard, A. (2006). Multi-robot Simultaneous Localization and Mapping using Particle Filters. The
International Journal of Robotics Research, 25(12):1243–1256.

Huang, Y.-W., Lu, C.-L., Chen, K.-L., Ser, P.-S., Huang, J.-T., Shen, Y.-C., Chen, P.-W., Chang, P.-K.,
Lee, S.-C., and Wang, H.-C. (2019). Duckiefloat: a Collision-Tolerant Resource-Constrained Blimp for
Long-Term Autonomy in Subterranean Environments.

Kasper, M., McGuire, S., and Heckman, C. (2019). A benchmark for visual-inertial odometry systems
employing onboard illumination. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5256–5263.

Field Robotics, June, 2022 · 2:1068–1104

http://octomap.github.com
http://octomap.github.com

1102 · Ohradzansky et al.

Khattak, S., Nguyen, H., Mascarich, F., Dang, T., and Alexis, K. (2020). Complementary Multi?Modal
Sensor Fusion for Resilient Robot Pose Estimation in Subterranean Environments. In 2020 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS), pages 1024–1029, Athens, Greece.
IEEE.

Ko, J., Stewart, B., Fox, D., Konolige, K., and Limketkai, B. (2003). A Practical, Decision-theoretic
Approach to Multi-robot Mapping and Exploration. In 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003), volume 4, pages 3232–3238, Las Vegas, NV.

Kroon, D.-J. (2020). Accurate fast marching.
Lackner, S. and Lienhart, W. (2016). Impact of prism type and prism orientation on the accuracy of

automated total station measurements. In Joint International Symposium on Deformation MonitoringAt:
Vienna.

Lajoie, P. Y., Ramtoula, B., Chang, Y., Carlone, L., and Beltrame, G. (2020). DOOR-SLAM: Distributed,
Online, and Outlier Resilient SLAM for Robotic Teams. IEEE Robotics and Automation Letters,
5(2):1656–1663.

Lee, D.-T. (1982). Medial axis transformation of a planar shape. IEEE Transactions on pattern analysis
and machine intelligence, 4(4):363–369.

Leica Geosystems (2020). Leica reflectors datasheet. Rev. 712323-3.0.0en.
Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. (2015). Keyframe-based visual?inertial

odometry using nonlinear optimization. The International Journal of Robotics Research, 34(3):314–334.
Littman, M. L. (1994). The witness algorithm: Solving partially observable markov decision processes.

Brown University, Providence, RI.
Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Learning policies for partially observable

environments: Scaling up. In Machine Learning Proceedings 1995, pages 362–370. Elsevier.
Liu, S., Mohta, K., Atanasov, N., and Kumar, V. (2018). Search-based motion planning for aggressive flight

in se (3). IEEE Robotics and Automation Letters, 3(3):2439–2446.
Malyuta, D., Brommer, C., Hentzen, D., Stastny, T., Siegwart, R., and Brockers, R. (2019). Long-duration

fully autonomous operation of rotorcraft unmanned aerial systems for remote-sensing data acquisition.
Journal of Field Robotics, page arXiv:1908.06381.

Mascarich, F., Nguyen, H., Dang, T., Khattak, S., Papachristos, C., and Alexis, K. (2020). A self-deployed
multi-channel wireless communications system for subterranean robots. In 2020 IEEE Aerospace Confer-
ence, pages 1–8.

Matthies, L., Brockers, R., Kuwata, Y., and Weiss, S. (2014). Stereo vision-based obstacle avoidance for micro
air vehicles using disparity space. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 3242–3249. IEEE.

Maturana, D. and Scherer, S. (2015). Voxnet: A 3d convolutional neural network for real-time object
recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 922–928. IEEE.

Miller, I. D., Cohen, A., Kulkarni, A., Laney, J., Taylor, C. J., Kumar, V., Cladera, F., Cowley, A.,
Shivakumar, S. S., Lee, E. S., Jarin-Lipschitz, L., Bhat, A., Rodrigues, N., and Zhou, A. (2020).
Mine Tunnel Exploration Using Multiple Quadrupedal Robots. IEEE Robotics and Automation Letters,
5(2):2840–2847.

Nevatia, Y., Stoyanov, T., Rathnam, R., Pfingsthorn, M., Markov, S., Ambrus, R., and Birk, A. (2008).
Augmented autonomy: Improving human-robot team performance in urban search and rescue. In 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2103–2108.

Nobre, F., Heckman, C. R., and Sibley, G. T. (2017). Multi-sensor slam with online self-calibration and
change detection. In Kulić, D., Nakamura, Y., Khatib, O., and Venture, G., editors, 2016 International
Symposium on Experimental Robotics, pages 764–774, Cham. Springer International Publishing.

Ohradzansky, M., Alvarez, H. E., Keshavan, J., Ranganathan, B., and Humbert, J. S. (2018). Autonomous
bio-inspired small-object detection and avoidance. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 1–9.

Ohradzansky, M. T., Mills, A. B., Rush, E. R., Riley, D. G., Frew, E. W., and Humbert, J. S. (2020).
Reactive control and metric-topological planning for exploration. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 4073–4079. IEEE.

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., and Nieto, J. (2017). Voxblox: Incremental 3d euclidean
signed distance fields for on-board mav planning. In 2017 Ieee/rsj International Conference on Intelligent
Robots and Systems (iros), pages 1366–1373. IEEE.

Field Robotics, June, 2022 · 2:1068–1104

Multi-Agent Autonomy: Advancements and Challenges in Subterranean Exploration · 1103

Oleynikova, H., Taylor, Z., Siegwart, R., and Nieto, J. (2018). Sparse 3D Topological Graphs for Micro-Aerial
Vehicle Planning. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
pages 8478–8485, Madrid, Spain.

Olson, E., Strom, J., Morton, R., Richardson, A., Ranganathan, P., Goeddel, R., Bulic, M., Crossman, J.,
and Marinier III, R. (2012). Progress toward multi-robot reconnaissance and the magic 2010 competition.
Journal of Field Robotics, 29:762–792.

Palazzolo, E. and Stachniss, C. (2017). Information-driven autonomous exploration for a vision-based mav.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4:59.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 652–660.

Qin, T., Li, P., and Shen, S. (2018). VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State
Estimator. IEEE Transactions on Robotics, 34(4):1004–1020.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
779–788.

Riley, D. G. and Frew, E. W. (2021). Assessment of coordinated heterogeneous exploration of complex
environments. In 2021 IEEE Conference on Control Technology and Applications (CCTA).

Rouček, T., Pecka, M., Čížek, P., Pet?íček, T., Bayer, J., Šalanský, V., He?t, D., Petrlík, M., Báča, T.,
Spurný, V., Pomerleau, F., Kubelka, V., Faigl, J., Zimmermann, K., Saska, M., Svoboda, T., and Krajník,
T. (2020). DARPA Subterranean Challenge: Multi-robotic Exploration of Underground Environments.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 11995 LNCS(April):274–290.

Santamaria-Navarro, A., Thakker, R., Fan, D. D., Morrell, B., and Agha-mohammadi, A.-a. (2020). Towards
Resilient Autonomous Navigation of Drones. arXiv:2008.09679 [cs]. arXiv: 2008.09679.

Santos-Victor, J. and Sandini, G. (1997). Embedded visual behaviors for navigation. Robotics and
Autonomous Systems, 19:299–313.

Schmid, L., Pantic, M., Khanna, R., Ott, L., Siegwart, R., and Nieto, J. (2020). An efficient sampling-based
method for online informative path planning in unknown environments. IEEE Robotics and Automation
Letters, 5(2):1500–1507.

Sethian, J. A. (1999). Level set methods and fast marching methods: evolving interfaces in computational
geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge university
press.

Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., and Rus, D. (2020). LIO-SAM: Tightly-coupled
Lidar Inertial Odometry via Smoothing and Mapping. arXiv: 2007.00258.

Sheng, W., Yang, Q., Ci, S., and Xi, N. (2004). Multi-robot area exploration with limited-range communica-
tions. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 2,
pages 1414–1419, Sendai, Japan.

Shi, S., Wang, X., and Li, H. (2019). Pointrcnn: 3d object proposal generation and detection from point cloud.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–779.

Simmons, R., Apfelbaum, D., Burgard, W., and Fox, D. (2000). Coordination for multi-robot exploration
and mapping. In Proceedings of the AAAI National Conference on Artificial Intelligence, pages 852–858,
Austin, TX.

Smallwood, R. D. and Sondik, E. J. (1973). The optimal control of partially observable markov processes
over a finite horizon. Operations research, 21(5):1071–1088.

Smith, A. (2013). Sequential Monte Carlo methods in practice. Springer Science & Business Media.
Smith, A. J. and Hollinger, G. A. (2018). Distributed inference-based multi-robot exploration. Autonomous

Robots, 42(8):1651–1668.
Srinivasan, M. V., Chahl, J. S., Weber, K., Venkatesh, S., Nagle, M. G., and Zhang, S.-W. (1998). Robot

navigation inspired by principles of insect vision. Robotics and Autonomous Systems, 26:203–216.
Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo,

M., Morris, A., Omohundro, Z., Reverte, C., and Whittaker, W. (2004). Autonomous exploration and
mapping of abandoned mines: Software architecture of an autonomous robotic system. IEEE Robotics
and Automation Magazine, 11(4):79–91.

Vanholder, H. (2016). Efficient inference with tensorrt.
Wang, J. and Lewis, M. (2007). Human control for cooperating robot teams. pages 9–16.

Field Robotics, June, 2022 · 2:1068–1104

1104 · Ohradzansky et al.

Wang, J. and Olson, E. (2016). AprilTag 2: Efficient and robust fiducial detection. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4193–4198. IEEE.

Werger, B. B. and Mataric, M. J. (2000). Broadcast of local eligibility. In Proceedings of the fourth
international conference on Autonomous agents - AGENTS ’00, pages 21–22, New York, New York,
USA. ACM Press.

Yamauchi, B. (1999). Decentralized coordination for multirobot exploration. Robotics and Autonomous
Systems, 29(2-3):111–118.

Zhan, H., Garg, R., Saroj Weerasekera, C., Li, K., Agarwal, H., and Reid, I. (2018). Unsupervised learning
of monocular depth estimation and visual odometry with deep feature reconstruction. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Zhang, J. and Singh, S. (2017). Low-drift and real-time lidar odometry and mapping. Autonomous Robots,
41(2):401–416.

Zhang, T. and Suen, C. Y. (1984). A fast parallel algorithm for thinning digital patterns. Communications
of the ACM, 27(3):236–239.

Zhang, Y. P., Zheng, G. X., and Sheng, J. (2001). Radio propagation at 900 MHz in underground coal
mines. IEEE Transactions on Antennas and Propagation, 49(5):757–762.

Zhao, H. (2007). Parallel implementations of the fast sweeping method. Journal of Computational
Mathematics, pages 421–429.

Zhou, Y. and Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4490–4499.

Zlot, R., Stentz, A. T., Dias, M. B., and Thayer, S. (2002). Multi-robot exploration controlled by a market
economy. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 3,
pages 3016–3023, Washington, DC.

How to cite this article: Ohradzansky, M. T., Rush, E. R., Riley, D. G., Mills, A. B., Ahmad, S., McGuire,
S., Biggie, H., Harlow, K., Miles, M. J,. Frew, E. W., Heckman, C., & Humbert, J. S. (2022). Multi-Agent
Autonomy: Advancements and Challenges in Subterranean Exploration. Field Robotics, 2, 1068–1104.

Publisher’s Note: Field Robotics does not accept any legal responsibility for errors, omissions or claims and
does not provide any warranty, express or implied, with respect to information published in this article.

Field Robotics, June, 2022 · 2:1068–1104

