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Abstract: This article presents the CERBERUS robotic system-of-systems, which won the DARPA
Subterranean Challenge Final Event in 2021. The Subterranean Challenge was organized by DARPA
with the vision to facilitate the novel technologies necessary to reliably explore diverse underground
environments despite the grueling challenges they present for robotic autonomy. Due to their
geometric complexity, degraded perceptual conditions combined with lack of GNSS support, austere
navigation conditions, and denied communications, subterranean settings render autonomous oper-
ations particularly demanding. In response to this challenge, we developed the CERBERUS system
which exploits the synergy of legged and flying robots, coupled with robust control especially for
overcoming perilous terrain, multi-modal and multi-robot perception for localization and mapping in
conditions of sensor degradation, and resilient autonomy through unified exploration path planning
and local motion planning that reflects robot-specific limitations. Based on its ability to explore
diverse underground environments and its high-level command and control by a single human
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supervisor, CERBERUS demonstrated efficient exploration, reliable detection of objects of interest,
and accurate mapping. In this article, we report results from both the preliminary runs and the final
Prize Round of the DARPA Subterranean Challenge, and discuss highlights and challenges faced,
alongside lessons learned for the benefit of the community.

Keywords: aerial robotics, legged robots, perception, subterranean robotics, extreme environments

1. Introduction
This paper reports the research activities and technological progress made by team “CERBERUS”1

towards our winning participation in the Final Event of the DARPA Subterranean (SubT) Challenge.
The SubT Challenge was a three year-long, $82 million (Montgomery, 2021) robotics competition
organized and coordinated by the US Defense Advanced Research Projects Agency (DARPA).
This challenge aimed to accelerate the research and development of novel technologies to support
operations in complex and diverse underground settings, presenting significant challenges for military
and civilian first responders. Operating in these environments can often be dangerous for humans;
therefore, robotic systems are a viable alternative to provide rapid situational awareness to a small
team of operators before possible entry into such unknown, high-risk, and dynamic subterranean
areas. Possible use-case scenarios for these new technologies include—but are not limited to—search
and rescue missions in collapsed mines, postearthquake urban settings, and cave networks. In re-
sponse to these challenges, we created CERBERUS: a system-of-systems involving walking and flying
robots equipped with multi-modal perception capabilities, navigation and mapping autonomy, and
self-deployed network communication-extender modules that could autonomously explore complex
subterranean environments.

The SubT Challenge featured two competition tracks: Systems and Virtual. Systems track
teams deployed their hardware and software solutions to compete in physical subterranean courses.
In contrast, Virtual track teams developed software-only solutions evaluated in simulation. The
underground scenarios for the Systems track included (a) human-made tunnel networks extending for
several kilometers and presenting multiple branches and vertical openings (“Tunnel Circuit,” August
2019), (b) multi-level urban underground structures with complex multi-storey layouts (“Urban
Circuit,” February 2020), and (c) natural cave environments with complex, diverse morphologies
and constrained passages (“Cave Circuit,” August 2020, canceled event). Finally, a comprehensive
benchmark mission combined all the challenges of the previous circuits (“Final Event,” September
2021). The SubT Challenge brought together more than 300 competitors from 20 different teams,
composed of individuals, startups, universities, and large companies that spanned 11 countries and
20 universities.

Alongside the particular operational goal of robotic subterranean deployments, DARPA initiated
the SubT Challenge to stimulate development in four critical technical areas: Autonomy, Perception,
Networking, and Mobility. Robotic systems were expected to show a high level of resilient autonomy,
demonstrating the ability to map, navigate, and search in complex and dynamic environments
with little to no human interventions (Autonomy). Additionally, they had to cope with grueling
navigation challenges, operating under varying and degraded conditions including dust, fog, mist,
water, smoke, darkness, obscured, and/or scattering environments (Perception). Moreover, the
robots had to send information to the Human Supervisor while dealing with lack of line-of-sight, the
effects of varying geological conditions, and wireless signal propagation challenges in subterranean
environments (Networking). Finally, the systems were tasked to navigate mobility-stressing and
dynamic terrain, including narrow passages, sharp turns, large drops/climbs, inclines, steps, falling
debris, mud, sand, and water (Mobility). Competing teams were tasked with exploring and mapping
unknown underground areas, with the additional requirement that only one team member, the
Human Supervisor, was allowed to manage and interact with the deployed robots. Teams were

1 https://www.subt-cerberus.org/

Field Robotics, April, 2024 · 4:249–312

https://www.subt-cerberus.org/


Team CERBERUS wins the DARPA Subterranean Challenge: Technical overview and lessons learned · 251

scored based on their ability to localize specified objects, called “artifacts,” representing features
or items of interest applicable to subterranean settings. Artifacts for the Prize Round of the Final
Event included human (mannequin) survivors, cellphones, backpacks, drills, fire extinguishers, vents,
gas-filled rooms, helmets, ropes, and a SubT cube. The artifacts’ surveyed positions were expressed
with respect to a DARPA-defined coordinate frame. Each team had 30 min before the run to set up
their Base Station (a computer used by the Human Supervisor to control the robotic agents) and
for four team personnel (known as Pit Crew members) to set up and prepare the robots before the
beginning of the mission. After the setup time, every team had 60 min to find as many of the 40
artifacts distributed along the course as possible, while having a limited number of available report
attempts (to discourage false positives). A point was earned for each report that correctly identified
an artifact’s class and its position within 5 m of the object’s ground-truth location.

Team CERBERUS, which stands for “CollaborativE walking & flying RoBots for autonomous
ExploRation in Underground Settings,” draws its name from Greek mythology where Cerberus was
the three-headed dog guarding the gates of the underworld. The CERBERUS system-of-systems
comprised a composite system of legged and aerial robots. Each agent featured our autonomy and
multi-modal perception solutions. The legged agents, in addition, could deploy communication-
extender modules to increase the wireless network range. Together, these features enabled resilient
navigation, exploration, mapping, and search within complex, large-scale, sensor-degraded, and
communications-denied subterranean environments. Moreover, a tethered roving platform assisted
the team and acted as a communication hub. Figure 1 presents most of the types of robots Team
CERBERUS developed for the SubT Challenge’s Final Event. To gather the necessary expertise,
Team CERBERUS involved an international partnership of the University of Nevada Reno, ETH
Zurich, Norwegian University of Science and Technology, University of California Berkeley, Uni-
versity of Oxford, Flyability and Sierra Nevada Corporation. Team CERBERUS competed in the
System Track of the SubT Challenge and was one of the DARPA-funded teams since the beginning
of the competition. On September 23 2021, Team CERBERUS won the Prize Round of the Final
Event of the DARPA Subterranean Challenge after three years of intensive developments and an
exciting competition among top performers.

Figure 1. The types of robots developed by Team CERBERUS used for the DARPA SubT Challenge. Upper row:
ANYmal C robots. Lower row (left to right): RMF-Owl, Alpha Aerial Scout, and Kolibri flying robots, alongside a
tethered roving platform acting as communication hub for the other robots. All robots are presented in diverse sub-
terranean environments. A video showing the Team’s Prize Round is available at https://youtu.be/QON8IFc8cjE.
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The remainder of this paper is structured as follows: related work is outlined in Section 2; a
detailed description of the CERBERUS robot and autonomy technologies is provided in Section 3 fol-
lowed by a comprehensive overview of the results during the DARPA Subterranean Challenge Final
Event in Section 4; lessons learned are outlined in Section 5, while conclusions are drawn in Section 7.

2. Related Work
In order for our work to be put into perspective, in this section, we attempt to summarize notable
contributions in subterranean robotics and autonomy developed both before and outside of the
DARPA SubT Challenge, as well as some of work of other competing teams based on the currently
available literature.

2.1. Autonomous Systems in Subterranean Environments and Related Settings
Subterranean settings have long been enticing to the robotics community due to the uniqueness of
the environments and the operating conditions (Murphy et al., 2009; Tardioli et al., 2019). One of
the main conclusions from the survey in (Murphy et al., 2009) was that robots with navigation,
localization, and mapping capabilities developed specifically for the underground scenarios were
required. The work in (Novák et al., 2017) described the concept of a reconnaissance mobile robot
for inspecting underground coal mines including the motion, sensing, mapping, and communication
modules. (Loupos et al., 2018) presented a robotic platform consisting of a robotized boom lift, a
high precision robotic arm, advanced computer vision systems, a 3D laser scanner, and an ultrasonic
sensor for autonomous tunnel inspection. Additionally, the authors in (Colas et al., 2013) proposed
a path planning method to allow ground robots to navigate in 3D environments and demonstrated
stair climbing. Departing from the need to fully reconstruct 3D maps of the environments, several
works explored other directions to allow the robots to autonomously explore underground settings.
The authors in (Silver et al., 2006) described a system based on the Groundhog robot platform which
was capable of autonomous topological exploration of mine environments. On the other hand, the
contribution in (Mansouri et al., 2019) presented a Micro Aerial Vehicle (MAV) system that used
darkness contour detection to command its heading angle based on the direction of the underground
tunnels. Another contribution presented in (Özaslan et al., 2016; Özaslan et al., 2017) described an
MAV system that could fly along the center line of tunnel-like dam penstocks using range and
vision sensors. To mitigate the high bandwidth requirement of transmitting a high-resolution map
from the robots to the operators, (Tabib et al., 2021) proposed a method for real-time occupancy
reconstruction from Gaussian Mixture Models (GMM) with depth sensor observations. Furthermore,
the work in (Qin et al., 2019) utilized a collaborative team of an Unmanned Aerial Vehicles (UAVs)
and an Unmanned Ground Vehicles (UGVs) where the UGV performed fast autonomous exploration
to construct 2.5D coarse maps and the UAV conducted 3D fine mapping of the environment.
While most previous work focused on solving one or several challenges in the underground en-
vironments or related settings, the SubT Challenge pushed the robotics community to develop
novel technologies in all four technical areas: Autonomy, Perception, Networking, and Mobility.
For the SubT Challenge, fragile autonomy, frequent and demanding supervision or teleoperation,
over-specialization to one or the other type of underground environments, sensitivity against sensor
degradation, or dependence on always-available communications were not options. The teams were
tasked to present a solution that could demonstrate efficient subterranean exploration and mapping
with the highest degree of resilient autonomy across environment configurations or operational
conditions.

2.2. Other Teams in the SubT Challenge
In response to the SubT Challenge, several international teams were assembled, each developing
highly advanced and complex solutions. Below we outline key elements of the solutions of the other
teams competing in the challenge finals. As at the time of writing not all technical overviews are
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available, we provide a summary based on already published work of the teams and information
provided during the Summit that took place after the Final Event.

Team Coordinated Robotics used custom wheeled, tracked and flying robots, leveraging several
open-source mapping frameworks for the ground vehicles (Shan et al., 2020; Shan and Englot,
2018) and the aerial robots (Labbé and Michaud, 2019) depending on the specific sensor setup.
To traverse through narrow areas, the robots employed a wall following mode or were driven
manually by the Human Supervisor while frontier-based exploration mode was deployed to explore
open areas. Furthermore, a mix of WiFi and Gigabit fiber ethernet devices running the advanced
B.A.T.M.A.N routing protocol (Johnson et al., 2008), in addition to the droppable wireless nodes,
created the communication system for the robotic team. For the robots to detect artifacts, YOLOv4
(Bochkovskiy et al., 2020) network was run with onboard camera images while the gas sensor
and bluetooth detection were also utilized to detect artifacts. Team Coordinated Robotics was a
self-funded team.

Team CoSTAR developed a fleet of Spot legged robots, Husky wheeled robots, Balto RC cars,
Telemax hybrid wheeled/tracked vehicles and custom flying as well as hybrid ground/aerial robots
for the Final Event. Their approach was based on an uncertainty-aware autonomy framework,
dubbed NEBULA (Agha et al., 2021), which constructed the belief space over the robot and
world states and performed reasoning and planning in that belief space. NEBULA was an extensive
architecture including several modules: (i) robust, resilient Simultaneous Localization and Mapping
(SLAM) front-end (Reinke et al., 2022) and back-end (Chang et al., 2022; Denniston et al., 2022)
for large-scale environments, (ii) semantic understanding and artifact detection modules (Terry
et al., 2020), (iii) uncertainty-aware traversability analysis as well as risk- and constraint-aware
local planning (Fan et al., 2021; Thakker et al., 2021) modules, (iv) efficient global exploration and
coverage motion planning in belief space using a hierarchical planning approach (Kim et al., 2021),
(v) high-bandwidth and resilient network solution for a multi-robot system (Ginting et al., 2021),
(vi) learning-enabled adaptation module (Fan et al., 2020a; Fan et al., 2020b). The autonomy stack
was implemented for several robot types including wheeled, legged, flying robots, and field-tested
in various environments. Team CoSTAR was a DARPA-funded team from the beginning of the
challenge.

Team CSIRO Data61’s approach was presented in (Hudson et al., 2021) in which a team of BIA5
OzBot tracked robots, Spot legged robots, and Emesent Hovermap drones utilized the Wildcat
SLAM system (Ramezani et al., 2022). The robots explored the environments by choosing the most
informative 3D frontier in an efficient manner (Williams et al., 2020). Moreover, for the UGVs to
navigate through challenging unstructured terrain, a common local navigation module optimized
for negative obstacles was developed in (Hines et al., 2021) as well as a deep reinforcement learning
approach to allow the tracked robots to traverse through narrow gaps in the environments (Tidd
et al., 2021). Additionally, the work in (Tychsen-Smith and Petersson, 2018) described a novel
method used to obtain highly competitive localization accuracy with reasonable inference time for
artifact detection and localization. A mesh network of radios formed by the modules on the ground
robots, UAVs, and droppable nodes was utilized to share data between nearby robots and the Base
Station when connected, as described in (Hudson et al., 2021). Additionally, the artifacts were
detected using onboard RGB cameras, and by measuring Bluetooth/WiFi signal strengths and gas
concentration. The detection was then relayed back to the Human Supervisor for reviewing before
submitting the artifact report to the scoring server (DARPA Command Post). Team CSIRO Data61
was a DARPA-funded team from the beginning of the challenge.

Team CTU-CRAS-NORLAB’s multi-robot heterogeneous exploration system included Clearpath
Husky wheeled robots, Absolem tracked robots, PhantomX Mark II crawling hexapods, and custom
flying robots (Rouček et al., 2020; Rouček et al., 2021) in addition to several Boston Dynamics Spot,
HEBI robotics LiLy, and custom SCARAB II legged robots as well as Superdroid Marmotte HD2
tracked robots. Their mapping solution was based on a variant of the Iterative Closest Point (ICP)
algorithm as per (Pomerleau et al., 2013; Pomerleau et al., 2014). The frontier-based exploration
strategy described in (Bayer and Faigl, 2019) was deployed on the UGVs to explore the environments

Field Robotics, April, 2024 · 4:249–312



254 · Tranzatto et al.

while the elevation mapping framework for the ground robots was described in (Bayer and Faigl,
2019; Bayer and Faigl, 2020). Additionally, the state estimation and control pipelines used for the
aerial robots were presented in (Baca et al., 2021) and the path planning as well as frontier-based
exploration strategy were detailed in (Krátký et al., 2021). Furthermore, three different communi-
cation systems were utilized: short-range link (WiFi), mid-range link (Mobilicom mesh network),
and long-range link (droppable “Mote” modules) supported communication with different levels of
reliability, bandwidth, and usage, as detailed in (Rouček et al., 2020). Moreover, artifact detection
was performed onboard every robot using a customized version of YOLOv3 (Redmon and Farhadi,
2018), then a Kalman filtering over multiple detections that was temporally consistent was utilized
to estimate the final position of the detected artifact. Team CTU-CRAS-NORLAB was, for the first
two competition events of the SubT Challenge, a self-funded team but became a DARPA-funded
team due to their performance.

Team Explorer’s entry to the Final Event of the SubT Challenge included a combination of
custom wheeled UGVs, MAVs (Scherer et al., 2021) in addition to a Spot legged robot with custom
payload. Their mapping framework, illustrated in (Zhao et al., 2021), employed an IMU-centric
approach to combine the advantages of tightly-coupled and loosely-coupled methods. Specifically, in
the SubT Challenge, the LiDAR-inertial version of this framework was utilized. The planning module
used a hierarchical framework, described in (Chao et al., 2021), including a global planner level
which maintained data sparsely and computed coarse paths at the global scale, and a local planner
which planned kinodynamically feasible paths in the local area for the vehicle. Additionally, (Yang
et al., 2021b) developed another planning approach that dynamically updated a global visibility
graph. This planner was capable of dealing with navigation tasks in both known and unknown
environments as well as dynamic obstacles. For the robots to communicate with each other and
with the Base Station, droppable radio nodes were deployed by the ground robots according to a
cost function using distance, line-of-sight and RSSI conditions, as presented in (Scherer et al., 2021),
or a predictive mapping approach, as per (Tatum, 2020), to maximize communications coverage.
Moreover, a multi-modal artifact detection and localization system was developed in (Agrawal, 2019)
to help provide situational awareness of the environments. Team Explorer was a DARPA-funded
team from the beginning of the challenge.

Team MARBLE deployed Spot legged robots and Husky wheeled robots in the Final Event with
the SLAM pipeline based on the tightly-coupled lidar-inertial odometry framework described in
(Shan et al., 2020). For volumetric mapping, the team used a modified version of (Hornung et al.,
2013) for efficient map sharing as well as incorporating traversability and stairs semantic informa-
tion. In the Final Event, a graph-based global planner combined with a local reactive controller
(Ohradzansky et al., 2021) was deployed while the multi-agent coordination strategy and artifact
detection pipeline were illustrated in (Ohradzansky et al., 2021). Additionally, a custom-developed
ROS transport solution based on UDP and a Meshmerize mesh network that prioritized reconnection
times were utilized to create effective communication systems in subterranean environments as
detailed in (Ohradzansky et al., 2021). Team MARBLE was a DARPA-funded team from the
beginning of the challenge.

Finally, team Robotika used only custom wheeled robots which were equipped with 2D LiDARs
and Realsense RGBD cameras for SLAM, traversability estimation, and obstacle avoidance as well
as LoRa and WiFi modules for communication purposes. Team Robotika was a self-funded team.
Finally, it is worth mentioning that additional teams participated in earlier phases of the SubT
Challenge and the above discussion is limited to those competing in the Final Event.

3. CERBERUS System-of-systems
This section outlines the CERBERUS’ robots, their system design, and specifics with respect to the
key technical areas that characterized the SubT Challenge: Mobility, Perception, Autonomy, and
Networking. Additionally, the last sections show how the robots detected the artifacts placed in the
environment and how the Human Supervisor interacted with the deployed agents.
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3.1. Mobility
In this section, we summarize the main robotics platforms deployed by Team CERBERUS at the
Final Event. We introduce the ANYmal C SubT and the subterranean aerial robots in terms of
their hardware development and main software components. Finally, we present a roving robot used
to support underground operations.

3.1.1. Subterranean Walking Robots - ANYmal C SubT
Team CERBERUS developed and deployed a team of legged robots specialized to operate in
underground environments. In the Tunnel and Urban events, the team relied on the “ANYmal
B300” quadrupeds by ANYbotics (Tranzatto et al., 2022), which were replaced with the “ANYmal
C100” series quadruped from the same company for the Final Event. The ANYmal C100 series
quadrupedal robot is a robust and agile legged system tailored for autonomous, long-endurance
tasks in challenging environments. This robot is water-proof and dust-proof (Ingress Protection (IP)
67), able to operate in humid and dusty conditions, and designed for robustness for long-term
operations. It features dedicated software and hardware interfaces to make it possible to extend it
for application-specific purposes. We customized this platform with several hardware and software
modifications to create a specialized version: the ANYmal C “SubT.” The ANYmal C SubT platform
weighed 55 kg including payload and could operate for 80 min while continuously walking. There were
two types of ANYmal C SubT robots: the “Explorer” (Figure 2a) and the “Carrier” (Figure 2b)
robots, which differed in their sensor configurations and mission role. The Explorers’ goal was to
proceed deep in the subterranean environments, while detecting as many artifacts as possible. The
Carrier robots had fewer sensors and instead supported underground operations by carrying and
deploying the communication-extender modules to increase the range of the wireless network.

Hardware modifications
Sensors - The ANYmal C SubT robots featured a common sensor suite located on one side of
the platform for the Final Event. This suite included a “VLP16 Puck LITE” LiDAR by Velodyne
and an “Alphasense Core” visual-inertial sensor by Sevensense (Figure 3a). The Alphasense Core
encapsulated three monochrome and four color cameras, giving each robot a wide field of view (front,
left, right, and upwards directions) to increase the chances of detecting artifacts while exploring
unknown areas. Each camera has a 0.4 MP sensor and mounts a lens with opening angles of 165.4◦

× 126◦ × 92.4◦ (diagonal, horizontal, and vertical field of view, respectively). The Alphasense was
fixed on a rigid, custom-made CNC milled aluminium mount to position the cameras precisely and

(a) ANYmal C SubT Explorer (b) ANYmal C SubT Carrier

Figure 2. ANYmal C SubT robots used in the Final Event.
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(a) Common sensor suite (b) RS-BPearl LiDAR and its protection

(c) GPU Payload (d) Beacon release mechanism

Figure 3. Hardware customization for the ANYmal C SubT. (a) Common sensor suite included the VLP16 Puck
LITE LiDAR sensor and the Alphasense Core unit. (b) RS-BPearl LiDAR for elevation mapping enclosed in its
protective and lightweight carbon fiber case. (c) Jetson Xavier and additional peripherals mounted on top of the
Carrier robots, inside an actively cooled case. (d) Beacon release mechanism with three loaded WiFi beacons
held by electromagnets.

tilt the side cameras to have clear field of view without including any part of the robot. To protect
the unit against water and dust the entire camera array was enclosed in a sealed PA12 Multijet
Fusion Case with flexible SLA gaskets around the cameras. Each sensor unit was equipped with
four high power, air cooled LEDs. Each of the four LEDs pointed in one of the camera directions
(left, right, front and upwards) illuminating the entire field-of-view. Additionally, each ANYmal
featured a “SDC30” gas sensor by Sensirion and a Bluetooth sensor. In addition to the common
sensors suite, the Explorers were mounted with a pan-tilt unit head (Inspection Payload) for artifact
detection. This head featured a 10x optical zoom camera, a thermal camera, a microphone, and a
spotlight. Its yaw and pitch angles could be controlled to inspect desired areas around the robot,
where the main cameras could not detect potential artifacts due to distance or darkness. Each
hardware modification was designed to respect the robot’s Ingress Protection Code, thus resulting
in the ANYmal SubT version to maintain the IP 67 rating.

Terrain mapping sensors. Reliable terrain perception is critical for safe navigation and locomotion,
especially during autonomous missions. Therefore terrain mapping sensors should be accurate and
reliable in challenging environmental conditions and cope with different difficulties, such as darkness
or reflective surfaces. The Explorer and Carrier agents presented different sensor configurations
reflecting their mission roles. Carrier robots used four “RealSense D435” active stereo sensors
by Intel. This is a relatively lightweight and compact sensor (90 mm × 25 mm × 25 mm, 72 g),
allowing each Carrier to additionally ferry on its back four communication-extender modules. On the
other hand, the Explorers presented two “RS-BPearl” LiDARs by Robosense (100 mm × 111 mm ×
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100 mm, 920 g), each mounted on one end of the robot (Figure 3b). The RS-Bpearl is a dome-LiDAR
that measures the reflection times of emitted laser pulses using a hemispherical scanning pattern.
It offers a 90◦ field of view but presents a sparse point-cloud compared to other laser sensors (such
as the “Ouster OS0” LiDAR). It is robust against sunlight and absorbent material, especially if
compared to active stereo sensors. We chose it for the Explorer’s configuration because of its sturdy
performance in different underground settings, featuring dust, water, and reflective materials, thus
making it a good fit for the role of these robots.

Parallel computing. The terrain mapping algorithms can be efficiently parallelized using a GPU,
while visual object-detection also benefits from running neural-networks on a GPU. A “Jetson AGX
Xavier” by Nvidia was used on the legged agents. The Explorer robots featured an on-board GPU
inside their main body. In contrast, we developed an extra hardware module (Figure 3c) containing
a GPU and additional electronics for the Carriers to ensure all the ANYmal C SubT robots had the
same computational hardware configuration. We developed an air-cooled, water-proof, dust-proof,
milled case to house the Jetson module and the additionally needed electronics.

Beacon release mechanism. To deploy the communication-extender modules (also referred to as
WiFi breadcrumbs or beacons) described in Section 3.4, the Carrier ANYmals featured a release
mechanism (Figure 3d). It could carry four breadcrumbs, each held in place by an electromagnet.
To deploy a beacon, the robot tilted its base and deactivated the electromagnet. The beacon slid
along the low friction carbon fiber tubes, out of the mechanism, to land in an upright position on
the ground.

Locomotion controller
To walk stably on challenging terrain and ensure that the ANYmal robots could explore deep in
the course, our locomotion controller had to fulfill the following conditions. First is the ability to
walk on a variety of challenging terrains. The course contained tunnel, urban, and cave sections
simultaneously, presenting different characteristics. Next is robustness. Both sensor malfunctioning
and measurement degradation can occur during a mission. On the one hand, sensors themselves
could stop working for several reasons, such as connection failure or physical damage, making new
measurements unavailable. On the other hand, sensors’ measurements can degrade due to external
factors such as smoke, mist, fog, etc. The controller must be robust even under these conditions. We
deployed a learning-based perceptive locomotion controller trained in simulation (Miki et al., 2022a)
to satisfy these requirements. The robot learned to walk over randomly generated terrains within the
simulation environment using reinforcement learning and deployed without any fine-tuning using
real world data. It receives geometric information from an elevation map to walk smoothly over
large steps or stairs. In addition to this, we used domain randomization during learning, such as
the mass of the robot, the friction coefficient of the ground, and external forces so that it can
respond to various situations that robots face in the real world. To enable the robot to respond
to these cases, we added various distractors such as adding random drift and outliers to sensor
observation during learning to train the robot not to rely on map information when it becomes
unreliable or unavailable. As a result, a single controller was able to handle all course areas during
the competition. Our controller was able to handle the diverse challenges posed by different settings
without further input from the supervisor, i.e., it was not necessary to specify whether the controller
had to use a specific gait to climb stairs or to locomote over rough terrain. We also trained the body
tilting action to deploy the wifi beacon on sloped or rough surfaces.

3.1.2. Subterranean Aerial Robots
Alongside the team of legged robots, Team CERBERUS developed and deployed a team of “Aerial
Scouts” to provide rapid exploration capabilities, especially in regions of the course which were
inaccessible by ground robots. The team developed two new aerial systems for the Final Event
(Figure 4), as well as utilized some of the robots developed during the previous circuits (an example
shown in Figure 5a). In the Tunnel and Urban events, the team relied on traditional multirotor
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(a) RMF-Owl (b) Voliro-T Kolibri

Figure 4. The new aerial robots developed for the Final Event.

(a) Aerial scout robot platform (b) Roving robot platform

Figure 5. The DJI Matrice M100-based aerial scouts, and the roving robot were used throughout the competition
for all three events (Tunnel Circuit, Urban Circuit, and the Final Event).

systems and collision-tolerant designs. First, a set of systems based on the DJI Matrice 100 platform
(total weight 3.65 kg) were developed and modified to host a 3D LiDAR sensor alongside color and
thermal cameras. One of such platforms is depicted in Figure 5a. A collision tolerant platform
called Gagarin (total weight 2.42 kg), developed in collaboration with Flyability, was also used for
the Tunnel and Urban events (Tranzatto et al., 2022). Identifying the need for systems capable of
navigating more constrained passages, we designed and developed a new collision-tolerant platform,
named RMF-Owl (Petris et al., 2022), to traverse extremely narrow settings. In addition to RMF-
Owl, we developed the larger and longer range Kolibri flying robot for the Final Event. The robots
developed for the Final Event are depicted in Figure 4. Subsequently, we detail RMF-Owl and
Kolibri, while the other two types of robots are documented in (Tranzatto et al., 2022). All the
aerial robots used the same SLAM and exploration path planning software as the legged robots
with changes only in the robot specific parameters. The planned paths were tracked by a position
controller. The DJI M100 based robots and Gagarin used a Model Predictive Controller (Kamel
et al., 2017), the RMF-Owl robot used a custom designed PID controller (described in (Petris et al.,
2022), whereas Kolibri used the position controller provided by the onboard autopilot.

The RMF-Owl was custom-designed to have a compact form-factor and carried a Khadas VIM3
Single Board Computer incorporating 4x 2.2 GHz Cortex-A73 cores, paired with 2x 1.8 GHz Cortex-
A53 cores, alongside a Neural Processing Unit (NPU) as the main computation unit. This computer
was used to run the entire autonomy stack with modified lightweight versions of our localization
and mapping framework (cf. Section 3.2.2), the exploration planner (cf. Section 3.3.1) and device
drivers for the various sensors alongside the networking components. The neural network for artifact
detection was executed on the NPU to gain a speedup during inference (cf. Section 3.5). Its sensor
payload included an “Ouster OS0-64” or “Ouster OS1-64” LiDAR (different robot versions were
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developed) featuring wide vertical Fields of View (FOVs) of 90◦ and 45◦ respectively and a horizontal
FOV of 360◦. Other sensors included an IMU, and a FLIR “Blackfly S” 0.4 MP color camera with a
horizontal and vertical FOV of [85, 64]◦, the latter used for object detection. The outer dimensions
of the robot were 38 cm × 38 cm × 24 cm and thus alongside its sensing suite was rendered suitable
for going through staircases, vertical shafts, and narrow passages while detecting artifacts along the
course. Additionally, to traverse and detect objects in dark environments, RMF-Owl was equiped
with an off-the-shelf LED lighting system, increasing the visual range and enhancing the environment
texture. The total weight of the RMF-Owl Aerial Scout, shown in Figure 4a, was 1.46 kg with a
maximum flight time of 10 min.

The larger Kolibri, shown in Figure 4b, is based on a 5DoF multi-directional tricopter platform
from Voliro, which we customized with full autonomy for long-range and vertical exploration
missions. Its front propellers are fully-actuated, enabling it to pitch independently of translation
and affording good flight stability near surfaces. With a total weight of 6.2 kg, it carried a sensor
payload similar to that of the ANYmals, using an “Alphasense Core” unit with three color and three
monochrome cameras (each with 0.4 MP) for 270◦ artifact detection and multi-modal mapping. We
paired these with the same high-power LEDs. However, to conserve power and weight for the aerial
robot, the LEDs were flash synchronized with its cameras through the Alphasense Core, which
also obviated the need for active cooling. It also carried a wide vertical FOV “Ouster OS0-128”
LiDAR. To support the computing needs of our large sensor payload, the robot hosted a 16-thread
AMD 4800U with 64 GB of RAM, as well as three Intel Neural Compute Stick 2 modules (one per
color camera) for artifact detection. The maximum flight time of Kolibri was 22 min with the full
competition sensor payload.

3.1.3. Subterranean Roving Robot
Finally, we developed a wheeled platform to act as a supporting agent to all the other robots and
provide extended network connectivity into the course. Shown in Figure 5b, this robot was based
on an Inspector Bots Super Mega Bot (SMB) robot platform, with a modified chassis to mount
equipment for extending network connectivity, a variety of sensors, an onboard computer, light
sources, and a battery to power the components. The 135 kg robot hosted a Zotac VR Go Backpack
PC having a 6th generation Intel i7 CPU and an NVIDIA RTX 1070 GPU inside a cagelike structure.
We manufactured a two-level sensor mount to house four “Blackfly S” color cameras by FLIR, two
“Boson LWIR” thermal cameras by FLIR, alongside a “VN-100” IMU by VectorNav, and a “VLP16
Puck LITE” LiDAR by Velodyne. The platform also featured a 300 m long, ruggedized optical fiber
cable, mounted on a controllable reel at the back of the robot. This cable was connected to the
Base Station and the reel could automatically wind and unwind to prevent tangling into the wheels
of the robot as it moved within the course. The wireless communication modules onboard this
robot were connected to a 5.8 GHz panel antenna, placed at the front of the robot. Accordingly,
through the combination of the long optical fiber cable and the high-gain antenna, this system
acted as a network range extender and provided high-bandwidth connectivity to the Base Station.
In addition to the role of a network extender, the robot featured the necessary sensors and perception
software, allowing it to operate independently as a backup platform. This robot was teleoperated
by the Human Supervisor and did not operate autonomously. It was used in all three phases of the
competition (Tunnel Circuit, Urban Circuit, and the Final Event).

3.2. Perception
This section covers Team CERBERUS’ perception pipeline, including onboard localization, multi-
robot mapping, and terrain perception and classification. Firstly, we discuss the utilized sensor
modalities with respect to how they were configured, synchronized, and calibrated. Next, we detail
the onboard complementary multi-modal localization and mapping as well as the elevation map-
ping pipelines. Finally, we outline the Multi-Modal and Multi-Robot Mapping (M3RM) approach
combining the individual onboard estimations. It is noted that the competition necessitated that
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teams localize artifacts within a certain level of accuracy against groundtruth locations and report
accurate maps. Alignment with the DARPA-defined coordinate frame (on which ground-truth is
expressed) was achieved through the use of the “DARPA Starting Gate” which was at the entrance
of the mission course. The DARPA Starting Gate offered multiple options for alignment including
(a) AprilTags, (b) retro-reflective targets, (c) survey prisms, and (d) survey markers. Each individual
robot of Team CERBERUS performed an alignment with the DARPA Starting Gate using only the
AprilTags.

3.2.1. Sensor Setup and Calibration
Since heterogeneous sensor setups can impose significant challenges on a multi-modal and multi-
robot mapping approach, all legged robots as well as the Voliro-T Kolibri were equipped with
the same sensory system (Sections 3.1.1 and 3.1.2). This included the same cameras, lenses,
synchronization logic and illumination hardware. In the context of robotic perception, this enables
simpler parameter tuning as well as improved inter robot loop closure detection. Tailored to
miniaturized system design and prolonged flight endurance for their overall size, the DJI Matrice
100 based aerial scouts and the collision-tolerant flying robots of our team utilized a LiDAR system,
alongside a “Blackfly” color camera by FLIR and a “VN-100” IMU by VectorNav. One of the Matrice
100-based systems further integrates a “Tau2” thermal camera by FLIR.

Another important factor is the time synchronization between the sensors and the robots. The
ANYmal robots where equipped with a VLP-16 Puck LITE LiDAR that timestamped pointclouds
based on arrival time, whereas the Voliro-T featured an Ouster OS0 which was synchronized to
the computer clock via Precision Time Protocol (PTP). Similarly, the Alphasense Core was also
synchronized using PTP on each robot. For the DJI Matrice 100 based aerial scouts and the collision-
tolerant flying robots, a software-synchronized approach was employed in which the offset was
estimated among the time-of-arrival of sensor packages.

Sensor calibration
Reliable sensor calibration is vital to most sensing-based algorithms. Our calibration efforts targeted
mainly intrinsic camera calibration as well as extrinsic camera-to-camera and camera-to-LiDAR
calibrations. Calibration-critical multi-sensory SLAM applications are, for example, M3RM (Sec-
tion 3.2.4) and CompSLAM (Section 3.2.2). Furthermore, good calibrations are important for
the ray-casting of detected artifact locations into the volumetric map of the exploration planner
(Section 3.5) as well as camera-based AprilTag detection for anchoring the robot’s state estimation
in a global reference frame.

Intrinsic calibration. To perform intrinsic camera calibration we used the visual-inertial calibration
toolbox Kalibr (Furgale et al., 2013). Given the wide-angle field-of-view of the cameras that are part
of both the Alphasense sensor mount and the visual cameras onboard the multirotor aerial scouts
and collision-tolerant flying robots of our team, we found a large enough rigid calibration target
to be key to get good calibration results in relevant distances from the camera. We obtained good
results with a grid pattern of Apriltags (Olson, 2011) with 6 rows, 6 columns, and tag side lengths
of around 10 cm. Furthermore, the Kalibr library provides a useful tool to examine camera focus.
The method is based on calculating entropy in the image frequency domain (Kristan and Pernus,
2004). Intrinsic calibration of LiDARs and IMUs were provided by manufacturers directly and were
considered sufficiently accurate to be used out of the box. Intrinsic calibration of thermal cameras
is achieved with the use of a specialized heated calibration target.

Extrinsic calibration. For camera-to-camera extrinsic calibrations we also utilized the Kalibr toolbox.
Alongside the tools for intrinsic camera calibration it allows for jointly estimating temporal offsets
and sensor displacements using continuous-time batch estimation. It features options for single
camera and IMU extrinsic calibration as well as multi-camera and IMU calibration. The latter
is useful if camera FOVs are majorly overlapping and yields increased accuracy by performing
co-optimization over all provided data. We considered using optimization based methods, such
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as presented in (Huang and Grizzle, 2020), to perform camera-to-LiDAR extrinsic calibration. In
their work they show results using a 32-Beam LiDAR. However we observed that with a 16-Beam
LiDAR the optimization problem tends to be insufficiently constrained. This is likely due to the
sparsity of the LiDAR measurements. Accordingly, both for the robots with 16-Beam LiDARs
and for our overall set of systems, we chose to use a self-developed manual calibration method
that allowed visualization of LiDAR points overlaid on top of a camera image subject to extrinsic
LiDAR-to-camera transforms which could be dynamically modified in real-time.

3.2.2. Complementary Multi-modal Localization and Mapping
Robust localization and mapping are among the core components of the robot autonomy pipeline to
ensure reliable operation in complex subterranean environments. They are responsible for providing
consistent and low-latency localization to facilitate low-level, real-time operations, such as robot
control. In addition, they are also responsible for producing an accurate and informative map to
assist high-level autonomy tasks, such as path-planning in complex large-scale environments.

In response, the robots of Team CERBERUS deployed an onboard complementary multi-modal
localization and mapping approach (CompSLAM) (Khattak et al., 2020), that ensured reliable and
independent robot operations without any dependence on communication with the Base Station. An
overview of the proposed approach is shown in Figure 6. CompSLAM utilizes a hierarchical sensor
fusion strategy which refines individual or multi-modal pose estimates as they propagate through
the framework, ensuring that a robot always has an updated pose estimate and a map available.
Furthermore, CompSLAM’s modular design made it flexible to adapt to the sensing and compute
variances across the robots of Team CERBERUS. Hence, the method allowed to take advantage
of the complementary nature of multi-modal sensors for operation resilience, while maintaining the
ability to scale cognizant to the available robot compute capabilities to ensure real-time performance
across diverse environments and robot configurations.

To provide redundancy against cases of sensor data degradation and estimation failures, Comp-
SLAM performs fusion of visual and thermal imagery, LiDAR depth data, inertial measurements,
and kinematic pose estimates (when available) in a hierarchical manner. For the fusion of visual,

Figure 6. Overview of the onboard complementary multi-modal localization and mapping approach
(CompSLAM).
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thermal and inertial data, CompSLAM utilizes an Extended Kalman Filter (EKF) based estimator
that extends the work of (Bloesch et al., 2017a) to simultaneously operate on both visual and
full-radiometric thermal images, as described in (Khattak et al., 2019; Khattak et al., 2020).

The Visual-Thermal-Inertial Odometry (VTIO) estimator tracks and balances a fixed number of
features across multi-spectral images by evaluating the quality of each image subject to a spatial
and temporal entropy criterion (Khattak et al., 2019). This results in a small number of features
required to be tracked as part of the EKF state vector, keeping the computational costs tractable for
real-time operation. Furthermore, to maintain low computational costs while facilitating robust scale
estimation in degraded environments, sparse depth from instantaneous LiDAR scans is exploited for
feature depth initializations and updates. For features enclosed by at least two or more LiDAR scans,
a local-flatness check is performed to ensure depth consistency. If passed, features are initialized
with the median neighborhood depth acquired from LiDAR scan and associated with a smaller
variance on the feature depth to improve the overall scale convergence of the estimator. For features
initialized without LiDAR depth, if a LiDAR scan sweeps over a feature due to robot motion
during the mission, the feature depth and variance are updated in a probabilistic manner (Graeter
et al., 2018). Although, sparse in nature, the instantaneous LiDAR scans are used instead of the
onboard map for depth association to build redundancy into the system in case of a mapping
failure.

For building the onboard map, the LiDAR scans along with the VTIO odometry are utilized by
the Laser Odometry (LO) and the Laser Mapping (LM) modules. Before utilizing VTIO output
as a prior, the LO module evaluates the VTIO health by ensuring that it is within the motion-
bounds set by the robot controller. Furthermore, the covariance growth rate of the VTIO prior
is evaluated to be within an acceptable margin by employing the D-Optimality criterion (Carrillo
et al., 2012). In case the VTIO health checks fail, the LO module reverts to a set of fallback
solutions, in order, for the provision of prior—kinematic odometry (in case of ANYmal (Bloesch
et al., 2017b)), IMU propagated pose or a constant velocity motion model. Using the obtained prior
and consecutive LiDAR scans, the LO module performs a scan-to-scan alignment by minimizing
point-to-line and point-to-plane distances, similar to the work of (Zhang and Singh, 2014). The
quality of scan alignment is checked by evaluating the minimum eigenvalues of the optimization
Hessian matrix (Zhang et al., 2016). If optimization degeneracy is detected, the ill-conditioned
dimensions of the LO estimation output are replaced with the prior’s estimates. The LO estimates
are then fused with inertial measurements and smoothed using a sliding-window estimator scheme
to improve pose consistency and gravity alignment. The sliding-window estimator is implemented as
a factor-graph using the work of (Dellaert et al., 2017). Furthermore, when the robot is stationary,
zero-velocity factors are added to improve the robot pose and IMU bias estimation.

The refined LO pose estimate is then provided to the LM module which performs a scan-to-
submap alignment to produce an onboard map. For computational efficiency and, in particular, to
improve the speed of establishing point correspondences, the onboard map is divided into blocks
of dimensions 10 m × 10 m × 10 m. Each block is identified by a unique hash calculated from the
location of each block’s center with respect to the map origin. Furthermore, each map block is
subdivided into line and plane feature subblocks. Upon arrival of a LiDAR scan and associated
LO pose estimate, all subblocks within the FOV of the current scan are identified and independent
KD-Trees are built for each block in parallel to allow parallel search for point correspondences.
Once a scan-to-submap alignment is performed, a health check similar to that of the LO module is
performed to determine the quality of the LM output. In case LM optimization is ill-conditioned,
a previous healthy estimate in the sensor-fusion hierarchy is searched and utilized for merging the
current scan to update the onboard robot map.

3.2.3. Elevation Mapping
An elevation map is a 2.5D representation where each grid cell holds the height of the terrain. We
used this map representation for local navigation and perceptive locomotion of the quadrupedal
platform. It is built in a robot-centric fashion from depth sensor readings and robot odometry.

Field Robotics, April, 2024 · 4:249–312



Team CERBERUS wins the DARPA Subterranean Challenge: Technical overview and lessons learned · 263

Figure 7. ANYmal’s elevation map. The terrain map was built onboard the GPU and used by the learning
based locomotion controller and the ANYmal navigation planner. The height information is used by the learning
based controller to perform terrain-aware locomotion: blue and red dots indicate samples for left and right feet,
respectively. The navigation planner utilizes the traversability layer (shown as foothold score) for path planning:
white areas indicate patches considered as steppable, whereas black ones are not. Holes in the information map
are due to lack of data, mostly caused by occlusion.

We developed a GPU-based software for efficient processing (Miki et al., 2022b). In addition to
point cloud registration it performs a visibility cleanup check to quickly remove map artifacts. The
method performs raycasting from the sensor origin to each measurement point and clears cells if
the ray passes below its stored elevation. To avoid issues with structures thinner than the map
resolution, we do not clear a cell if it is currently observed by a measurement. The terrain map used
in the SubT Challenge finals had dimensions equal to 8 m × 8 m with a resolution of 4 cm. These
settings reflected the sensor limitations and represent a trade-off between accurately capturing the
terrain’s surface and keeping the computation cost to a reasonable level for onboard processing,
thus making it possible to create a real-time terrain representation onboard the ANYmal’s GPU
utilizing the onboard depth sensor measurements. The elevation map was computed at 20 Hz for
Explorer robots, given each RS-Bpearl publishing at 10 Hz, and at 45 Hz for Carrier robots, given
each depth camera publishing at 15 Hz. The ANYmal’s locomotion controller samples the terrain
height in a circular pattern around each foot, as shown in Figure 7. This height information is used
by the controller to perform terrain aware locomotion. We integrated a learning-based foothold
score estimator (Wellhausen and Hutter, 2021), which gives a foothold score value based on the
local geometry and was used by our navigation planner. The foothold score is indicated by black
(low) and white (high) color in Figure 7. Furthermore, we enhanced the elevation map through
improvements such as upper bound calculation similar to (Hines et al., 2021), which helps planning
in the presence of occlusions.

3.2.4. Multi-robot Mapping
Beyond individual onboard localization and mapping, Team CERBERUS further developed a
solution for multi-robot mapping within complex and large-scale underground environments. In this
context, the long-term stability of onboard maps and their scalability are particularly challenging
problems in SLAM. Especially given the often limited understanding of the environment, choosing
how to fuse new information and decide what is adequate to keep is not trivial. A centralized
server, accumulating all available onboard maps, can remedy this by providing a globally consistent
environment estimate.

Centralized mapping approach
We designed and developed a multi-modal and multi-robot mapping (M3RM) framework using a
centralized topology (Tranzatto et al., 2022). Overall, M3RM comprises of two core components,
the M3RM node that creates a factor graph using the onboard complementary localization and
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Figure 8. Overview of the employed centralized multi-robot mapping approach. Each robot aligns its estimations
(poses and map) to the DARPA Gate and maintains its own onboard map independent of the other robots while
exploring the environment. When in communication range to the Base Station, the onboard maps and the detected
artifacts are transferred to the Base Station where the server merges the robot maps into the global multi-robot
map. All artifact detections are accumulated at the Base Station and visualized to the Human Supervisor for
verification.

mapping solution, and the M3RM server that maintains and optimizes the multi-robot global map.
An overview of our developed mapping approach is given in Figure 8.

Each M3RM node on each robot tracks visual features, i.e., BRISK (Leutenegger et al., 2011),
using all camera images and triangulates the tracked features to landmarks using the onboard
localization. The resulting visual map is then represented as a factor graph and transmitted as chunks
(submaps) to the M3RM server at the Base Station. Before transmission, the point clouds are sub-
sampled, compressed, and attached to the factor graph using their timestamp and extrinsic calibra-
tion. Accumulating all point clouds per submap, the required size is approximately 2 MB per trans-
mission. The M3RM server used these point clouds to register spatially close poses with each other.

Finally, robots with an established connection to the Base Station transmitted submaps consisting
of the onboard odometry estimates and subsampled sensor data to a centralized mapping server.
A synchronization logic handles partial transmissions and connection losses and ensures that only
completed submap transmissions will be integrated into the multi-robot map. Moreover, the submap
transmissions can be batched and compressed to increase efficiency and to take the network’s
bandwidth limits into account.

The M3RM server then builds a multi-robot factor graph using all the available sensor modalities
and performs intra-/inter-robot loop closure detection using vision and LiDAR. Moreover, all robots
performed multiple initial AprilTag detections to get a common global reference frame. At this stage,
all detections are filtered to ensure geometric consistency, and each remaining detection is added as
a 6-DoF prior constraint to the multi-robot map.

Specifically, visual loop closure searches globally for matching descriptor candidates, while
LiDAR loop closures are searched locally between spatially close poses and submaps. For the
latter, additional LiDAR constraints are added to the factor graph by accumulating consecutive
scans within a submap and aligning to spatially close submaps using ICP. Each finished submap
transmission is processed on its own before being integrated into the global multi-robot map. Among
other operations, this includes a visual landmark quality check, visual loop closure detection, LiDAR
loop closure detection, and submap optimization. The processing of each submap is independent
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with respect to other submaps and thus, the M3RM server will run multiple operations concurrently.
After processing the individual submaps, they are merged into the global multi-robot map, which the
M3RM server continuously processes and optimizes in a similar approach. The M3RM server runs
indefinitely a fixed set of operations, i.e., visual loop closure, LiDAR loop closures, and optimization.
However, in this case, the operations consider the scope of the global multi-robot map.

Finally, the global multi-robot optimization is limited to a maximum of two minutes to guarantee
fast iterations. This allows the M3RM server to integrate the most recent information that might
contain crucial loop closures quickly and provide the most recent data to the Human Supervisor for
ad hoc mission planning and execution.

Long-term operation
The plethora of sensor data being transmitted from the robots to the mapping server is filtered and
subsampled to provide a high-quality and rapid global estimate of the environment. Nevertheless,
the amount of data from multiple robots over a longer time span can still significantly slow the
operation time. Therefore the Human Supervisor can choose between multiple performance profiles
at the mapping server to adapt the global multi-robot optimization to the current situation. In
situations where all robots are not within connection range, the mapping server can increase its
computational load. In scenarios where robots have reestablished connections, they should lower
their capacities to provide rapid updates. It is important to note that different performance profiles
do not affect the data sent by the robots. All robots still send the same amount of data, only the
time needed to perform the optimization differs.

3.3. Autonomy
The autonomy solution of Team CERBERUS was tailored to the challenges of the subterranean
environments. Our aim was to enable resilient autonomy with minimal human supervision in
very large-scale settings with difficult terrain, narrow passages, and multi-branching, multi-level
topologies. To realize this, all robots at their core utilized a Graph-based Exploration Path Planner
(GBPlanner2) (Kulkarni et al., 2022) for efficient exploration of the environment. The exploration
planner was designed to work as-is across all of the team’s robotic platforms, with the only change
being selected robot-specific parameters and features. Furthermore, robot specific motion planning
and path tracking algorithms were used to follow the path provided by the exploration planner or
track the waypoints given by the Human Supervisor. In case of legged robots, a navigation planner
was deployed to avoid local obstacles and follow the exploration path. On the other hand, the aerial
robots utilized a position controller (details in Section 3.1.2) to track the exploration path.

The autonomy architecture of the legged and aerial robots is shown in Figure 9. A coordination
module, based on Behavior Tree (BT) (see Section 3.3.3), manages the switching between different
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Figure 9. Overview of the Autonomy Stack of Team CERBERUS. The diagram shows a high level overview of
the interaction between the submodules within the Autonomy Stacks for both legged and aerial robots.
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tasks of the ANYmal’s autonomy stack. All the requests from the Human Supervisor are handled
by this module. A robot specific Planner Control Interface (PCI) provides APIs for accessing the
functionalities of GBPlanner2. The autonomy stack of the aerial robots is relatively simpler with
the Human Supervisor requests being handled directly by the PCI. The PCI implemented Robot
Operating System (ROS) services to call the functionalities of GBPlanner2. The specific requests
were forwarded to GBPlanner2 which returned the requested path. This path was then forwarded
to the BT or position controller in case of legged and aerial robots respectively.

3.3.1. Exploration Planner
At the core of the CERBERUS autonomy lies the Graph-based Exploration Path Planner (GB-
Planner2) (Kulkarni et al., 2022) that uniformly guides both legged and aerial robots. GBPlanner2
extends the work of GBPlanner1 (Dang et al., 2020) (used in the Tunnel and Urban Circuit events)
to better handle slopes and uneven terrain for legged robots, as well as by providing features for
reduced computation times for computationally constrained Micro Aerial Vehicles (MAVs). The
planner uses an incrementally built volumetric map using the onboard depth sensors. In the Final
event, all robots of Team CERBERUS used “Voxblox” (Oleynikova et al., 2017) as the volumetric
mapping framework.

GBPlanner2 operates in a bifurcated local/global planning architecture. The local planner guides
the robot to efficiently explore within a local volume around the robot. It first samples a collision-free
graph (called “local graph”) inside a local subspace of the map (hereafter referred to as the “local
bounding box”) that is calculated based on the local environment geometry. For collision checking,
the planner models the robot as a cuboid enclosing the entire robot and just the torso, centered at
their center of masses, for the aerial and legged systems respectively. For legged robots, each vertex
and edge in the graph should not only be collision-free but also have traversable supporting ground
under it. This is evaluated by projecting the subsampled edge (including its end vertices) downward
on the map and checking if a) occupied voxels exist in the map below the projected points and b)
the inclinations of the segments of the projected edge are within the permissible limit for the robot
(Figure 10). Certain voxels on the ground can be incorrectly marked as “free” in the volumetric map
(e.g., due to high incidence angle of the LiDAR or water on the ground). Hence, the planner queries
additional points in a circle around the projected point and optimistically assumes the existence of
ground if at least one of them has occupied voxel below it. To tackle negative obstacles, the planner
retains certain vertices (called “hanging vertices”) in the graph that are in free space but do not have
supporting ground below them if at least one of the edges connecting to them has its inclination
within the allowed limit. However, the edges connecting to these vertices are not commanded to
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Figure 10. Graphical overview of the exploration planner’s bifurcated local/global architecture. The main
features involved in calculating the local and global exploration paths are shown.
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Figure 11. Visualizations of different components of the exploration planner on data. These include the adaptive
local bounding box, the graph spanned by the local planner, the graph spanned by the global planner along with
the frontier vertices, and the hanging vertices (feature for legged robot path planning).

the robot. Next, using Dijkstra’s algorithm, the planner finds the shortest paths from the current
robot location in this graph. The path that maximizes an information gain relating to the expected
unknown volume that will be mapped by traversing that path is selected and commanded to the
robot. The commanded path is executed by the robot upto a set maximum length, after which the
exploration planner is retriggered. (Dang et al., 2020) provides further details on the formulation
of the information gain, alongside further steps to refine the path quality. Additionally, to reduce
the computation time, GBPlanner2 also provides the functionality to calculate this gain only at the
end vertices of the shortest paths as well as to cluster these vertices and calculate the gain only for
one vertex in each cluster.

Due to the complex topology and challenging terrain of the subterranean environments, the
local planner might not be able to find a path leading to further exploration. In such a case, the
global exploration planner is responsible to reposition the robot to unexplored areas of the map.
This is done by exploiting an incrementally built sparse graph (called “global graph”) that spans
across the known map and stores high information gain vertices called the “frontier vertices” along
with their corresponding paths. Furthermore, at each local planning iteration, the global planner
calculates a path from the current robot location to the starting position of the mission (also referred
to as “home” location). This computed path is commanded to the robot either if the remaining
endurance is not enough to perform one more local exploration planning step and return to home,
or upon request, for example, by the Human Supervisor. In either case, the procedure to return
home using this path is referred as “homing” in the remaining sections of this work. Additionally,
the global planner also supports calculating paths to goal points provided by the Human Supervisor
or the ANYmal’s behavior tree. Figure 10 provides a graphical overview of the exploration planner.
Similarly, visualizations of various components of GBPlanner2 on data are shown in Figure 11.

3.3.2. ANYmal Navigation Planner
To avoid local obstacles and follow the exploration path or the exploration waypoints provided
by the Human Supervisor safely, we developed a navigation planner specifically for legged robots.
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Figure 12. ANYmal navigation planner in the cave section during the Prize Round of the Final Event. (Left)
Blue torso collision boxes need to be collision free while red reachability boxes need to be in contact with the
environment. Black parts of the height map are considered invalid for footholds. (Right) A learned motion cost
(white - low cost, black - high cost) is used to limit locomotion risk and optimize the path for both locomotion
risk and traversal time.

Further details on its performance during the SubT Final Event can be found in its dedicated journal
article (Wellhausen and Hutter, 2022). This navigation planner can locally adjust the exploration
path to better cope with the properties of the surrounding terrain, given that legged robots have
much higher mobility capabilities than wheeled or tracked platforms due to their ability to step over
obstacles. Therefore classic navigation approaches, which compute a single traversability value per
terrain patch independent of robot orientation or motion direction, are limiting.

Our planner is based on LazyPRM* (Hauser, 2015) with a custom sampling scheme, which
extends poses sampled in 2D to 3D using map information, and favors sampling in regions with low
planning graph node density (Wellhausen and Hutter, 2021). It uses a reachability abstraction of
the robot by decomposing it into a torso collision volume and one reachability volume per leg. Since
a legged robot needs to touch the ground to locomote, we assume that a valid robot pose needs to
have all reachability volumes in contact with the environment, while the torso remains collision-free
(see Figure 12). To avoid practically infeasible poses, like walking on a wall, we train a very small
Convolutional Neural Network (CNN) on manually labelled data to predict a foothold score from
a height map. We can then exclude geometry with low foothold score from collision checking for
reachability volumes to disallow stepping on invalid terrain. Because the network only has 120
parameters, it can be trained on only 20 labelled height maps. This generally produces feasible
paths, but since a shortest path cost function would have no notion of risk, caused by uncertainty in
the environment, imperfect control and path following, and various other sources, we additionally
use a learned motion cost (Wellhausen and Hutter, 2022). To this end, we train a CNN to predict the
motion risk, expressed as the probability of failure, as well as energy and time cost given a height
map and a relative 2D goal pose (Guzzi et al., 2020; Yang et al., 2021a). Data are generated in
simulation by deploying a locomotion policy on randomly generated terrain with random directional
commands. Energy consumption of the legged robots was of low concern during the Final Event,
due to operation time greater than run’s duration. However, a single navigation failure could be
mission ending; thus we use a weighted sum of risk and time cost, with a higher weight on risk.

Although the ANYmal navigation planner plans towards a single goal pose, embedded into our
autonomy stack, it receives a reference path from the exploration planner. We therefore iteratively
try to plan towards the farthest pose in the exploration path, until we either succeed, or no valid goal
pose can be found. Because we use a roadmap-based planner, these path queries can be performed
rapidly once a planning graph has been built.

3.3.3. ANYmal Behavior Tree
The capabilities for coordinating different software modules to execute autonomous missions are
provided by a behavior tree module running onboard the ANYmals. Moreover, the behavior tree
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Figure 13. Overview of the ANYmal behavior tree module. Active blocks are displayed in green, blue, and purple.
The grey block represents a sleeping block. Based on the given conditions, blocks can either return success and
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Figure 14. Watchdog module of the ANYmal behavior tree. This module triggers recovering actions if the agent
is detected as not moving for a given amount of time.

receives commands from the Human Supervisor and executes recovery behaviors if it detects
unexpected states during the mission execution. This module is based on an existing framework2

and its main components are depicted in Figure 13. Specifically, the Watchdog block (Figure 14)
triggers recovering actions if unexpected conditions are detected. It continuously checks the robot’s
position and triggers a backtracking of the traversed path, called “Recovery Homing,” in case the
robot does not move for a predefined amount of time. The Process Operator Calls block handles the
commands given by the supervisor, assigning them a higher priority compared to the other onboard
modules’ requests. A summary of the different homing modalities is shown in Table 1 If the Human
Supervisor allocated a time budget for exploration out of communication range, the Homing Timer
block checks whether the given budget has elapsed and if so, it triggers the homing functionality of
the exploration planner (see Section 3.3.1). If the Human Supervisor did not allocate a time budget,
the WiFi Safety block (Figure 15) checks if the agent is in connection with the Base Station. If
the connection is lost (based on a threshold on consecutive, failed pings), it commands the robot to
backtrack its path until the connection is reestablished. The Process Navigation Goals block handles
navigation goals created either by the Human Supervisor or the exploration planner and implements
additional mechanisms to manage possible pitfalls. It forwards the assigned goals to the navigation
planner to compute a terrain-aware path or directly to the path tracking module if the Human
Supervisor decides to bypass the navigation planner. Possible pitfalls handled by this block include

2 https://github.com/BehaviorTree/BehaviorTree.CPP
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Table 1. Homing modalities available through the ANYmal behavior tree module. Each modality can be
triggered by a specific entity and event. When a robot executes the requested path, the action is finished
either when the full path is executed or if the Human Supervisor stops it.

Homing Modalities
Modality Requested by Triggered by Description
Homing Human Supervisor Upon request Behavior tree triggers the homing

functionality of the exploration planner
Homing Timeout Homing Timer block Elapsed allocated Behavior tree triggers the homing

time budget functionality of the exploration planner
Recovery Homing Watchdog block Unexpected conditions Behavior tree commands the robot

to backtrack the traversed path

WiFi Safety
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true

false
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Figure 15. WiFi Safety module of the ANYmal behavior tree. This module checks if the agent is in connection
to the Base Station, and if the agent is not assigned a time budget for exploration out of communication range,
it commands the robot to backtrack its path until the connection is reestablished.

(a) the navigation planner cannot find a valid path to any pose in the reference path, and (b) the
navigation planner considers the robot’s starting position invalid (for example, due to drift in the
odometry estimate). For the former case, depending on which module provided the request, either
the supervisor gets informed about the inability to continue or an automatic replanning command
to the exploration planner is issued. In the latter case, the module automatically resets the elevation
map to remove any possible artifacts and issues again the last command that failed to execute. In
either case, if the exploration planner provides a goal that cannot be achieved for a given amount
of time, the robot is commanded to backtrack. While the robot backtracks its steps, the behavior
tree triggers the exploration planner until a solution is found or the Human Supervisor stops the
procedure. Lastly, the block Process Inspections receives inspection requests, applicable only for the
Explorer robots, that are sent either by the exploration planner or the Human Supervisor and puts
the other requests on hold until the inspection task is completed.

3.4. Networking
While the autonomy system of each robot is crucial to achieve subterranean exploration with minimal
human supervision, simultaneously maintaining a reliable, decentralized wireless network is critical
transmit the gathered information (such as the map, artifact locations, and robot poses) from
the robots to the Base Station so as to provide situational awareness to the Human Supervisor.
Wireless communication is challenging in underground settings due to the unpredictability of the
signal propagation and the constrained environment geometry. Similar to the system described in
our previous work, (Tranzatto et al., 2022), the CERBERUS system-of-systems employed an ad
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Figure 16. Block-diagram showing the networking infrastructure used during the Final Event. The Base Station,
the quadrupedal robots, the roving robot, and the dropped communication-extender breadcrumb nodes created
an ad hoc mesh network, which established the backbone communication infrastructure. The roving robot was
also equipped with a fiber optical cable to maintain a connection to the Base Station. Aerial scouts used a
standard (802.11) WiFi network, acting as clients connecting to the backbone infrastructure.

hoc wireless mesh network, composed of several physical “nodes,” spread over extended distances
ensuring connection to the robots exploring deep in the unknown.

The network operated in the 5.8 GHz range and was composed of the Base Station, the legged and
roving robots, which acted as nodes of the mesh, alongside the flying robots which acted as clients.
Furthermore, Carrier ANYmals could ferry and deploy additional communication-extender nodes,
called “breadcrumbs,” to expand the reach of the wireless mesh network incrementally upon human
command. The mesh network constituted the team’s backbone communication infrastructure, which
could also be accessed by the aerial scouts, acting as clients. Figure 16 shows an overview of the
communication architecture. In the following part, we highlight the main differences of the system
deployed in the SubT finals as compared to our intermediate publication.

Mobile agent nodes
The legged robots and the roving robot featured a commercial off-the-shelf radio (“Rajant Bread-
Crumb DX2”) that acted as a mesh point node and a WiFi access point. Each radio formed a mesh
network when used in conjunction with other Rajant’s BreadCrumb systems. In this mesh network,
the DX2 radios connected directly, dynamically, and nonhierarchically to as many other DX2 radios
as possible and cooperated to efficiently route data between clients. Moreover, each radio operated
also as a WiFi access point, broadcasting a WiFi network with the same SSID. Aerial robots did not
have a DX2 radio of their own - due to their limited payload capability and size constraints. Instead,
they connected to the closest existing WiFi access point. In our previous setup for the Tunnel and
Urban Circuit events the aerial robots could not connect directly to the legged robots; at the Final
Event this limitation was removed.

Base station nodes
Our approach had two solutions for communications at the Base Station. The primary setup was a
“Rajant BreadCrumb ES1” radio in the Staging Area, attached to an omnidirectional antenna to
connect with the robots before entering the competition course. The ES1 radio can mesh with other
DX2 radios. Second, the Base Station could be connected to a roving wheel robot via a 300 m-long
optical fiber cable that could unwind as the rover drove in the course while carrying a DX2 radio.
This dual configuration allowed the robots in the Staging Area to connect to the ES1 radio when
the roving robot was deployed deep in the course and out of wireless reach. Compared to our setup
of the Tunnel and Urban events, the Rajant radios offered the possibility to connect both an ES1
and a DX2 to the Base Station via wired connection without creating any network loop, which was
not possible with the previous technology.
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(a) WiFi breadcrumb. (b) WiFi breadcrumb deployment.

Figure 17. Communication-extender modules and ANYmal C SubT Carrier. (a) Assembled WiFi breadcrumb
module. A WiFi patch antenna is attached to a compliant foldable mechanism. When loaded on the robot, the
antenna is folded down and under tension. When being deployed, the compliant structure pushes the module
out of its magazine. On the ground the antenna unfolded into position for better reception. (b) Carrier ANYmal
tilting its torso and deploying a WiFi breadcrumb on the ground.

Deployable breadcrumb nodes
Carrier ANYmal robots ferried additional WiFi breadcrumbs around the course and deployed them
to incrementally expand the reach of the wireless mesh network. Carriers could transport four wire-
less breadcrumb modules and deployed them by lowering their torso and using an electromagnetic
release mechanism (see Figure 17b), as described in Section 3.1.1. Each breadcrumb was a water
and dustproof self-contained unit, consisting of a 2 h battery pack, a battery management system,
a magnetic switch (to switch the module on after releasing it), an LED to aid the recovery of the
module after a mission, a WiFi patch antenna, and a “BreadCrumb DX2” radio (see Figure 17a).
The patch antenna was installed on a compliant, 3D printed part that could be folded to allow the
stacking of multiple beacons when loaded in the release mechanism.

Once the electromagnet holding a beacon was deactivated, the antenna mount would release
tension, helping the module to slide down a carbon fiber tube and open in the upright position.
The modules had four landing feet, with padding material on the bottom to absorb impacts when
falling to the ground after release. The design of both the landing feet of each WiFi breadcrumb and
the robots’ release mechanism specifically targeted a reliable deployment of each breadcrumb in an
upright position. The critical phase for a reliable deployment was the elastic jump after a breadcrumb
hit the ground. The crouching position minimized the falling distance and thus reduced the energy
which went into this jump after impact. Each beacon weighed 245 g and was 120 mm × 60 mm ×
50 mm in size with the closed antenna mount. When standing on the ground, the antenna extended
17 cm upwards. We did not automate the deployment of these beacons. During the Final Event,
the Human Supervisor made the expert decision about where and when to deploy the breadcrumb
nodes as wireless signal propagation is often unpredictable in subterranean scenarios.

Nimbro network for multi-master ROS networking
Above the physical layer, we employed the ROS (version 1) as the middleware for message passing
between processes running on each robot, as well as across robots on the same network. Each robot
ran their own onboard rosmaster process, which monitored all internal communication connections.
Given our use case scenario with multiple robots and the Base Station, each with their rosmaster, we
used the Nimbro Network3 software package to allow multiple such instances on the same network.

3 https://github.com/AIS-Bonn/nimbro_network
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This software package was configured to select individual data streams which were transmitted
between the agents and the Base Station. We additionally implemented an option to distinguish
between essential and nonessential topics. Essential topics included the robot’s heartbeat and teleme-
try, artifact reports, and mapping data. Nonessential topics included camera streams and other data
not strictly needed to be sent to the Base Station for the mission execution. All robots were allowed
to stream essential topics to the Base Station continuously and could stream the nonessential ones
only if selected by the Human Supervisor. This option, developed for the finals, prevented unselected
robots from sending not-essential and bandwidth-hungry data when not specifically desired.

One possibility we considered was to use ROS2 and its native support for multi robots systems
and Quality of Service (QoS) to manage the bandwidth requirements between robots. We decided
against mixing ROS1 and ROS2 for simplicity.

Network performance
The overall mesh-network performance was influenced by the number of deployed nodes, their
proximity as well as the environment’s geometry. In as ideal as possible underground conditions, such
as a straight tunnel with rather flat terrain, the modules could reliably communicate within several
hundred meters when dropped on the ground. However, performance varied considerably due to
obstructed lines of sight from solid material, multipath, and reflections in underground settings. In
practice, nodes were placed closer together, especially around corners and significant obstacles. We
performed analysis over a challenging scenario where new breadcrumb modules had to be deployed
at each corner to ensure wireless signal propagation. We experienced a decrease of roughly half of
the available bandwidth for each deployed breadcrumb, starting with an available bandwidth of
almost 100 Mbitps in proximity to the Base Station’s ES1 radio. Communication latency, between
the agents and the Base Station, was influenced by the network usage and the number of hops in
the mesh network each message had to take. Given LiDAR scan and CompSLAM map requests, as
the two types of messages most commonly requested by the Human Supervisor, we observed that
LiDAR scans, containing a lower number of points compared to the CompSLAM maps, experienced
lower latency.

3.5. Artifacts Scoring
Each robot performed artifact detection onboard using a trained neural network similar to YOLOv3
(Redmon and Farhadi, 2018). The trained object detector provided bounding boxes identifying
the correct class of the artifact from image streams collected by the cameras onboard the robots.
Because of their small size or nature, the Phone, SubT Cube, and CO2 gas artifacts were detected
using dedicated sensors that measured the Bluetooth strength and CO2 gas concentration. Multiple
detections of the same artifact were fused to refine its estimated position. When sufficient confidence
was reached, a single report was sent to the Base Station over the communication network.

Training
To train the object detector, we collected images using various camera sensors in urban basements,
abandoned tunnels, mines, and natural caves, with lighting conditions ranging from low ambient
lighting to complete darkness, depending only on the robot’s onboard light sources. Datasets were
acquired in the presence of obscurants and with a wide variety of background colors and textures.
Different types of cameras and lenses were used on the robots when collecting data that contributed
to a diverse common training dataset. We observed that training the detector with images obtained
using different sensors at different resolutions improved the detection accuracy.

During the training process, special care was taken to identify conditions where the detector
failed and to collect images for the detector to perform better in similar scenarios. Figure 18
shows some of these cases. Examples included the detection of artifacts against similarly-colored
backgrounds, presence of motion-blur, obscurants, and artifacts located distant from the robot and
against cluttered surroundings. These cases were identified through continuous field testing and
evaluation on datasets. The collected images were manually filtered to remove repetitive images
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Figure 18. Specific examples where the detector regularly failed were collected to improve performance. Images
were collected in cluttered surroundings [(a)–(c)] with distracting colors in the background or clutter similar to
the artifacts to improve detection accuracy. Images were also collected in the presence of obscurants (d), with
artifacts at large distances (e), and with the camera in motion to induce blur (f), as would be observed by the
robot in real-life deployments.

Table 2. Number of labeled images used to train a neural
network using YOLOv3 for each class of visible artifact.

Training Images for the Artifact Detector
Artifact Class Number of Labels
Survivor 6477
Fire Extinguisher 5357
Drill 4580
Backpack 3415
Vent 5350
Helmet 6053
Rope 5219
Cell Phone 3556
Total 40 007

to prevent over-fitting. The images that had significant amounts of obscurants or extreme motion
blur were identified and removed. In total, 40 007 images containing artifacts were labeled manually.
Table 2 shows the number of labeled instances per artifact. Despite using labeled images for the
“Cell Phone” in the training data, we discarded image-based detections for this artifact (due to poor
accuracy) and used Bluetooth as the primary detection method (see below paragraph “Bluetooth
and CO2 detection”). In addition to these, we collected a set of 384 images containing no artifacts,
but instead containing challenging environments and specific conditions that were found to cause
false-positive detections. The training set consisted of 90% of all the images while the remaining
10% were used for validation. The neural network was trained on this set for up to 16 000 epochs,
and the best performing parameters for training were chosen based on their results on the validation
dataset.

Inference
We adapted the trained neural networks to run on dedicated hardware on each robot. For the
DJI Matrice 100-based aerial scouts and Kolibri platforms we used the Intel Movidius Neural
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Figure 19. Artifact detection methodology employed by Team CERBERUS for artifacts detected by YOLOv3.
(a) The artifact is detected with the bounding boxes around it and (b) the area inside the bounding box is divided
into pixels. (c) For each of these pixels, rays are cast into the volumetric map of the robot to locate the artifact.
(d) Multiple detection from the same robot are filtered to refine the position of the artifact.

Compute Stick 2 to perform inference at 5 Hz per camera stream. For the RMF-Owl, the weights
were converted from 32-bit floating-point numbers to 8-bit integers to run on the NPU of the
Khadas VIM3 computer at a rate of 3 Hz. ANYmal C used a Jetson AGX Xavier and NVIDIA’s
TensorRT SDK. This module used 16-bit floating-point numbers and batch processing, achieving
an inference rate of 3 Hz for each of the four color cameras, while running alongside the elevation
mapping pipeline on the Jetson. For the roving platform, the dedicated onboard GPU comprising of
a GeForce 1070 graphics card from NVIDIA ran four instances of the object detection module, one
for each of the onboard color cameras, and achieved an inference rate of 5 Hz per camera stream.

Detection filtering
For the operator, the object detector overlaid rectangular bounding boxes around the object with
the probability of a correct detection as shown in Figure 19. Because detections could be noisy or
inconsistent detections, we filtered the artifact position estimate. Individual rays were cast into the
volumetric map built by the exploration planner for each pixel inside the bounding box using the
camera parameters. To estimate the position of the object, the median point of intersection of these
rays with the map was calculated. These points of intersection were limited to the resolution of
the occupancy map. A virtual sphere of a fixed radius was constructed, centered at this median
point. Further measurements from subsequent images that estimated the artifact’s location within
this sphere were considered to be detections of the same object. The sphere center’s position was
updated by averaging all the accepted detections. With each new detection, a separate binary
Bayes filter recursively updated the probabilities for each artifact class. Once the probability for an
artifact class exceeded a predefined threshold, the process was stopped, and the updated center of
this sphere was reported to the Base Station as the position of the artifact. Subsequent detections
of the artifact on the same robot were ignored to prevent duplicate reports. If the robot was out of
communication range of the Base Station, the artifact’s class and location was stored on the robot
and was transferred to the Base Station once the communication was reestablished.

Bluetooth and CO2 detection
Bluetooth and CO2 readings were processed by the same software module by normalizing the raw
sensor measurements to a predefined range. Bluetooth measurements (obtained in proximity of either
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(a) Clustering of measurements (b) The SubT cube artifact

Figure 20. Cube artifact detection. (a) The raw Bluetooth measurements are shown as red spheres, located on
the positions where the robots sampled them. A brighter color indicates a higher signal strength at the marked
position. The red cube shows the cluster position, whereas the blue cube displays the artifact’s ground truth
position. Because the robot did not actually pass by the cube, its position estimate was not precisely accurate,
nonetheless our estimate was still inside the 5 m scoring radius resulting in a successful artifact report. (b) The
SubT cube artifact.

a “Cell Phone” or a “SubT cube” artifact) were clustered by their SSID identifier, whereas CO2
measurements were clustered by distance. When a new raw measurement above a certain threshold
was received, a new measure cluster was created. Each cluster’s center was continuously updated
using the largest measured values. A cluster’s center was reported to the Human Supervisor when
enough measurements about a predefined threshold were received. Both the SubT Cube and the
Phone artifact were detected by Bluetooth localization; visual detections generally unreliable in the
latter case. An example of clustered measurements used to obtain an estimate of a SubT Cube
artifact position is shown in Figure 20.

Position optimization
M3RM (Section 3.2.4) continuously estimated the optimized position of detected artifacts. Addi-
tionally to estimate the global artifact position estimated by CompSLAM (Section 3.2.2) onboard
the robot, each artifact report contained the position of the artifact in the occupancy map, expressed
in the robot frame at the time of detection, as well as the respective timestamp. For each artifact,
M3RM then estimated the position of the reporting robot at the detection timestamp. The global
optimized position for each artifact was calculated by transforming the position of the artifact with
respect to the robot frame into the global frame using the optimized pose of the robot. The position
estimate for each artifact was updated after each full optimization cycle of M3RM.

Inspection payload
On the ANYmal Explorer robots we employed the payload developed by ANYbotics’ for inspection.
This featured a 10x optical zoom camera, a thermal camera, a directional microphone, and a
spotlight. The unit can pan and tilt its sensor suite to provide a range of 270◦ for the pan joint and
180◦ for the tilt joint. The purpose of the moving sensor unit was to complement the static cameras
of the Alphasense Core, which have a large field of view but cannot scan the distant surroundings
and did not have thermal imaging. In contrast, the inspection payload’s zoom camera had a smaller
field of view but could spot far-off artifacts. Its thermal camera captured the thermal signatures of
the survivor and the vent artifact.

Object detector . We used the same image detector for the zoom camera images as for the Alphasense
Core images, without any modifications. We implemented a dedicated detector for artifacts with
thermal signatures (Survivor and Vent). For each received thermal image, the detector clustered
pixels that were in the same temperature range as specified by DARPA for the Survivor artifact or
10 ◦C above the ambient temperature (defined as the average of all temperature values of the last
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three images). If enough adjacent pixels were in a similar temperature range, a thermal artifact was
considered detected and sent to the Human Supervisor for further inspection.

Scanning operation. For any requested point to scan, the inspection payload’s controller adjusted the
yaw and pitch angles so that the inspection module’s sensor suite pointed to the desired location. It
changed the zoom level of the camera based on the distance to the area containing the point to scan
so that if any artifact were present in the scanned area, it would have similar relative dimensions
to the camera’s resolution. Adjusting the zoom level based on distance was possible by performing
ray-casting in the global volumetric map created by the exploration planner. The inspection payload
featured four different operation modes: “Operator Point Scan,” “Operator Full Scan,” “Autonomous
Point Scan,” and “Autonomous Full Scan.” The Human Supervisor could trigger either “Operator
Point Scan,” to request the inspection of a given position or “Operator Full Scan” to request the
scanning of the whole area (composed of multiple points scanned in sequence) surrounding the
robot. The other two modes, “Autonomous Point Scan” and “Autonomous Full Scan,” had the
same functionalities as their “Operator” versions but were triggered by an autonomous scanning
algorithm.

Autonomous scanning. The autonomous scanning algorithm relied on the volumetric map built by
the exploration planner to compute points to scan with the inspection payload. Areas in the map
closer than 5 m and within the field of view of one Alphasense Core’s color cameras were marked
as seen. Afterwards, the algorithm computed unseen areas with respect to the inspection payload’s
joint space, which was set to −135◦ to 135◦ for the yaw joint and −10◦ to 30◦ for the pitch joint,
with a resolution of 3◦ for both joints, resulting in a total number of 1170 potential scan points.
For each possible scan point, we performed ray-casting to determine where each ray intersected
the global map. We marked each intersection with an identifier indicating whether it was unseen,
and in that case we calculated the zoom camera’s distance to that point. Both the zoom camera’s
distance to the nearest voxel and the already inspected area were considered to select the least
number of scan points while still covering the entire workspace. An example of the selection of
new points to scan is depicted in Figure 21, where it can be seen that no points are selected on
already seen parts, and fewer scans are performed when the voxels are closer to the zoom camera. If
the “Autonomous Full Scan” mode was enabled by the Human Supervisor, the scanning algorithm
checked if the unseen area exceeded 50% of the reachable workspace and, in case, sent a request to
the ANYmal’s behavior tree to execute a full scan of the area. The behavior tree module then paused
the currently running action, stopped the robot, scanned all points provided by the autonomous
scanning algorithm, and resumed the previously running action. If the unseen area was less than
50% of the reachable workspace, the “Autonomous Point Scan” was executed, where the selected
points were scanned while the robot was walking.

3.6. Single Human Supervisor
A characteristic aspect for the SubT Challenge was the requirement to have a single operator, called
the “Human Supervisor,” as the only person permitted to use wireless (or other) communications
to interact, coordinate, and manage the deployed robots during the competition run once they
had entered the course. The single operator requirement was intended to minimize the amount of
human intervention and pushed the competing teams to develop a high level of autonomy for remote
mapping and navigation. The Human Supervisor was allowed to operate at a Base Station external
but close to the course’s entrance. The Base Station (Figure 22a) was a computer that served as an
interface between the supervisor and the robots. Moreover, this computer directly connected to the
DARPA Command Post. Each team had to send regular map updates and artifact reports to the
Command Post. Artifact reports were automatically evaluated and scored if the reported positions
were within five meters of the objects’ ground truth.

Our experience in the first two competition events showed that errors made by the operator
were a significant fraction of mistakes during the runs (due to the general pressure the competition,
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(a) Volumetric map classified based on seen voxels.

(b) Robot’s distance to voxels.

(c) Already scanned area.

(d) Scan points with seen area.

Figure 21. Selection of scan points for the ANYmal C SubT Explorer’s inspection payload. (a) Visualization
of the volumetric map created by the exploration planner: red voxels were seen by the Alphasense Core’s color
cameras, green voxels were already scanned by the zoom camera, and the blue voxels were inspected by both
Alphasense Core and inspection payload, black voxels are considered as unseen. Voxels in 3D are converted to
a 2D image. [(b)–(d)] The x and y axes represent the inspection payload’s workspace. (b) Distance from the
zoom camera to the nearest voxel for each potential scan position. (c) Already inspected areas by the Alphasense
Core and the zoom camera are marked in orange and unseen areas in white. (d) Final selected scan positions,
displayed in purple, are obtained considering the already scanned area and the distance to the nearest voxel.

controlling multiple robots via several computers and not enough practice operating in unknown
environments). These findings are similar to those reported by several teams in the DARPA
Robotics Challenge (Atkeson et al., 2016). For example, during the Tunnel and Urban Circuit
events, the operator made five significant mistakes (distributed across a total of eight scored runs)
that prevented our robots from continuing their missions. This meant that five different robots
did not contribute to the team’s final score on five occasions. Moreover, he erroneously discarded
a correct artifact report during the Urban Circuit’s last run. One of the main issues related to
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(a) Base Station. (b) ANYmal Mission Control Interface.

(c) Aerial and roving robots Mission Control Interface. (d) Monitor and Artifacts Reporting Interface (MARI).

Figure 22. Base Station setup for the single Human Supervisor. (a) Setup of the Base Station at the Final
Event with a single computer and two screens, showing the two main GUIs used to supervise the deployed robots.
[(b) and (c)] Mission Control Interfaces (MCI) used by the Human Supervisor to provide high-level commands to
a selected robot, specialized based on agent’s type. (d) Monitor and Artifacts Reporting Interface (MARI) was
the main interface to provide situational awareness to the Human Supervisor.

these mistakes was the Base Station setup. In fact, in the Tunnel and Urban events, our Human
Supervisor operated different computers to interact with various robots and to handle mapping and
artifacts information. Building on the lessons learned from those events, we developed an improved
version of the human-robot interface before the Final Event. A single computer was used to control
all the robots and to aggregate mapping information and artifacts reports. The supervisor used two
main software modules to interact with the deployed robots: a Mission Control Interface (MCI)
and a Monitor and Artifacts Reporting Interface (MARI), exposed through a Graphical User
Interface (GUI) (see Figure 22). Both interfaces ran on the same computer at the Base Station
and used a multi-master architecture with the Nimbro Network software package (described in
Section 3.4) to communicate with the deployed robots. Each GUI was composed of an “RQT”
panel, gathering the buttons and essential information exposed to the supervisor, and an “RViz”
window to display the primary 3D data. We chose to employ these two components to create our
GUIs due to their straightforward integration within the ROS system.

Mission control interface
Through the MCI (Figures 22b and 22c) the operator could select and interact with a specific
robot. Specifically, the supervisor could (a) give high-level commands, (b) visualize throttled and
compressed image streams to either inspect an area or manually report artifacts, (c) request specific
sensor data to evaluate the current situation better (“on-demand” requests). The supervisor had
several options for high-level command and control. We include here a list of the most relevant ones:
start autonomous exploration; define the exploration bounding box to restrict the area of interest;
start homing procedure; cancel current task; relocate to a selected frontier and start exploration from
there; scan surrounding area or selected point with the inspection payload (ANYmal C Explorer
robots specific); move to a desired waypoint. Only the selected robot in the MCI was allowed to
send image streams to the Base Station, as specified in Section 3.4. Allowing only one robot to

Field Robotics, April, 2024 · 4:249–312



280 · Tranzatto et al.

stream images helped the supervisor to focus only on one robot per time and also decreased the
wireless bandwidth utilization. Finally, the operator could request additional sensor data to better
evaluate the robot’s current state and surrounding area. These data included: CompSLAM map,
LiDAR scans (finer resolution than the CompSLAM map) and elevation map snapshots (legged
robot specific).

Figure 22b shows the MCI for the ANYmal C robots and highlights three main panels: an RVIZ
view (1) showed essential data such as a frame representing the robot’s pose in the map and the
requested sensor data by the supervisor; a bottom panel (2) displayed the current image streams sent
by the selected agent; a side RQT panel (3) exposed control buttons to the supervisor to interact
with the selected robot. Similarly, Figure 22c shows the MCI for the aerial and roving robots. Two
panels are highlighted in this figure: an RVIZ view (1) similar to that of ANYmal; a side RQT panel
(2) containing the control buttons for interacting with the robot.

Monitor and artifacts reporting interface
The MARI (Figure 22d) was the main interface to provide situational awareness to the Human
Supervisor. This GUI was divided into two main parts, one for artifacts reporting and one for
monitoring of the mission state. The artifacts part contained a panel notifying the supervisor of all
new automatic artifact detections. If a robot sent a new artifact report to the Base Station, the
Human Supervisor was notified with a sound. Using a sound notification allowed the operator to
focus on the mission coordination and relieved them from periodically checking whether a new report
was received. Moreover, the MARI implemented a so-called “artifacts queue,” where all the incoming
novel reports were accumulated based on the arrival time. Reports from the queue were displayed to
the operator, one by one, in a FIFO manner. For every new displayed report, the associated camera
image was shown for context, annotated with the artifact’s bounding box and class. The operator
could either accept, reject or modify (class type) the artifact report. The monitoring part presented
a top-down view of the global map created during the mission and some extra markers. Cylindrical
markers indicated the last received positions of all the robots. Spherical markers in the map showed
the locations of the accepted artifact reports. The operator could click on each of these artifacts’
interactive markers and either send them to the DARPA Command Post to try to score a point or
delete them. Moreover, in the monitoring part, the operator could visualize where each robot was
and what was its primary mode of operation (exploration, waiting for commands, homing, etc.).
The goal of this view was to provide high-level information and help the operator’s decision-making
process.

Figure 22d highlights the MARI’s three main panels: an RVIZ view (1) showed the global map,
the last received position of each deployed robot and the locations of the accepted artifact reports,
represented by sphere and cube pins. Spheres represented locations based on the odometry and
reported by the agents, whereas cubes represented optimized positions by the M3RM server. Each
artifact report could therefore have one or two associated pins, based on whether its position had
been already optimized by the M3RM server or not. Every artifact report’s pin was an interactive
marker that the supervisor could use to report its location to the DARPA Command Post or delete
it from the map. Artifacts that were not reported yet were colored blue if the M3RM optimized
location was available and orange otherwise. After a report attempt, the associated pins turned
green if a point was scored and red in case of an unsuccessful report. The locations of deployed
breadcrumb nodes were indicated in purple; a side panel (2) showed incoming artifact detections
(top). The user could accept or reject the detection and manually change the artifact class in case
the detected class was not correct (middle). Upon acceptance, the interactive marker of the artifact
was added to the global map (1). When the user selected an interactive marker in the global map,
its corresponding detection image was shown in the lower right corner; (3) allowed enabling and
disabling of specific robots in the optimization as well as changing several settings of it.

Modes of operation
Team CERBERUS envisioned a squad of highly autonomous robots coordinated by human reasoning
to drive the exploration of unknown environments. As a result, the deployed systems worked in
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a “Supervised Autonomy” mode. Supervised meant that the single Human Supervisor used the
information available at the Base Station to take high-level decisions and assign tasks to each robot
toward one collective exploration strategy. Each system then undertook the execution of its task
autonomously. Specifically, at each moment, the operator evaluated the current high-level situation
(global map, position, and mode of operation of each robot) through the MARI. If the supervisor
wanted to get more information (camera streams, sensor data) of a specific robot, then they selected
that agent in the MCI and requested the additional information.

Furthermore, through the MCI, the supervisor could assign or change each robot’s task. First,
a robot could be tasked to explore a specific unknown area while ensuring it remained within
communication range. If it went beyond the communication range after a certain step, it would
backtrack to a point with connectivity. Second, a robot could also be tasked to explore unknown
regions away from the communication range, given a set time budget after which it would return
to the connection range. A third mode allowed the Supervisor to command the robot to reach a
frontier close to unmapped areas and trigger autonomous exploration. Last, as a last resort, the
operator could provide a high-level waypoint in the map and request the robot to find an admissible
path to reach it.

The part of the Human Supervisor shifted from an “operator” role during the Tunnel Event,
telling each robot where to go and how to go there, more and more toward a “supervisor,”
coordinating a group of robots without focusing on the motion of a single agent. This mode of
operation incorporated our vision of “Supervised Autonomy” for the SubT Challenge.

4. Results
This section focuses on the results from the deployment of Team CERBERUS in preparation of and
during the Final Event of the SubT Challenge.

4.1. Individual Experiments by Subteams and Preparation
We performed a series of field tests to evaluate the performance of our walking and flying robots
system-of-systems and prepare for participation in the Final Event. Reflecting the geographical orga-
nization of our team, we executed several field deployments spanning four different countries (USA,
Switzerland, Norway, and UK). We explored different types of underground mines, subterranean
urban infrastructure, and cave environments.

4.1.1. Field Deployment Preparation
From the beginning of the SubT Challenge, we continuously improved our field deployment and
software testing procedures to ensure the robots were ready to execute periodic mock-up missions.
We employed different tools and strategies to achieve that. On one hand, we used modern devel-
opment tools such as “git” for version control and used Continuous Integration (CI) pipelines for
automated testing of the individual software modules. While these software development approaches
were important, field deployment is robotics specific. Our approach to field testing changed according
to our experience in the three years of the competition. As CERBERUS was a diverse international
team with expertise across countries and continents scheduling of major field testing events was of
paramount importance to integrate disparate contributions and build a team spirit. The following
paragraphs contain the most relevant findings we gathered during this time.

Weekly shakeout
Regardless of the frequency of the field deployments, we executed a general functionality test of
core systems once a week. We referred to this event as a “weekly shakeout.” We introduced this
procedure after the Tunnel Circuit event and committed to testing the overall functionalities of our
robotic systems once a week in a more straightforward but representative enough scenario. Weekly
shakeouts usually took place on Fridays and involved a subset of all the robots. The involved
members updated the software the robots used for testing. First, team members performed a
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(a) Bergwerk Seemühle (c) Versuchsstollen Hagerbach(b) Turquoise Ridge Joint Venture Mine (d) Bergwerk Gonzen

(e) Løkken Mine (f) Salt Peter Cave (g) Corsham Mine (h) Menznau Bunker

Figure 23. A subset of different underground environments used during the “deployment” phase of field-tests
during our participation throughout the SubT Challenge. The first and third rows represent a top-down
orthographic view of the reconstructed pointcloud maps of the environments while the second and fourth rows
capture a third-person view in these environments. The locations of the image captures are presented in the
corresponding maps by a white hollow circle. The challenges presented by each of the environments are discussed
in Section 4.1.2.

functionality tests in the lab, where they verified the functionality of the basic features (autonomous
planning, SLAM, artifacts detection and reporting, etc.). After this first step, the team and robots
moved to a more representative but still easy to access location, such as a university basement
featuring multiple rooms, corridors or a garage. The testing team verified that the main software
and hardware components worked during a full mission mock-up. Even though these environments
were relatively small compared to the actual scale of the SubT Challenge environments, we could
execute mission runs lasting circa 20 min and collected valuable data about the overall status of our
deployed solution.

Field deployment
To gather as much experience in the field as possible and to develop a unifying robotics solution
for the different and diverse types of underground settings (tunnel-like, urban, and cave networks),
we tested in various subterranean environments in preparation for the finals. Figure 23 shows a
selection of the different environments we tested in, whereas Table 3 includes the list of extended
(daily) field deployments. We divided the field deployment into two main phases: “predeployment”
and “deployment.”

Predeployment. This phase started roughly one week before a scheduled field test. Firstly, the team
agreed on which new features had to be tested in that deployment. Secondly, we did an integration
test of the new desired features one day before the field test as part of a mission shakeout. Each
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Table 3. Overall robotics field deployment of Team CERBERUS in preparation for the DARPA SubT Challenge.
Every reported deployment counts as a full day, including several mission mock-ups and tests.

Field Deployments
Location Environment Country Period Deployments
Wangen an der Aare - ARCHE∗ Urban Switzerland 2019–2021 15
Bergwerk Gonzen (Mine) Tunnel Switzerland 2019–2020 12
Versuchsstollen Hagerbach (Mine) Urban/Tunnel Switzerland 2021 6
Bergwerk Seemühle (Mine) Tunnel/Cave Switzerland 2021 4
Menznau Bunker Urban Switzerland 2019 3
Baustoffe Schollberg (Mine) Tunnel Switzerland 2021 2
TRJV Mine Tunnel USA 2018–2019 12
Comstock Mine Tunnel USA 2018–2020 6
Black Diamond Mine Tunnel USA 2019 1
Wampum Underground Tunnel USA 2019 1
Applied Research Facility (Basement) Urban USA 2019-2021 12
Moaning Caverns Cave USA 2020 1
Great Saltpetre Preserve Cave USA 2021 1
Løkken Mine Tunnel/Cave Norway 2020–2021 4
Corsham Limestone Mine Tunnel UK 2019–2021 6
∗ARCHE (Advanced Robotic Capabilities for Hazardous Environments) is an yearly event where to test robotics solutions
in disaster recovery training facilities.

robot had to pass the shakeout individually to be cleared for the field test. If the team detected a
malfunction during the shakeout phase, they could either try to solve it or decide to use a previous,
tested version of the same module, without the detected issue. If the team performed either a
software fix or a downgrade, all the robots had to switch to the same software version and be tested
again. Once every robot passed the shakeout test, it was marked as “mission-ready” and allowed
no new hardware or software updates. With these constraints, the team ensured that on the field
deployment day, they were ready to go to the selected underground location and start testing without
any hindrances due to unforeseen issues related to the latest software or hardware updates. After
all the robots were ready and packed, we discussed and agreed on the field deployment schedule and
wrote down a testing plan.

Deployment. We scheduled at least one field deployment in an underground setting per month in a
different location to avoid overfitting to a specific site (underground mine, urban environment, cave
networks). Each field deployment included several mock-up missions in a configuration as similar
to the SubT Challenge runs as reasonably possible. Specifically, the team set up a mock-up gate
with four Apriltags so that each robot could execute the “DARPA-frame” detection before starting
its mission. Moreover, we prepared the Base Station, where the Human Supervisor coordinated the
mission runs, as required during an actual competition event. Finally, we distributed the artifacts
along the course to verify that the robots could detect them and report their locations. Before each
mission test, the Pit Crew members prepared the robots with the same modalities used for the official
missions. In the year before the Final Event, we had two people training as the Human Supervisor.
Each field deployment happened despite the status of the features under development, and its
primary goal was to assess the overall mission performance. Each executed mission was a snapshot
of the system’s readiness in a competitionlike environment and provided essential information to
the team. Furthermore, each field test contributed to the team’s readiness for the final event.

System launch
Before each mission, the Pit Crew launched the software in each robot using ssh-shell sessions running
tmux.4 Tmux is a terminal multiplexer used to create persistent sessions on each robot where the

4 https://github.com/tmux/tmux
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launched software kept on running even if the original ssh-shell session disconnected. Moreover, we
could save the complete output history of each onboard session to file for postprocessing analysis
and debugging of every mission.

Onboard data recording
Robots recorded extensive data during their mission executions for postmission analysis. These data
included mission-related information (such as robot state and odometry, onboard map, planned
paths, etc.), as well as raw sensor data (LiDAR packets, camera streams, etc.) and other onboard
compute information (for example, CPU, memory, GPU usage, and temperature). Given the
complexity of the software running onboard, we had to carefully select that data to record since
recording all the available information for possibly more than 60 min (one entire mission duration)
was not feasible due to onboard memory limitation and processing overhead created by the recording
process itself. Therefore we focused on the information needed to perform postmission analysis and
debugging and privileged, when possible, “raw information” required to reconstruct the robot state
in postprocess.

Mission data analysis
After every mission test, we thoroughly analyzed the onboard sessions’ logs and recorded data from
each robot. This procedure included writing down a summary report highlighting the mission’s
main outcome and any detected issue that required further analysis. Additionally, we generated a
series of plots using the onboard recorded data for each test. We found the tool plotjuggler5 to be
extremely helpful for this purpose. For example, by visually inspecting these plots and looking for
an unexpected trend, we could detect if any silent bug was introduced (such as a memory leak,
abnormal CPU or GPU usage, etc.).

4.1.2. Qualitative Results from Preparation Tests
Different challenges were expected from the diverse environments of interest (tunnel-, urban-, and
cavelike) including (a) geometric self-similarity, (b) visual obscurants (e.g., smoke and dust), (c)
lack of visual texture, (d) multi-level settings, and (e) wide or extremely narrow environments.
This guided our selection of a representative set of specific environments for conducting field tests.
We expected challenges in terms of their complexity, traversability, effect to communications, scale
and perception. To this end, we conducted field deployments in a set of environments that can
be categorized as tunnel-, urban-, or cavelike in preparation for the challenge. Table 3 presents
a complete list of all the field deployments conducted over the course of the competition (2018-
2021) divided by category. A representative subset of these environments are shown in Figure 23,
with a top-down view of the 3D maps and an image, respectively. The environments presented in
Figures 23(a)–23(e) are representative of tunnel-like environments, while Figures 23(f) and 23(g),
23(h) are representative of cavelike and urban environments, respectively. In terms of perception,
these environments presented challenges to our entire exteroceptive sensor suite albeit not necessarily
simultaneously. For LiDAR, Figures 23(a) and 23(e) presented a sudden change in scale, Figure 23(c)
multiple levels, and Figures 23(a) and 23(h) geometric self-similarity while for a visual camera,
Figures 23(a), 23(b), 23(f), and 23(g) presented darkness, Figures 23(a) and 23(b) heavy airborne
dust and for a thermal camera, cave environments like Figure 23(f) presented thermal flatness.

4.2. Final Event
The SubT Challenge’s Final Event took place at the Louisville Mega Cavern in Kentucky on 21–24
September 2021 and involved eight teams for the Systems track and nine teams for the Virtual
track. For the Systems track, as side from Team CERBERUS, the following teams competed:
CSIRO Data61, MARBLE, Explorer, CoSTAR, CTU-CRAS-NORLAB, Coordinated Robotics, and

5 https://github.com/facontidavide/PlotJuggler
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Robotika. The competition course included elements from all the subdomains (Tunnel, Urban,
and Cave) combined into a unified, integrated environment. The course6 had a single entrance,
composed of an inclined tunnel and a steep turn, followed by an opening containing three different
access breaches leading to different sections for each subdomain. Multiple connections and crossover
points existed between the subdomain areas. Thus the final course had a complex, heterogeneous,
multi-level morphology exposing the teams to all the different challenges that each subdomain
offered. Accordingly, the Final Event represented a grueling challenge combining the mobility,
perception, autonomy and communications challenges envisioned by DARPA. In the leaderboard of
the Systems track’s Prize Round, which took place on September 23, both teams CERBERUS and
CSIRO Data61 scored 23 points, followed by teams MARBLE (18 points), Explorer (17 points),
CoSTAR (13 points), CTU-CRAS-NORLAB (7 points), Coordinated Robotics and Robotika (both
with 2 points). As both CERBERUS and CSIRO Data61 were tied with 23 points each, the
tiebreaker rule had to be invoked. This rule denoted that the team which reported its last score the
earliest would win: CSIRO Data61 reported their final point with under 30 s remaining, whereas
CERBERUS reported our last artifact with more than 1 min left. Team CERBERUS won the
DARPA Subterranean Challenge as well as the associated $2 million (USD) prize reward.

4.2.1. Preliminary Runs
Two test runs on September 21 and 22 2021, called “Preliminary Runs,” preceded the Prize Round
and served as a testing bench for the teams before the scoring final run. Each Preliminary Run lasted
30 min and included 20 artifacts. The competition course was reconfigured between each Preliminary
Run and before the Prize Round. Each team’s score during these runs was not used to determine
the final ranking in the Prize Round, which was based solely on the Prize Round result. Teams
were also not allowed to use any prior map information or other data collected from the preliminary
runs.

The afternoon before each Preliminary Run, some team members gathered to discuss the
deployment strategy for the upcoming run (how many robots to use, which robot to deploy first,
etc.). In the meantime, the other members finalized data analysis and required fixes in software and
hardware. Upon agreement on the deployment strategy, each subteam (walking, flying, autonomy,
multi-robot mapping) worked together to finalize the system configuration for the run. This work
included software updates on the agreed modules and final verification of each system, to be
completed within the same evening. Selected team members checked each robot (for instance, to
verify that all the LEDs turned on, sensor glass was cleaned, plugs correctly connected, etc.) and
subsequently tested our overall system in a small mock-up mission to verify that all the significant
functionalities were correctly executed. This mock-up mission resembled the tests performed during
the “weekly shakeout” sessions highlighted in Section 4.1.1.

Preliminary run - day one
Team CERBERUS deployed three ANYmal C SubT agents and the roving robot during the first
Preliminary Run. Our overall strategy for this run was a trade-off between testing our robotic
solution in the course while being cautious enough not to damage the agents by following more risky
paths in terms of traversability characteristics. Specifically, we used rather conservative settings for
the ANYmal’s navigation planner to prevent the robots from tackling dangerous but still feasible
routes.

We deployed an ANYmal C SubT Explorer, two Carriers, and the roving robot. The Human
Supervisor assigned a different area of exploration to each ANYmal based on the information he
received from the first deployed robot. The supervisor then drove the roving robot in the course
and parked it at the intersection with the three subdomain openings to extend the wireless coverage
of the agents and support underground operations. The supervisor tasked the Explorer with the
autonomous exploration of what he perceived as the Tunnel subdomain area, accessible from the

6 https://s.ntnu.no/subt-finals-course
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course entrance. Moreover, he allowed this agent to keep on exploring even if it went beyond the
communication range. Afterward, the supervisor assigned the first Carrier robot to explore the
Urban section. While this Carrier proceeded further, the third ANYmal robot was deployed and set
to explore the Cave subdomain. The Explorer autonomously navigated through the Tunnel section
and reached the intersection with the Urban area, where one of its feet got stuck in a railway track
and caused an unexpected shutdown of the agent due to over-current demands while trying to
proceed forward.

The Carrier sent into the Urban area also explored this section autonomously, apart from
two occasions where the Human Supervisor explicitly provided waypoints. In the first case, the
exploration planner provided waypoints to climb a short flight of stairs, but the ANYmal’s navigation
planner did not plan a path due to the conservative settings mentioned at the beginning of this
paragraph. In the second case, a long descending flight of stairs connected the Urban and the
Tunnel environment, but its bottom part was never seen by the LiDAR sensor placed on top of
the Carrier, due to its limited field-of-view. Thus the exploration planner could not provide any
path to descend the staircases. Once the Human Supervisor realized that the robot could not
proceed further, he provided a waypoint to command the robot downstairs directly. Lastly, the
third deployed robot autonomously navigated in the narrow passages of the Cave section. During
the first Preliminary Run, Team CERBERUS scored 7 points and led the Systems’ preliminary
round tie with team CSIRO Data61. Importantly, we learned that the environment of the DARPA
Subterranean Challenge final event started with a narrow tunnel. We therefore identified that flying
robot deployment from the staging area could be both risky and of limited value.

Preliminary run - day two
For the second Preliminary Run, we decided to start with the same settings as the first run and
apply a few modifications to evaluate further which configuration to use for the scored run of the
day after. First, we did not allow any robot to explore beyond the communication range for this
run. This constraint was an extra safety feature on top of the conservative tuning from the first day:
we wanted to make sure to have all the robots available for the Prize Round. Second, we deployed
the exploration planner with a modification to the global planning stage. Since the planner had a
binary constraint on the inclination of the edges in the graph, we observed that the planner could
provide paths passing areas too steep for the robot to traverse safely but satisfy the inclination
constraints according to the low resolution volumetric map (0.2 m). The issue was prominent in the
global planner due to the static nature of the global graph. Hence, a modification was made that
calculated k shortest paths towards the goal in the global graph and commanded the one having the
least inclination value on its steepest edge. We also retuned the detection thresholds for Bluetooth
and gas artifacts.

We deployed two ANYmal C SubT Explorers, one Carrier, and the roving robot. The Human
Supervisor assigned each ANYmal to autonomously explore different sections: the first Explorer to
the Cave environment, the second Explorer to the Urban environment, and the Carrier to the Tunnel
area. The deployed robots explored less unknown space than in the previous run due to the additional
constraint of maintaining wireless communication with the Base Station. Team CERBERUS scored
6 points in this run, achieving third ranking in the overall Preliminary Round (determined based
on the sum of the team’s two runs).

4.2.2. Prize Round
The Prize Round took place on September 23, 2021 and consisted of one scored run, lasting 60 min,
where each team had to find as many of the 40 artifacts distributed along the course, with the total
number of allowed artifacts reports equal to 45. Each team was competing on the same course, one
after the other, with particular caution by the DARPA team to ensure that team personnel would
not communicate with each other to prevent gaining knowledge from another team’s run. This was
achieved by “sequestering” team personnel and systems from their garage area until they completed
their scored run. As it turned out, the course was further modified from the two Preliminary Runs,
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again without the knowledge of the competing teams, with the addition of dynamic obstacles such
as a hidden mechanism that would close an opening after a robot stepped in or a falling object from
the ceiling triggered by a moving robot passing close by.

The afternoon before the Prize Round, team members discussed the final software and hardware
configuration and agreed on the deployment strategy. We decided to use settings similar to the ones
used during the first Preliminary Run because we were confident about the overall performance of
our robots with these configurations. Moreover, we extensively discussed whether to deploy some
last software modifications (in the planning and SLAM pipelines) that could have improved some
detected issues, but we decided not to. We believe that these conservative decisions, avoiding last
minute (and not extensively tested) changes was crucial for the overall performance during the
scored run. We learned during the previous years of this competition how complex robotic systems
are and how everything must be extensively tested before deploying in the field. Afterwards, we
tested all the robots with a “shakeout” procedure, similar to that mentioned above.

At the Prize Round, we prepared the following robots for deployments: four ANYmal C SubT
robots (two Explorers, ANYmal 1 and ANYmal 2, and two Carriers, ANYmal 3 and ANYmal 4),
one RMF-Owl aerial robot, one DJI M100-based Aerial Scout, and the roving robot. First, the
two Explorers were deployed: the Human Supervisor utilized online feedback regarding the map
of the area and assigned ANYmal 2 to explore the Cave section and ANYmal 1 to explore the
Tunnel section. When the first two robots were exploring their areas autonomously, the supervisor
teleoperated the roving robot in the course and parked it close to the entrance of the three different
sections, with its directional antenna pointing toward the Tunnel and Urban openings. Afterward,
the first Carrier robot, ANYmal 4, was deployed and assigned by the supervisor to explore the
Urban environment. While the three ANYmal robots autonomously navigated their given bounding
boxes, the last Carrier robot, ANYmal 3, was deployed and sent to the Cave area.

With 18 min left in the run, the team decided to deploy the RMF-Owl to explore the higher
area of the cavity in the cave section. However, after deploying, the robot went up exploring the
upper part of the staging area. This was caused due to the fact that there was no provision to
add 3D “no-go zones” within the staging area (to indicate to the planner that this area is out of
consideration) and an existing but deprecated feature of our software for crossing the gate before
starting the exploration was not used. The robot was manually landed by the safety pilot and not
deployed in the remaining of the run. Due to the narrow settings of the final course, the Human
Supervisor and Pit Crew members decided not to deploy any other drone. During the complete
run, the Human Supervisor coordinated the mission execution by checking what each deployed
robot was doing (autonomous exploration, frontier repositioning, etc.) and, if needed, requested
additional actions. Most of the time the supervisor focused on processing the incoming artifact
reports from the different robots. At the end of the 60 min scored run, Team CERBERUS achieved
23 points and used all the 45 report submissions available.

Figure 24 and Table 4 show an overview of Team CERBERUS’ Prize Round. Figure 24 details
in which mode each robot operated at any given moment in time: mode “Supervisor” indicates that
the Human Supervisor directly provided a waypoint in the robot’s proximity and asked the agent
to go there (directly or querying the ANYmal navigation planner to find a traversable path). Mode
“Autonomous” indicates that a robot was executing a given task completely autonomously and
could, if necessary, decide to take different actions (for example, switch from exploration to homing,
execute frontier repositioning, etc.). Mode “No Operation” shows when a robot was not moving /
not operational. An agent was considered out of communication range (“Out of Comms”) if it could
not ping the Base Station for more than 3 s. A correct artifact report (artifact class and position)
sent from a robot to the Base Station is marked with a dark green star in the robot’s timeline. The
Human Supervisor filtered the reports received by the different agents and decided which artifact
(class and position) to report to the DARPA Command Post. Successfully scored artifacts are
marked with yellow stars in the Human Supervisor’s timeline. Since each robot operated in the
course solely based on the information collected onboard and on the commands received by the
Human Supervisor, it was not aware of the data collected by the other agents. Therefore, if two
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Table 4. Statistics of the winning Prize Round of Team CERBERUS in the DARPA SubT Challenge. For each
robot, the following information are provided: “Run Time” indicates for how long each robot operated in the
course; “Distance” holds the travelled distance by each agent; “Scored Artifacts” indicates how many artifacts of
the total scored ones were reported by the agent; “Operational” indicates the operating percentage with respect
to the agent’s time in the course (Run Time); “Autonomous” holds the percentages, split by type, when the
agent was in autonomous mode - percentage with respect to the operational time.

Prize Round Statistics

Robot Run Time Distance
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ANYmal 1 57 min 240 m 8 31.1% 75% 6.9% 4.5% 13.6%
ANYmal 2 60 min 687 m 8 69% 60.6% 6.6% 25.8% 7%
ANYmal 3 47 min 311 m 1 34.1% 53.4% 11.9% 20% 14.7%
ANYmal 4 50 min 500 m 6 57.5% 81.3% 12.9% 0% 5.8%

5 0 5 10 15 20 25 30 35 40 45 50 55 60
Minutes into the mission

ANYmal 1

ANYmal 2

ANYmal 3

ANYmal 4

Human
Supervisor 1

2
3

4
5

6
7

8
9

10
11

12
13

14
15
16

17
18

19
20

21
22

23

Autonomous
Supervisor

No Operation
Out of Comms

Scored Artifact
Reported Artifact

DARPA-frame Detection
Deployed WiFi Breadcrumb

Figure 24. Mission analysis of the winning Prize Round of Team CERBERUS in the DARPA SubT Challenge.
The plot shows in which mode each robot operated (“Autonomous,” “Supervisor,” and “No Operation”) and
when major mission events occurred (“Reported Artifacts,” “DARPA-frame Detection,” and “Deployed WiFi
Breadcrumb”). ANYmal 1 and ANYmal 2 were Explorer robots, whereas ANYmal 3 and ANYmal 4 were Carrier
robots. An agent was considered out of communication range (“Out of Comms”) if it could not ping the Base
Station for more than 3 s. An extra line is used for the Human Supervisor to highlight when artifact reports sent
to the DARPA Command Post were scored.

robots crossed the same section, they might have reported the same artifacts to the Base Station
(hence the number of “Reported Artifacts” exceeds “Scored Artifacts”).

Figure 24 also shows our overall strategy: we decided to let the robots go out of communication
range for a limited amount of time in favor of getting them back in connection range, receiving
their artifacts reports, checking the area they explored, and finally assigning them a new task. The
assigned budget to each agent for exploration could be decided at the moment, but during the Prize
Round, it ranged from 5 min to 13 min. A given time budget meant that the robot could explore
for that time, and then it had to come back to the starting position, thus resulting overall in a
time allotment for the assigned task with a duration double the allocated budget. We believe that
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such a strategy, involving short and frequent autonomous tasks, with the advantage of the Human
Supervisor interacting with the robots at a reasonable frequency, paid off compared to letting every
agent go for longer autonomous missions and waiting for them to come back only towards the end of
the run. However, our approach still implied a slightly heavier load on Human Supervisor who had
to cope with different agents at the same time while checking the artifact reports. Another insight
about the mission can be noted in the plot between 15 and 33 min, when the Human Supervisor
did not score any points. Specifically, during this time, the supervisor had to control the deployed
robots and, at the same time, check a higher number of artifact reports sent by ANYmal 4. This
agent sent to the Base Station 30 CO2 artifact reports between 10 min and 15 min. These reports
accumulated in FIFO list (the “artifacts queue”) at the Base Station and had to be analyzed by
the supervisor. Such a high number of reports for a single artifact type, detected in a short period,
was caused by erroneous tuning of the threshold used to check the CO2 concentration. We set a
low detection threshold for CO2 concentration (1500 ppm, in contrast to the given official DARPA
specification of 3000 ppm), intending to detect the presence of gas leaks even if not particularly close
to the source and relying on the supervisor to decide further where to send the agent in this case.
Unfortunately, such a low value created many reports, even though measurements above the set
threshold were grouped based on their positions. In fact, within each group, the estimated clustered
position of the artifact was allowed to be updated if new measurements were received. Therefore the
more the robot moved close to the gas leak source, the more measurements were above the threshold,
and the more often the clustered position was updated and reported to the Base Station. The plot
shows only one “Reported Artifact” marker, despite of how many times its clustered position was
updated. A similar problem, even if less severe, occurred between 37 and 42 min when ANYmal 2
sent to the Base Station 11 CO2 artifact reports. Moreover, the supervisor decided to focus only
on two robots (ANYmal 2 and 4) between 33 and 44 min, while keeping ANYmal 3 stationary. The
supervisor wanted to better coordinate these two agents, given the global information collected up
to that moment. Finally, the plot shows that in the last 7 min of the competition, the supervisor
focused only on deciding which of the already received artifacts to report to the Command Post,
thus he did not send any additional exploration goals to the agents.

Artifacts scoring
The artifacts during the Prize Round were detected by the robots using their onboard artifact
detection framework. For each artifact, the detections were filtered and reported back to the Base
Station. The Human Supervisor could see the detections on the MARI as shown in Figure 22d, which
was then used to accept, or reject the reports or to change the class of a detected artifact. Team
CERBERUS detected 23 artifacts during the Prize Round. These artifacts were detected by the four
ANYmal robots, were initially localized based on the CompSLAM solution onboard each robot and
the M3RM framework was (at instances) utilized to correct their position estimates on the Base
Station. The Human Supervisor added each incoming artifact report from the robot to the map in
the MARI and reported the artifacts visualized in the map. For some artifacts reported initially,
the Human Supervisor chose to utilize the M3RM solutions, while others were reported using the
onboard CompSLAM estimate. Since the M3RM framework required more time to optimize the
position as the map grew, this was used in the beginning, whereas later in the mission, the onboard
estimate was used.

Figure 25 chronologically numbers the artifacts that were correctly reported to the DARPA
Command Post visualized alongside the ground-truth pose of the artifacts. The ground-truth
locations of the artifacts were made available by DARPA only after the completion of the Final
Event. The ground truth map of the environment provided by DARPA is shown in green. The
figure also shows the images captured by the onboard sensors of the respective robots at the time
of detection. The Human Supervisor reported the refined positions of the artifacts numbered 6, 9
and 15 as optimized by the M3RM, while the artifact numbered 12 was identified by observing the
image streams on the MARI. Artifact localization was initiated onboard the robot for this instance
by the supervisor by clicking on the artifact inside the image.
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Figure 25. Scored artifacts during the Final Round. The colored circles represent the locations of the artifacts
detected by each robot against the ground-truth (in white). The images of artifacts numbered 10 and 20 show
erroneous classes. The supervisor accepted the reports from the robot, changed the class types and then sent the
revised reports to the DARPA Command Post. The locations of fourteen artifacts were estimated using the robot’s
onboard CompSLAM output, while those of three artifacts were refined using the M3RM (artifact numbers 6, 9.0
and 15). Five artifacts involved Bluetooth or CO2. Finally, the Human Supervisor manually detected one artifact
(artifact number 12) while checking the image streams sent from one agent. A video showing the Team’s Prize
Round is available at https://youtu.be/QON8IFc8cjE.

Inspection payload
The main purpose of the Explorer robot’s inspection payload was to scan areas classified as being
far away from the Alphasense Core’s color cameras. Due to the narrowness of the final course,
most of the explored sections resulted to be within a close range from the color cameras. Therefore
the inspection payload executed only single point scans during the Prize Round. Overall, 25 scan
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Figure 26. ANYmal’s inspection payload artifact detection. (A) The scanned area after the run for ANYmal 2
(Explorer robot). Black points are unseen, red points were only scanned by the Alphasense Core colored cameras,
and green points only by the inspection payload zoom camera. Blue areas were scanned by both sensors. Artifact
detections performed with multi-sensor modalities: (B) visual detection of an helmet with the zoom camera
and (C) thermal detection of a survivor. The letters B and C in image (A) display the point of the respective
detections.

points (Section 3.5) for ANYmal 1 and 156 for ANYmal 2 were targeted. ANYmal 2 was inside
wider areas than ANYmal 1, explaining the higher number of scans. Scans in narrow passages were
either due to imperfect ray-casting in narrow and tangled sections or because the inspection payload
captured the area prior to the Alphasense Core. For each scanned point, the camera images obtained
with the zoom camera were processed by another instance of the same neural network used for the
Alphasense Core’s camera. The thermal image samples were processed by the thermal detector at
3 Hz. Figure 26 shows an example of multi-modal artifact detections using the ANYmal’s inspection
payload module. Despite the complementarity of the Alphasense Core cameras and the inspection
payload sensors, all the scored artifacts during the Final Event were first detected using the images
from the Alphasense module due to the primarily narrow settings of the environment prepared
by DARPA.

Evaluation of the multi-modal and multi-robot perception system
The onboard complementary multi-modal localization and mapping, CompSLAM, and the global
multi-robot mapping approach, M3RM, were deployed on all the legged robots during the Prize
Round. Each robot individually estimated its state and the map of the environment and, when
in communication range, transferred all its information, including submaps, back to the Base
Station. However, during the Prize Round the M3RM approach had significant difficulties due
to the textureless entrance of the urban part of the competition course as the primary modality of
M3RM was visual imagery. Consequently, for M3RM the majority of the visual constraints in this
particular area were incorrect which lead to skewed maps. Hence, M3RM required a significantly
larger amount of time to converge to the correct solution. Furthermore, the computational burden
prohibited its reliable utilization after a certain point during the duration of the Prize Round.
Therefore the Human Supervisor mainly relied on the onboard CompSLAM pose estimates for the
mapping and artifact reporting. Figure 27 shows the maps and paths from CompSLAM for all robots
as recorded during the Prize Round (top row). Furthermore, robot map and paths postprocessed
and aligned with the DARPA-provided ground-truth map are also shown in the bottom portion of
Figure 27 to provide a qualitative measure of performance.
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Figure 27. Robot paths and maps generated by CompSLAM and recorded during the Prize Round are shown
(top row). The paths and maps were postprocessed and aligned with the DARPA provided ground-truth map
post competition to provide a qualitative overview of the mission performance (bottom). A video showing the
Team’s Prize Round is available at https://youtu.be/QON8IFc8cjE.

To give a quantitative evaluation of the onboard localization during the mission as well as the
onboard and global mapping performance that could have been achieved either given different tuning
parameters or more time (especially for M3RM), both CompSLAM and M3RM were postprocessed
and are compared with ground-truth robot trajectories. The ground-truth robot trajectories were
created by registering individual robot pointclouds to the DARPA-provided ground-truth map, as
described in (Ramezani et al., 2020). Table 5 presents the Relative Pose Error (RPE), calculated ev-
ery 10 m, for the CompSLAM (onboard) localization during the run and postprocessed by comparing
against individual ground-truth trajectories. During the competition, as the scale of environment
was unknown, the down-sampling leaf-size of pointclouds was increased from 0.1 to 0.2 m as a
safeguard against excessive onboard computational demand, which later given the environment
size, was deemed unnecessary. To measure the performance difference, the down-sampling leaf-size
was restored for the postprocessed results which increased the accuracy of the onboard approach, as
demonstrated in Table 5. Since the global multi-robot mapping approach, M3RM, sparsifies the robot
poses by using key-frames as compared to estimating the full robot trajectory as done by Comp-
SLAM, the RPE for M3RM cannot be calculated accurately and hence is omitted from comparison.

Similarly, Table 6 contains the Absolute Pose Error (APE) metric for the CompSLAM approach,
during the run and postprocessed as well as the M3RM (global) mapping approach postprocessed.
Combining the information from all individual robots leads to obtaining more constraints and hence
better constraining the solution and building a more extensive factor graph. Despite the bigger
optimization problem with more information, the M3RM solution was able to reduce the onboard
drift due to intra- and inter-robot loop closures. In particular, the upward-facing cameras of the
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Table 5. Comparison of the mean Relative Pose Error (RPE) from the DARPA
SubT challenge Final Event of the CompSLAM approach during the run and
postprocessed across all the deployed robots.

Prize Round Evaluation - mean RPE and standard deviation
During Run Postprocessed

CompSLAM CompSLAM

Robot Rotation [◦] Translation [m] Rotation [◦] Translation [m]
ANYmal 1 1.21 (0.76) 0.07 (0.05) 0.69 (0.36) 0.03 (0.02)
ANYmal 2 0.85 (0.54) 0.05 (0.04) 0.54 (0.34) 0.04 (0.03)
ANYmal 3 0.73 (0.41) 0.05 (0.03) 0.40 (0.20) 0.04 (0.02)
ANYmal 4 0.89 (0.61) 0.06 (0.04) 0.56 (0.31) 0.04 (0.03)

Table 6. Comparison of the mean Absolute Pose Error (APE) from the DARPA SubT challenge Final Event
between CompSLAM (during the run and postprocessed) and the global M3RM (postprocessed only) localization
and mapping approaches.

Prize Round Evaluation - mean APE and standard deviation
During Run Postprocessed

CompSLAM CompSLAM M3RM

Robot Rotation [◦] Translation [m] Rotation [◦] Translation [m] Rotation [◦] Translation [m]
ANYmal 1 3.71 (2.02) 0.60 (0.37) 2.45 (0.67) 0.72 (0.41) 1.59 (0.46) 0.25 (0.13)
ANYmal 2 4.55 (1.07) 1.81 (0.84) 3.97 (0.40) 1.29 (0.90) 0.96 (0.30) 0.36 (0.28)
ANYmal 3 1.53 (0.68) 0.22 (0.29) 0.89 (0.50) 0.23 (0.43) 2.30 (1.02) 0.20 (0.34)
ANYmal 4 3.26 (1.02) 1.24 (0.67) 2.22 (0.79) 1.00 (0.71) 2.16 (0.55) 0.24 (0.17)

ANYmal’s sensor rig provided many valuable loop closure detections, especially in passages that
were traversed in different directions. As a result, for all final ANYmal runs, the M3RM approach
improved the trajectory estimates of the onboard localization and mapping solution and significantly
corrected the poses in terms of the APE.

4.2.3. Finals Discussion
In this section, we review selected highlights of individual components of our system as well as core
challenges that were faced during the Final Event of the DARPA SubT Challenge.

Exploration planner highlights
The Final Event course of the SubT challenge presented settings, particularly challenging for
autonomy. These include stairs, steep slopes, narrow openings, confined passages and big open
rooms, and an overall large-scale of the environment. The Graph-based exploration planner was
able to provide safe and efficient exploration paths in real-time. The improvements in GBPlanner2
for the ground robots enabled the planner to plan over short staircases and steep slopes. The team
had done certain tuning and modification in the planner a few weeks before the competition to
enhance its ability to plan through extremely narrow (1 m × 1 m cross-section) openings. This paid
off in the Final Event as the course involved several narrow, constrained passages which would have
been difficult for the exploration planner. A few notable instances of GBPlanner2 are shown in
Figure 28. The figure shows the paths provided by GBPlanner2 in the presence of the challenges
mentioned above in the Cave, Urban, and Tunnel sections of the Final Event course during the Prize
Round. The figure also shows an instance of global repositioning.

ANYmal mobility highlights
The combination of our perceptive locomotion controller and the navigation planner allowed the four
legged robots to safely walk in the most challenging parts of the course (see Figure 29a). Moreover,
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Figure 28. Highlights of the deployment of the exploration planner in the Prize Round of the Final Event.
(a), (b), and (c) show instances of local exploration in the Cave, Urban, and Tunnel sections of the course
respectively. The figure shows the performance of the exploration planner in the presence of short stairs, steep
slopes, narrow openings and passages. It is noted that in (b), even though the exploration planner planned a path
up the staircase, ANYmal did not walk up the stairs due to conservative tuning of the navigation planner. The
path commanded by GBPlanner2, refined traversable path by the navigation planner, and the local exploration
graph (edges are not shown for better visibility) can be seen along with the front camera view of the robot.
(d) shows an instance of global repositioning. The robot had finished exploring one part of the Cave section and
the Human Supervisor provided a goal point at the beginning of the Tunnel section. GBPlanner2 calculated a
path towards the goal along the global graph.

the navigation planner was able to stop the robot from hitting obstacles which GBPlanner2 missed,
as shown in Figure 31. In conditions challenging for the localization and mapping pipeline, the
height map can become corrupted due to unstable or too imprecise pose estimates. Corrupted
terrain maps could lead to a complete failure to plan for the ANYmal navigation planner. If the
robot pose was considered invalid with respect to the terrain map (which should be impossible), the
ANYmal’s behavior tree module triggered a reset of the height map. This allowed us to recover from
mapping failure, as shown in Figure 29b. Furthermore, the use of learned motion costs showed to be
valuable in producing safer, more efficient paths. Figure 29c (right) shows how the navigation planner
prefers to circumnavigate high railroad tracks as long as possible, and crosses them orthogonally,
if it has to. In cases where walking along rails is necessary, shown in Figure 29c (left), the robot
rotates before stepping onto the rails such that it can walk straight on them, with the rail between
its legs.
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(a) Locomotion challenges.

(b) Automatic reset of the elevation map.

(c) ANYmal navigation planner instances.

Figure 29. Highlights of ANYmal’s mobility in fully autonomous mode during the Prize Round. (a) Locomotion
challenges included obstacles, rough surfaces, and railway tracks (left); slopes and constrained passages (center);
rough terrain (right). (b) Automatic safety mechanisms acted during the mission to ensure the robot could deal
with unexpected situations, for example, with challenging localization conditions leading to corrupted height maps,
like in the case shown in part (1), where drift in the robot’s odometry made the elevation map move upwards up,
touching the agent’s knees, thus preventing the ANYmal navigation planner from finding a traversable path due
to an invalid start position. If such a condition was detected, the terrain map was automatically reset and a new
planning iteration triggered. (c) The learned motion cost within the ANYmal navigation planner allowed us to
circumnavigate obstacles like high rails, instead of crossing them. Poses represented as RGB axes were produced
by the navigation planner, whereas poses displayed as yellow arrows were created by the exploration planner. This
also led to safer behavior when the robot had to walk on rails, turning before stepping onto the rails to then walk
straight.

Operator’s interface challenges
The usage the GUIs, as presented in Section 3.6, significantly improved the capabilities of the
Human Supervisor to manage the overall mission and interact with the single agents, compared to
the Team’s setup at the previous SubT events. Despite the improvements achieved by having only
two user interfaces, the context switching of selecting a different robot in the MCI was the principal
Human Supervisor’s limitation. Whenever he chose a new robot in this interface, for example, to
task the agent with a different exploration goal, he often had first to query the robot for additional
information. Specifically, every time a new robot was selected, the supervisor first had to request the
robot’s information, such as its local CompSLAM map or specific sensors data, wait for the agent
to stream them and then decide on a new exploration goal for the agent. These data were robot
specific and had to be requested for every selected robot. In the case of bandwidth-demanding data
streamed over a wireless connection shared with several agents, the whole process could take up
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to several seconds to complete. Therefore selecting a new robot to control included a fixed context
switching, to be paid in terms of no-operation time for the supervisor, limiting how quickly he could
supervise different agents. This constraint, combined with the request to check for artifacts reports
and overall mission status in the MARI, overloaded the Human Supervisor. A single GUI to both
control a selected robot as well as display an overview of the mission alongside the artifacts reports
would have been beneficial and released some of the cognitive load from the Human Supervisor.

Communication challenges
The combination of a tethered rover and deployable wireless breadcrumb modules helped the team’s
overall performance during the mission execution by extending the wireless network’s reach. Despite
the development done to create ruggedized and reliable breadcrumb nodes, we deployed only three
of them at the Final Round (given the eight available modules, four per Carrier robot). We identified
two main reasons for using just a few modules: the increased level and reliability of the autonomy
of the agents and the cognitive overload of the Human Supervisor. The former implied that the
supervisor could reliably task each agent to autonomously explore an assigned area, given a time
budget, and wait for the robot to come back into communication range to then receive the artifact
reports. While the robot was out of communication range, the supervisor could focus on other
important matters, such as coordinating the other robots or analyzing other artifacts reports. These
important matters are also the cause of the cognitive load on the Human Supervisor, that could
not really focus on if and where to deploy the communication breadcrumbs of each Carrier robot.
Deploying more breadcrumb modules could have helped the Human Supervisor stay connected with
the robots even when further away from the Base Station, thus allowing to send artifacts reports
sooner. This could have been possible only if an automatic mechanism to decide when to deploy a
breadcrumb node had been implemented for the Carrier robot.

Planning challenges
The Final Event of the DARPA SubT Challenge included dynamic obstacles blocking certain parts
of the course. The team faced challenges due to these dynamic obstacles. The global repositioning
and autonomous homing (through GBPlanner2 or backtracking of the traversed path) parts of
the autonomy stack were not designed for handling dynamic obstacles. In the Prize Round two
of the robots encountered the dynamic obstacles, one in the Tunnel section and the other in the
Urban section. While ANYmal 1 was performing global repositioning, the path was blocked by a
dynamic obstacle. It attempted to follow the path for some time after which the watchdog module
of ANYmal’s behavior tree triggered backtracking of the previously traversed path. However due
to the obstacle ANYmal 1 was stuck for the remaining of the round. This was due to two factors
happening at the same time: the backtracking of the path command can be stopped only by the
Human Supervisor but in that section of the course there was no WiFi connection with the Base
Station, therefore the supervisor did not realize the robot was still functioning but stuck in an
obstacle. Similarly, ANYmal 4 encountered a dynamic obstacle while backtracking the traversed
path to the home location. ANYmal 4 was stuck in a similar fashion as ANYmal 1, but still in
connection range. Therefore the Human Supervisor could stop the recovery behavior and trigger
GBPlanner2 again to explore another area. Figure 30 shows both the instances where the robots
encountered the dynamic obstacles.

In the Urban section of the final course, ANYmal 4 encountered two construction cones creating
a narrow gap through which the robot could not fit through. However, due to the relaxed tuning of
GBPlanner2, it planned through that gap on multiple occasions. The navigation planner correctly
prevented the robot from passing through that gap. This demonstrates the usefulness of the synergy
between an optimistic exploration planner and a conservative robot navigation planner. However, in
our autonomy system, the two planners were loosely coupled. It meant that if the navigation planner
detected that the path from the exploration planner could not be tracked, the exploration planner
would be retriggered. There was a lack of feedback from the navigation planner to the exploration
planner which caused the exploration planner to plan through that gap multiple times slowing down
the mission. Figure 31 shows one instance of this.
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Figure 30. ANYmal 1 and ANYmal 4 encountering dynamic obstacles in the Tunnel and Urban section
respectively. The dynamic obstacle blocked the path of ANYmal 1 while performing global repositioning. It
attempted to follow the path for some time but could not move due to the presence of the obstacle. Therefore
after some time, the watchdog module of ANYmal’s behavior tree triggered and it started backtracking the
previously traversed path. However, due to the obstacle blocking the path ANYmal 1 initially took, the robot was
stuck for the remaining of the round. This was due to two factors happening at the same time: the backtracking of
the path command can be stopped only by the Human Supervisor, but in that section of the course, there was no
WiFi connection with the Base Station therefore the supervisor did not realize the robot was still functioning but
stuck in an obstacle. ANYmal 4 was backtracking its traversed path to the home location when it encountered
the dynamic obstacle. The robot was stuck for some duration after which the local layer of GBPlanner2 was
manually triggered by the Human Supervisor.

ConesExploration path

between the cones

Navigation Planner

path stopping before

cones

Figure 31. An instance where ANYmal 4 encountered a non-traversable narrow gap formed by two construction
cones. The exploration planner attempted to plan through the gap, but the navigation planner prevented the
robot from going through it as it was not safe for the robot to traverse through it. This shows the usefulness of
the synergy between the two planners, but also highlights the lack of feedback from the navigation planner to
the exploration planner.

In the tight underground environments encountered during the Final Event, the 2.5D height
map representation used for planning became problematic due to hanging obstacles or low ceilings
appearing in the map and potentially making a narrow opening appear as blocked passages. We used
a point cloud filter to reject ceiling points and obtain a clean height map. Tuning this filter required
us to strike a balance between working on slopes and allowing us to pass through low openings.
This enabled operation in areas only 5 cm taller than the robot but caused artifacts, as shown in
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Figure 32. ANYmal navigation challenges. (top) To be able to capture slopes or stairs, the upper limit of depth
measurements included into the elevation map was set above robot height. This produced artifacts in the elevation
map when low ceiling points are projected into the 2.5D grid. These artifacts were only removed when the robot
got closer, thanks to visibility cleanup and rejection based on distance, which slowed down planning. (bottom)
A 500 ms time delay between computing a path and starting to follow it lead to imperfect path following. As a
result, one robot briefly got stuck on a narrow scaffolding pole in the urban section.

Figure 32(top). While a ray-casting visibility check removed these artifacts as the robot got closer,
this check took time, which slowed progress.

During data analysis after the competition, we discovered that there was a nonconstant delay
between the navigation planner publishing a path, and the path tracking module which we observed
to be up to 500 ms. This, in combination with height map issues and the nonsmooth nature of
sampling-based planning, caused ANYmal 2 to get stuck on a scaffolding pole in the Urban section for
about 20 s. The time series of this event is shown in Figure 32(bottom): When the robot approached
the pole, the initial plan was to circumnavigate it on the right, which was slightly longer than on the
left. Just as the robot started moving, a new path was published, which passed the pole on the left.
This caused the robot to move so close to the pole that it could not be perceived and disappeared
from the height map. Since the robot had followed the original path to the right, the next path went
right again and got the robot stuck on the pole. Because the pole was now missing from the height
map, all new paths went straight through it. After another 20 s, the robot had drifted to the left of
the pole and finally got unstuck.

Perception challenges
The course designers of the DARPA’s organizational team introduced several challenging conditions
to directly and indirectly influence the performance of robot perception. Figure 33 summarizes
the key challenges faced during the exploration of the course environment. Throughout the course,
several areas were completely dark and dull. Hence, the visual cameras had to rely on the onboard
illumination. The effective range of the onboard LEDs was approximately 7 m which was enough
for close passages such as tunnel and urban systems. However, in large open-spaces such as the
cave environment it only illuminated the nearby structure and effectively missed regions further
away. Such areas posed a challenge for visual odometry estimation as features were only detected
tracked in the near vicinity of the camera, typically on the planar ground directly in front of
the robot.

Field Robotics, April, 2024 · 4:249–312



Team CERBERUS wins the DARPA Subterranean Challenge: Technical overview and lessons learned · 299

a)

c)

b)

d)

e)
f)

a) b) c)

d) e) f)

Figure 33. Illustration of a selection of different types of degradation encountered during the DARPA SubT
Final Event. Blue denotes completely different kinds of environment; red denotes narrow passages; green areas
denote smoke. Displayed images are taken from the onboard cameras of the deployed robots.

Furthermore, the course featured many narrow passages, some with smooth planar surfaces, e.g.,
the corridor of the urban area. Such areas posed a challenge for the LiDAR odometry, mainly
due to two reasons. First, the narrow corridors significantly reduced the observation range of the
already sparse VLP16 Puck LITE, making the estimation of ground and ceiling planar surfaces at
longer ranger difficult. Second, the smooth planar walls created a featureless self-similar environment
along the principal direction of the corridor. Accordingly, this rendered the underlying LiDAR pose
estimation optimization briefly ill-conditioned, thus enforcing the use of fallback solutions for the
correct robot pose and map estimation. Another crucial type for perceptual degradation was the
introduction of obscurants such as smoke and dust, as well as dynamic elements, e.g., trap doors, into
the course. Different areas in the course featured motion-triggered smoke machines that produced
artificial smoke visible in the visual camera and LiDAR sensors. The artificial smoke introduced
many incorrect feature detections for visual tracking and led to the loss of good visual landmarks
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in the scene. Additionally, the artificial smoke might lead to incorrect measurements for the LiDAR
sensors for which the configuration of only using the strongest return signal per beam is a possible
remedy. Especially during the Prize Round, where our robots were exposed to multiple sections filled
with smoke, our onboard CompSLAM successfully penetrated such conditions and offered robust
estimates.

Moreover, the trap doors made it particularly difficult for the registration-based approaches, e.g.,
scan-to-map or the LiDAR loop closures to spatially close poses, since the current pointcloud differs
significantly from the previously acquired pointcloud.

As mentioned before, the M3RM performance significantly decreased due to the degraded
entrance to the urban environment. Generally, the entrance to the urban area featured a long white
and textureless corridor with no salient regions nor structure. Thus putting a significant burden
on the visual perception pipelines for the M3RM approach as the lack of good visual features and
wrong associations lead to incorrect visual landmarks in the factor graph that resulted in erroneous
estimation.

Additionally, the narrow passages not only during the entrance of the urban area but also
throughout the course yielded many overexposed scenes since the onboard lighting system was
not adaptively controlled. As a result for M3RM, in many situations, the employed detection and
description of BRISK features resulted in only a handful of good landmarks since most of them were
directly discarded due to having a too short feature track. Similar to the urban entrance, the factor
graph then becomes less constrained and more sensitive to the other terms, such as the IMU and
especially its biases.

It is evident that a keypoint detection and description using BRISK has limited performance
and efficiency in subterranean environments. Therefore greatly decreasing the M3RM pipeline as
the visual landmarks were primarily used for global loop closure. An experimental processing of the
Prize Round using different feature types such as Superpoint (DeTone et al., 2018) showed that the
multi-robot map significantly improves. Figure 34 compares two visual maps, one built with BRISK
and one with Superpoint features.

BRISK Landmarks

Superpoint Landmarks

Long texture-less corridor

ANYmal 4

Figure 34. Visual map of the Prize Round of ANYmal 4. The map only contains landmarks with a minimum of
three observations. Thus landmarks detected using BRISK are barely present in the corridor. Despite the lack of
structure, Superpoint still detects several good landmarks in this challenging environment.
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5. Lessons Learned
During the three years of the SubT Challenge, our Team gathered a considerable amount of
information and insights concerning how our research and development efforts toward efficient
subterranean exploration should progress. The main point is that subterranean environments present
extreme diversities and pose multiple challenges for robotic autonomy. Our approach toward the
exploration of these environments involved, since the beginning of the completion, one unifying,
versatile, and scalable solution across all types of underground environments. This section provides
overall conclusions for lessons learned that we hope can inform other teams, research groups,
technology developers, system operators, and stakeholders that share similar goals and interests.

5.1. Lessons Learned Regarding the Robotic Technologies
Legged and flying robots: Dexterous and versatile robotic mobility is the key enabling factor
to exploring and searching such environments. In our experience, this can be achieved in a
robotic systems-of-systems fashion involving multiple legged and flying robots that complement
their skills to conquer any terrain and navigate any environment. Quadruped systems offer a
versatile and unifying way to negotiate diverse terrain challenges, including rough rocky terrain,
large drops/climbs, inclines, steps, stairs, mud, sand, and/or water. They can outperform similar
sized tracked or wheeled vehicles in terms of mobility and represent, in our experience, the main
robot category to be used when long-term and large-scale (subterranean) exploration is required.
Simultaneously, flying systems proved, through our years of experience in the challenge, their
significance as the only platform that can naturally be unaffected by the complexities of terrain
and navigate fully vertical passages. However, aerial systems typically suffer from endurance and
payload limitations, and thus should be used alongside ground robots. We believe that continuing
research in legged and flying systems-of-systems, with enhanced walking dexterity, improved flying
agility, and the possibility of marsupial integration of ground and flying systems, is the key to
conquering the diversity of underground environments.

Resilient multi-modal perception is the core enabling factor. Despite historic progress
in the field of SLAM, the subterranean environments presented a number of challenging conditions
that significantly degraded robot perception. Consequently despite an overall resilient performance -
primarily based on our onboard localization and mapping - certain corner cases and points of failure
were identified. Systems had to be made resilient in their ability to enable operation even through
the most degraded perceptual conditions. Multi-modal robotic perception fusing complementary
sensor data capable of penetrating diverse conditions of perceptual-degradation, and presenting
different cases of ill-conditioning (e.g., LiDAR data are not affected by lack of visual texture which
challenges visible-light cameras but it can be challenged in conditions of geometric similarity which
is irrelevant to visual systems), was essential in order to minimize possible breaking points in the
robots’ ability to localize and map. However, our developed solutions faced a set of challenges.
CompSLAM, running onboard our robots, employed a hierarchical sensor fusion architecture which
entails that we had to define a set of decision functions and heuristics. Despite its satisfactory
performance for the purposes of the SubT Challenge, this approach may present limitations in
terms of generalizability. Furthermore, our multi-robot pipeline (M3RM) was severely challenged
both in terms of computational requirements and with respect to the resilience of its solution against
conditions of visual degradation.

Resilient autonomy technologies are key to explore and search subterranean envi-
ronments. Subterranean exploration requires high-degrees of autonomy and the means to control
a large team of robots through intuitive high-level commands. The team believed that every robot
should be capable of resilient individual autonomy without human teleoperation or without the
need to communicate with other robots or the Base Station. We have demonstrated that an
exploration planning policy reflecting the key geometric challenges of underground environments
could uniformly guide vastly different robotic configurations to explore and search efficiently. The
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“Supervised Autonomy” paradigm (as described in Section 3.6) proved to be effective for such
an application. However, some key aspects require significant further improvements. First, for our
team only single-robot autonomy was deployed despite multi-robot coordination methods being
developed (Kulkarni et al., 2022). We believe that significantly more field testing experience and
accordingly algorithmic refinements are necessary in this direction. Simultaneously, the type of
autonomy we deployed did not explicitly exploit semantics (e.g., explicit detection of- and navigation
through-staircases or doors) in the environment and did not present a comprehensive modeling of
navigation risks (e.g., the interplay between perception conditions and path planning decisions),
while a further and more tight integration of traversability constraints at the exploration planning
level would have possibly proved beneficial.

Testing multi-robot mapping for resilience. Deployment tests of multi-robot mapping
approaches, such as M3RM, is difficult as it depends heavily on the downstream tasks such as
locomotion, communication, and the general state of the robot. Thus isolated multi-robot testing
for scalability and degeneracy issues would yield more information on its weaknesses without
having the full system-of-systems running. Moreover, tuning mapping systems gets harder the more
robots and environments are involved. A better generic applicability requires less tuning-dependent
solutions with fewer parameters and/or self-tuning or adapting thresholds, eventually leading to an
environment agnostic real world mapping approach. It is insufficient to handle failures locally in
individual components of the whole pipeline. Failures need to be considered and treated holistically
when, e.g., computing the map or trajectories. This obviously increases the amount of investigation
but greatly increases the overall efficiency of the team.

Advances on legged robotics. In the course of the SubT challenge, we could profit from
rapid progress in the field of legged robots. Our team relied on the ANYbotics “ANYmal B300”
platform during the first two years as its main ground robot. Despite this hardware solution
featuring a good level of robustness and reliability, we experienced a general lack of performance
consistency across multiple missions, limited payload capabilities, and insufficient mobility to handle
the diverse and challenging terrain of the SubT Challenge. Switching to the ANYmal C quadruped
series provided our team with the advantages of a new, stronger, larger, and more dexterous robot
compared to the previous B-type platform. The ANYmal C-series was a mature, robust, and reliable
hardware solution that allowed us to focus on developing specialized software modules, such as the
learning-based perceptive locomotion controller and the navigation planner, that fully leveraged
the capabilities of the new robot type and boosted its mobility and robustness. For example, in
two years we could increase our locomotion speed from 0.3 m s−1 (Tunnel Circuit) to 0.45 m s−1

(Urban Circuit), up to 0.7 m s−1 (Final Event, where the speed was kept at this level on purpose
even though the robot could locomote faster than 1 m s−1). In the Final Event, the four ANYmal
platforms could operate without a single fall, indicating this solution’s maturity. Proof of the
advancement in legged robotics is also visible from the overall teams’ choices during the three
years of the SubT Challenge. In fact, during the first year of the competition (2019), only two teams
out of eleven chose legged robots as their main ground vehicles, and both did not perform very
well. Only two years later, during the Final Event, the top-6 teams utilized quadruped systems
(“ANYmal C” for our case and “Boston Dynamics Spot” for the other teams). We believe that
this is a tipping point in the field of UGVs, with legged robots becoming a superior and broadly
applicable choice of platform. However, despite these advances, there is still plenty of room to
increase the capabilities of the systems further. For example, the ability to climb over rough terrain
is still in its infancy compared to the natural counterparts and can certainly be improved. Second,
the separation of navigation, motion planning/following, and locomotion control drastically limits
the possible maneuvers. Third, the robots still rely on abstract geometric terrain representations for
locomotion while lacking a semantic understanding for locomotion. Lastly, they have limited to no
active interaction capabilities to manipulate the environment, e.g., for terrain probing or to remove
obstacles.

Marsupial aerial-ground system-of-systems are important. Our team developed a host
of flying robots that conducted successful exploration missions during the first two circuit events,
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including the vertical traversal of staircases. However, as the SubT Challenge entailed that all
robots start from the same starting point it essentially implied that flying robots would be much
more useful if deployed deeper inside the underground environment. Indeed, the finals course
contained a massive “cave”-like chamber where if we had the marsupial integration of one of our
small-sized flying robots onboard ANYmal we could have gained the benefits from the versatile
navigation capabilities of aerial systems without their limited endurance being an important
constraint. Unfortunately, due to limited development time, our team could complete the marsupial
integration of ANYmal C with RMF-Owl (De Petris et al., 2022) only after the competition was
over.

Communications. During the first two years of the competition, the reliability and performance
of the employed communication solutions corresponded to a critical challenge in our experience.
Therefore, before the Final Event, we developed and deployed an improved and more reliable
hardware solution for subterranean communication, based on an off-the-shelf baseline radio module,
alongside a new iteration of the deployable WiFi communication-extender modules. However, achiev-
ing an always-reliable communication link is particularly challenging in underground environments.
To that end, in our experience a high level of autonomy in the robot agents allowed to mitigate this
problem by enabling exploration when not in communication range.

Use of simulation and synthetic data. The artifact detection module was trained using hand-
labeled data collected in underground settings. However, this approach was slow and cumbersome,
resulting in the collection of a limited amount of data. Photo-realistic simulators and rendering
engines could be exploited to generate data captured using various simulated camera parameters,
light conditions, obscurants, and degradation, making the artifact detection module more robust.
Apart from this, simulation can help in stress testing the methods, debugging minor errors, and
tuning parameters of the algorithms which is not feasible during a field test. On this front, we
utilized the RotorS Gazebo Simulator (Furrer et al., 2016) for the simulation of aerial robots and a
Gazebo-based simulator for the ANYmal C legged robots. Specifically, the path planning algorithms
were tested in various simulation environments, both artificial and real models obtained or created
from field data. However, the use of simulation was limited to testing individual software components
for a single robot. High-fidelity simulators could be exploited to simulate more complex elements such
as photo-realistic environments, obscurants, variable lighting conditions, dynamic obstacles, and
behavior of communication networks for large-scale realistic simulations. Additionally, multi-robot
simulation can be exploited for complete mock missions.

5.2. On the Importance of the Frequency and the Character of Field Testing
We realized that many characteristics of the subterranean settings as well as the challenges presented
by them cannot be fully understood without going into these environments. The experience from
field deployments is crucial in making each component in the system robust.

Making the robots “field-ready”
Team CERBERUS conducted a large number of field deployments in diverse environments, across
different countries, replicating the settings of the competition as much as possible including timed
missions (detailed description of the nature of field deployments is provided in Section 4.1.1). We
conducted at least one field test every month in the year before the Final Event. The selected
deployment sites spanned across all three categories of environments in the competition—tunnel,
urban, and cave, each presenting different challenges as described in Section 4.1.2. We have
demonstrated that through testing in diverse environments, the systems were able to tackle the
majority of the challenges presented across all three types of environments. Furthermore, multiple
tests in the same environment helped in benchmarking the systems and keeping track of the
progress.

These field tests not only helped in making the systems field ready in terms of the technology,
but also served as practice missions for the Human Supervisor and the Pit Crew. Treating the
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deployments in the field tests as if they were in the actual competition helped in fine tuning the
deployment procedures and related technologies such as the user interface, software stack launching
scripts, and safety checks before deployment. Thoroughly planning, preparing, and testing the
hardware and software components in the days before the field deployment and during the weekly
shakeouts was a crucial practice that significantly improved the outcome of each field test, both
in terms of the number of tested features and overall system integration in a mock-up mission
scenario. The day before each field test, a functionality test of all the robots and features that were
to be deployed was conducted. If issues were found in any feature, it was not tested in the field
experiment. This helped in identifying issues in small yet critical parts of the systems with can
easily get ignored while developing the core technology. Furthermore, this approach ensured that
each implemented feature was thoroughly tested during the development process before deploying
on the robot. Periodic field deployments forced us to have internal, hard deadlines that pushed the
development of “field-ready” robotic systems.

As our team was distributed across the globe, several components of the system, including entire
robots, were developed at different places. However, for the whole system-of-systems to work together
good integration among all the hardware and software components across the robots is critical.
Hence, we conducted several integration exercises involving members of all groups participating
in the team. These exercises included integration of software and hardware components across all
robots, functionality testing, and field deployment of heterogeneous robot teams. In our experience,
the integration exercises were important for (a) ensuring that all robots had the necessary hardware
and software components correctly configured for working with each other and the Base Station,
(b) making the Human Supervisor familiar with the setup and user interface for all types robots,
and (c) conducting mock, timed missions using the entire fleet.

Importance of field testing for resilient perception and autonomy
The response of real sensors and systems in the real environments is hard to replicate synthetically,
especially for different sensing modalities. Therefore such an experience and data are crucial for
the development and testing of the perception and autonomy algorithms. Many of the features and
development directions of the CERBERUS autonomy solutions have evolved from our experiences in
the field tests. Some of these features of GBPlanner2 include, but are not limited to, the bifurcated
local/global planning architecture for handling large scale topology with complex geometry and
terrain, optimistic ground existence check to tackle gaps in the volumetric map, introduction
of the hanging vertices for handling negative obstacles. Similarly, we implemented the safety
checks and recovery behaviors from unexpected events in the ANYmal behavior tree based on our
experience in the field. Moreover, we introduced batched motion cost prediction for the ANYmal
navigation planner to improve real-world path safety and prevent very rare planning time outliers,
which only happened when executing on the robot. Field tests also motivated the introduction
of a foothold safety threshold to avoid planning close to negative obstacles, which are often not
adequately mapped during actual deployment. Additionally, field experiments provided a better
understanding of the robot’s response to the navigation commands and what can be considered as
a safe action.

Not all sensing modalities can be captured in simulation accurately (e.g., thermal camera
frames), and their behavior in subterranean environments can be understood only from field data.
Furthermore, several hardware challenges affect the performance of perception solutions. These
include handling sensor delays, time synchronization between sensors, and issues caused by other
components of the robot (e.g., vibrations, occlusions, etc.). Through field evaluation, several cases
of sensor degradation were identified (e.g., self-similarity, smoke, fog, darkness) which guided the
development of the multi-modal localization and mapping framework. Hence, the data collected
in the field are the only way to evaluate, benchmark, and tune the localization and mapping
algorithms to tackle all the challenges present in the subterranean environments. Furthermore,
the field experiments also showed the computing limitations of each robot so that the algorithms
can be modified or tuned accordingly.
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6. Future Work
Given the lessons learned during the whole duration of the DARPA SubT Challenge, we want to
tackle the following avenues of future research in the robotics science and systems.

Decentralized multi-robot mapping. the employed localization and mapping approach
consisted of an independent SLAM pipeline (CompSLAM) running on each robot, sharing specific
data to a centralized system (M3RM) to compute an optimized, global map. To improve the overall
performance, we intend to extend the framework in two ways. First, each instance of CompSLAM
will receive information from other robots (when wirelessly connected with each other, even if
out of comms from the Base Station). Second, we intend to allow bi-directional communications
between M3RM and CompSLAM so that the centralized system will send feedback to each robot.
Consequently, each CompSLAM instance will benefit from extra information and inter-robot loop
closures to build a more accurate, globally consistent map. Thus, besides improving the mapping
framework’s overall performance and the feedback can also serve as a catalyst for collaborative
multi-robot planning.

Autonomous exploration. to increase the speed and coverage of autonomous missions, we
intend to work on a multi-robot collaborative autonomy framework. Each agent will receive
exploration updates for other robots if in range of connection. In this way, every agent can plan a
more efficient exploration strategy, knowing the areas already explored by the others.

Navigation in unknown environments. the SubT Challenge included narrow passages, sharp
turns, stairs, rails, large drops/climbs, mud, water, and other mobility-stressing terrain features and
obstacles, but robots were not required to modify the environment to find a collision-free path. We
believe that autonomous robots exploring unknown areas should also be able to interact with the
environment and perform object manipulation (for example, opening doors or removing obstacles
from the ground) to improve exploration and autonomy capabilities.

7. Conclusions
This paper presents a comprehensive report of the technological progress made by Team CERBERUS
participating in the DARPA SubT Challenge and specifically towards the Final Event. We detailed
the CERBERUS’ vision and motivation for the Team’s overall “system-of-systems” methodology,
followed by an extensive presentation of the employed robotic systems. The contributed research
allowed a high level of autonomy and robustness in the CERBERUS robots, operating inside
visually-degraded, large-scale, narrow, and broadly complex underground settings. At the core of the
CERBERUS robotic system is a team of legged and flying robots, including collision-tolerant designs,
further enhanced with a roving platform. The implemented autonomy components, including multi-
modal perception and path-planning, navigation and control of legged robots, and the automated
artifact detection and scoring systems, are detailed alongside the operator interfaces for exerting
high-level control. Finally, we presented the Team’s performance in the winning Prize Round of the
challenge, followed by the critical lessons learned from these experiences. We hope that the presented
work and released open-source code can contribute towards the overall community goal of enabling
resilient robotic autonomy in extreme underground environments.
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Appendix A. List of Open Source Packages and Data
With the goal to support the overall community around subterranean robotics, our team focused
on open-sourcing significant components of our technological solution. Similarly, data from field
deployments are released.

A.1. Open Source Code
A selected—but not exhaustive—list of relevant open-source packages of our team are outlined
below.

GBPlanner2 - a graph-based exploration planner for subterranean environments: https://github.
com/ntnu-arl/gbplanner_ros

Art Planner - a local navigation planner for legged robots: https://github.com/leggedrobotics/
art_planner

Elevation Mapping Cupy - a GPU-based robot-centric elevation mapping framework for rough
terrain navigation: https://github.com/leggedrobotics/elevation_mapping_cupy

Maplab - an open visual-inertial mapping framework, which includes the M3RM centralized multi-
modal, multi-robot mapping extension: https://github.com/ethz-asl/maplab

Darknet ROS - Real-Time Object Detection for ROS: https://github.com/leggedrobotics/
darknet_ros

Kalibr - a visual-inertial calibration toolbox: https://github.com/ethz-asl/kalibr
ROVIO - a Robust Visual Inertial Odometry framework: https://github.com/ethz-asl/rovio
Voxblox - a library for flexible voxel-based mapping: https://github.com/ethz-asl/voxblox

A.2. Simulation Models
The SubT Challenge Systems and Virtual Competitions are interconnected with the Systems’ teams
delivering models of their robots for the Virtual Competition, while progress achieved in the Virtual
Competition can benefit the autonomy functionalities in the Systems Competition. Models of most
of the robots fielded by our team in the Final Event have already been released. The following robots
related to the Final Event are available.

ANYmal C SubT Explorer: https://github.com/osrf/subt/tree/master/submitted_models/
cerberus_anymal_c_sensor_config_1

RMF-Owl aerial scout: https://github.com/osrf/subt/tree/master/submitted_models/
cerberus_rmf_sensor_config_1

DJI Matrice M100-based aerial scout: https://github.com/osrf/subt/tree/master/submitted_
models/cerberus_m100_sensor_config_1

A.3. Open Datasets
We have released an open dataset from the Prize Round of the Final Event of the DARPA SubT
Challenge. This dataset is accessible at https://www.subt-cerberus.org/code--data.html. Through
the same link, possible further releases of datasets or new software will become accessible.
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