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Abstract: Contemporary approaches to perception, planning, estimation, and control have allowed
robots to operate robustly as our remote surrogates in uncertain, unstructured environments. This
progress now creates an opportunity for robots to operate not only in isolation, but also with and
alongside humans in our complex environments. Realizing this opportunity requires an efficient
and flexible medium through which humans can communicate with collaborative robots. Natural
language provides one such medium, and through significant progress in statistical methods for
natural-language understanding, robots are now able to interpret a diverse array of free-form naviga-
tion, manipulation, and mobile-manipulation commands. However, most contemporary approaches
require a detailed, prior spatial-semantic map of the robot’s environment that models the space of
possible referents of an utterance. Consequently, these methods fail when robots are deployed in new,
previously unknown, or partially-observed environments, particularly when mental models of the
environment differ between the human operator and the robot. This paper provides a comprehensive
description of a novel learning framework that allows field and service robots to interpret and
correctly execute natural-language instructions in a priori unknown, unstructured environments.
Integral to our approach is its use of language as a “sensor”—inferring spatial, topological, and
semantic information implicit in natural-language utterances and then exploiting this information
to learn a distribution over a latent environment model. We incorporate this distribution in a
probabilistic, language grounding model and infer a distribution over a symbolic representation of
the robot’s action space, consistent with the utterance. We use imitation learning to identify a
belief-space policy that reasons over the environment and behavior distributions. We evaluate our
framework through a variety of different navigation and mobile-manipulation experiments involving
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an unmanned ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that
the algorithm can follow natural-language instructions without prior knowledge of the environment.

Keywords: human robot interaction, mapping, SLAM, planning

1. Introduction
Advancements in perception, planning, and control have enabled robots to move from controlled
isolation in factories and laboratories to semi-structured and unstructured environments. Notable
domains where field and service robots have proven successful at operating in the presence of
uncertainty include material handling (Durrant-Whyte, 1996; Durrant-Whyte et al., 2007; Walter
et al., 2015), underground mining (Scheding et al., 1997, 1999; Roberts et al., 2000; Marshall et al.,
2008; Duff et al., 2003), disaster mitigation (Nagatani et al., 2008, 2013; Keiji et al., 2011), space
science and exploration (Maimone et al., 2007; Furgale and Barfoot, 2010; Arvidson et al., 2010),
underwater science and exploration (Singh et al., 2004; Johnson-Roberson et al., 2010; Williams
et al., 2012; Yoerger et al., 2007; Bowen et al., 2008; Camilli et al., 2010; German et al., 2008),
and autonomous driving (Thrun et al., 2006; Urmson et al., 2006, 2008; Bacha et al., 2008;
Miller et al., 2008; Montemerlo et al., 2008; Bohren et al., 2008; Leonard et al., 2008). With few
exceptions (Walter et al., 2015), however, current operational, field-robotic systems function with
either full autonomy or under at least partially-supervised teleoperation. More common in field
operations, including those conducted by the military (Kang et al., 2003; Ryu et al., 2004; Yamauchi,
2004), teleoperation places significant cognitive load on the operator, who must interpret the robot’s
multiple, diverse sensor streams in order to establish situational awareness, while simultaneously and
continuously controlling the robot’s low-level degrees of freedom. Consequently, teleoperation limits
the effectiveness and efficiency of the tasks that can be performed.

A long-standing goal is to realize field and service robots that operate in the continuum between
full autonomy and supervised teleoperation, not only as our surrogates, but also as our partners
working with and alongside people. Achieving this goal requires command and control mechanisms
that are both intuitive and efficient, and spoken language offers a flexible medium through which
people can communicate with robots, without the need for specialized interfaces or significant
training. For example, people can issue verbal instructions that direct robotic forklifts (Walter et al.,
2015) to load and unload cargo in semi-structured storage and distribution facilities. Similarly, a
voice-commandable wheelchair (Hemachandra et al., 2011) enables people with limited mobility to
navigate their environments independently and safely simply by speaking to their wheelchair, rather
than requiring the use of traditional sip-and-puff arrays or head-actuated switches.

The potential of natural language as an effective command and control mechanism has mo-
tivated significant advances in statistical approaches to language understanding. These models
and algorithms enable robots operating in a variety of domains to interpret free-form instructions
commanding tasks that include navigation (Kollar et al., 2010; Matuszek et al., 2010; Chen and
Mooney, 2011; Matuszek et al., 2012; Thomason et al., 2015) and object manipulation (Tellex et al.,
2011; Howard et al., 2014b; Thomason et al., 2016, 2018; Shridhar and Hsu, 2018), as well as to
generate natural-language utterances (Tellex et al., 2014; Daniele et al., 2017; Shridhar and Hsu,
2018). Natural-language understanding is often formulated as a symbol-grounding problem, wherein
the task is to associate linguistic phrases with their corresponding referents in the robot’s symbolic
model of its state and action spaces. Most contemporary approaches assume that this model is
known a priori in the form of a “world model” that expresses relevant information about the robot’s
environment (e.g., the location, semantic class, and colloquial name of every object and spatial
region that the user may refer to). Such a world model is typically constructed by manually adding
semantic information to spatial maps produced using an off-the-shelf SLAM algorithm (Kaess et al.,
2008, 2009). This practice inherently prevents natural-language understanding in environments that
are unknown or partially known to the robot. Consider a mobile manipulator that is placed in a new
environment consisting of multiple boxes that are all outside the field-of-view of the robot’s sensors
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Figure 1. A robot is directed to “retrieve the ball inside the box” in an a priori unknown environment.

(Figure 1). Suppose that a person directs the robot to “retrieve the ball inside the box”. Without
knowledge of the environment, the robot is unable to associate the phrases “the ball” or “the box”
to specific locations (i.e., symbol instantiations). In this case, most existing methods would either
fail to ground the instruction or cause the robot to naively explore the environment until it happens
upon a ball contained in a box.

This paper provides a comprehensive presentation of a framework that enables robots to follow
natural-language instructions that command navigation and mobile manipulation in a priori un-
known environments (Figure 2). Key to our approach is its exploitation of the spatial, topologic, and
semantic information that the utterance conveys, effectively treating language as another “sensor.”
Three algorithmic contributions are integral to this formulation.

• First, a learned language-grounding model efficiently infers environment “observations,” im-
plicit or explicit in the command, as well as the desired behaviors.

• Second, an estimation-theoretic algorithm hypothesizes the structure of the unobserved environ-
ment by using these language-based observations and those from the robot’s traditional sensor
streams to build and maintain a probability distribution over the world model (Figure 2(b)).

• Third, an imitation learning-based approach learns a belief-space policy that reasons over this
world model distribution to identify navigation and manipulation actions that are optimal,
given limited environment knowledge (Figure 2(d)).

In the following sections we first position our work in the context of contemporary approaches to
language understanding. We then provide a thorough technical description of the proposed model
and give the details of the experimental results on navigation and mobile manipulation tasks using
three different robotic platforms. We then conclude with a discussion of the strengths and weaknesses
of the proposed approach, along with directions for current and future work that seeks to address
these limitations in order to facilitate more efficient human-robot collaboration.

2. Related Work
Natural-language understanding for human-robot interaction has been studied extensively over
the past several decades. Symbol grounding (Harnad, 1990) is a common approach to language
understanding, whereby words and phrases are interpreted in terms of their associated symbols
in the robot’s model of the world. Early work in symbol grounding (Winograd, 1971; Roy et al.,
2003; MacMahon et al., 2006) utilizes manually engineered correspondences and features that relate
words to symbols comprised of the actions and a structured environment model. Consequently, these
approaches employ a compact, predetermined grammar and a small set of symbols that limit the
diversity of language that they can handle.
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(a) Time t = 0 sec (b) Time t = 90 sec

(c) Time t = 320 sec (d) Time t = 563 sec

Figure 2. Our framework learns to exploit environment-related information implicit in a given utterance to
hypothesize a distribution over possible maps in a priori unknown environments. Traditional approaches to
language grounding involve reasoning over a detailed world model that is assumed to be known a priori. In order to
allow grounding in a priori unknown or partially observed environments, our method maintains a distribution over
hypothesized, spatial-semantic maps based upon environment information conveyed in the utterance. Consider a
scenario in which the robot is instructed to “pick up the ball inside the box” in an unknown environment. Upon
receiving the instruction, (a) the algorithm uses information extracted from the command to hypothesize the
location of potential boxes, some of which contain a ball. Here, we visualize samples drawn from this distribution.
The solid green cube denotes the hypothesized box that is the current goal of the planner. As the robot navigates,
it (b) detects actual boxes (green wireframe) that are found to not contain a ball, while also failing to confirm the
presence of hypothesized boxes sampled from the distribution. The algorithm updates the world model distribution
accordingly, and the planner updates the goal. This continues until (d) the robot observes a box containing a
ball and subsequently retrieves the ball, satisfying the instruction.

In contrast, contemporary approaches use statistical models that are trained in a data-driven
fashion to learn to express a large set of linguistic, spatial, and semantic features. These approaches
enable robots to successfully interpret natural-language utterances that command navigation (Kollar
et al., 2010; Matuszek et al., 2010; Chen and Mooney, 2011; Matuszek et al., 2012; Thomason et al.,
2015), object manipulation (Bollini et al., 2010; Howard et al., 2014b; Misra et al., 2016; Thomason
et al., 2016, 2018; Shridhar and Hsu, 2018; Paul et al., 2018), and mobile manipulation (Tellex
et al., 2011; Walter et al., 2015), as well as to generate natural-language utterances (Tellex et al.,
2014; Daniele et al., 2017; Shridhar and Hsu, 2018) in a variety of complex domains. Data-driven
approaches to symbol grounding (Tellex et al., 2011; Howard et al., 2014b,a; Paul et al., 2018) learn
probabilistic models that exploit the hierarchical structure of language in order to associate (i.e.,
“ground”) each phrase in an utterance to its corresponding referent in a symbolic representation
of the robot’s state and action spaces. These methods generally require that the robot has prior
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knowledge of the the environment, for example in the form of a spatial-semantic map of the different
objects and regions (e.g., rooms). In practice, these maps are often generated by first teleoperating
the robot around the environment and using a state-of-the-art SLAM algorithm (Olson et al., 2006;
Kaess et al., 2008) to build a metric map of the environment. These maps are then manually
annotated to include semantic information, e.g., by delineating each object and room, and then
assigning them a label, to arrive at an environment map sufficient to provide a symbolic world
model. An alternative is to incorporate this information as part of the initial mapping using a
semantic SLAM framework (Galindo et al., 2005; Martínez Mozos et al., 2007; Meger et al., 2008;
Vasudevan and Siegwart, 2008; Krieg-Brückher et al., 2005; Zender et al., 2008; Pronobis et al., 2010;
Hemachandra et al., 2011; Pronobis and Jensfelt, 2012). These approaches build on the effectiveness
of SLAM by augmenting a low-level metric map with layers that encode the topological and semantic
properties of the environment extracted from the robot’s sensor data (e.g., LIDAR scans and camera
images), using scene classifiers (Nüchter et al., 2003; Martínez Mozos et al., 2007; Pronobis et al.,
2010) and object detectors (Torralba et al., 2003; Meger et al., 2008; Vasudevan and Siegwart, 2008;
Kollar and Roy, 2009). For a comprehensive discussion of the role of environment representations
in language-based spatial reasoning, we refer the reader to the survey by Landsiedel et al. (2017).

While most language grounding methods rely on access to such a prior map of the environment,
there are notable exceptions that are capable of language understanding in unknown environments.
Particularly relevant is the work of Duvallet et al. (2013), which opportunistically builds a de-
terministic map of the a priori unknown environment as the robot navigates. This map serves as
input to a policy that is trained via imitation learning to emulate the way in which humans follow
instructions in unknown environments. Our approach similarly uses imitation learning to identify
the robot’s policy based on human demonstrations, but unlike the work of Duvallet et al. (2013), our
policy reasons over a probabilistic model of the environment that makes explicit information that
the instruction conveys. Also relevant are recent neural network-based approaches to language-based
navigation in novel (i.e., unknown) environments (Mei et al., 2016; Anderson et al., 2018). Unlike our
approach, these methods map language directly to actions, and do not (explicitly) infer a distribution
over possible world models from language. Meanwhile, statistical parsing-based methods (Matuszek
et al., 2010; Chen and Mooney, 2011; Matuszek et al., 2012; Thomason et al., 2015) associate
natural-language utterances to a meaning representation that typically takes the form of a lambda
calculus. Such an approach avoids the need for an explicit world model, typically at the expense of
requiring a down-stream controller capable of executing inferred plans in unknown environments.

Also relevant is recent work that focuses on grounding unknown or ambiguous utterances. One
approach to dealing with ambiguous utterances is to utilize inverse grounding (Tellex et al., 2014;
Gong and Zhang, 2018) to generate targeted questions for the user that are deemed to be most infor-
mative, e.g., in terms of the reduction in entropy for the grounding distribution (Tellex et al., 2012).
Meanwhile, several methods learn a priori unknown grounding models by exploring the relationship
between novel linguistic predicates and the robot’s world model and/or its percepts (Thomason
et al., 2016; She and Chai, 2017; Tucker et al., 2017; Thomason et al., 2018). Our work differs in
that we assume that the concepts are known, but that the instantiations of these concepts in the
robot’s environment are unknown.

Meanwhile, much attention of late has been applied to the problem of navigating a priori unknown
environments towards a desired goal using only onboard sensing, typically in the form of monocular
or RGBD images (Kim and Chen, 2015; Zhu et al., 2017; Gupta et al., 2017; Rasouli et al., 2020),
laser scans (Chiang et al., 2019; Zeng et al., 2019), or a combination of the two (Kollar and Roy,
2009; Aydemir et al., 2011, 2013). While language typically plays little-to-no role in these approaches
(e.g., the goal may be specified by its named type), they are relevant to our work in that they
learn a policy that is responsible for deciding where to navigate to next based on the robot’s
observation history. Similar to our approach, earlier work in this area reasons over a structured state
space that is assumed to be partially observable. Search is then formulated as a decision-theoretic
problem (e.g., in the context of a POMDP), whereby methods attempt to solve for the policy that
is optimal based on the current state distribution. Similar to the way in which we use language
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to inform this distribution, these active search methods may exploit object-object and object-scene
co-occurrence information (Kollar and Roy, 2009), spatial relations (Aydemir et al., 2011), or scene
semantics (Aydemir et al., 2013).

Most recent approaches to active visual search model the navigation policy as a neural network
that maps low-level sensor data directly to actions. Trained in an end-to-end manner via reinforce-
ment learning, the architectures learn to reason over scene semantics in an entirely data-driven
fashion. In contrast, our framework maintains a distribution over the seen and unseen parts of the
world, which serves as an explicit, intermediate representation suitable for language grounding and
planning under uncertainty. Another notable difference compared to our work is that this family of
methods typically assumes that the agent is aware of the distance and direction of the goal (i.e.,
the location of the goal relative to the robot) at each time step. In practice, this means that there
is some way of localizing the robot in the environment (presumably, using an a priori map available
to an oracle). We assume that the robot has no such information. Additionally, they assume that
the agent’s motion and observations are noise-free, which is not true for robots in practice. With
few exceptions (Sadeghi and Levine, 2017; Tai et al., 2017; Bansal et al., 2019), these methods have
thus only been demonstrated in photorealistic simulators or on datasets (Mirowski et al., 2018; Zeng
et al., 2019).

A key aspect of our approach is its use of language as a sensor, whereby information conveyed
in the instruction is used to build and maintain a distribution over the map of the environment.
In this way, our approach is similar to recent methods that enable robots to learn spatial-semantic
environment models from linguistic descriptions together with traditional sensor streams (Zender
et al., 2008; Pronobis and Jensfelt, 2012; Walter et al., 2013, 2014; Hemachandra et al., 2014). Our
method builds on this work in order to maintain a distribution over a model of the environment.
However, this earlier work assumes access to free-form utterances that explicitly describe the
robot’s environment. In contrast, our proposed framework learns to infer environment knowledge
that is implicit in natural-language descriptions. Additionally, these previous approaches focus on
estimation as it pertains to building spatial-semantic environment models, whereas we consider
mapping jointly with planning under uncertainty specifically to satisfy a user’s natural-language
instruction.

3. Technical Approach
Contemporary approaches to natural-language understanding formulate the problem as probabilistic
inference over a learned distribution that associates linguistic elements with their corresponding
referents in a symbolic representation of the robot’s state and action spaces. The space of symbols
Γ = {γ1, γ2, . . . , γn} includes concepts derived from the robot’s environment model, such as the
location and category of objects and spatially extended regions (e.g., rooms, buildings, etc.), and
a symbolic representation of viable robot behaviors, such as manipulating a specific object or
navigating to a desired location. The distribution over symbols is conditioned on the parse of
the free-form utterance Λt = {λ1, λ2...λn},1 and a world model St that represents environment
knowledge extracted from the history of sensor measurements zt using a set of perceptual classifiers.
Framed as a symbol-grounding problem (Harnad, 1990), natural-language understanding then
typically follows as maximum a posteriori inference over the power set of referent symbols P(Γ)

Γ∗t = arg max
P(Γ)

p(Γ|Λt, St). (1)

This approach reasons over a model of the world St that is assumed both to be known a priori
and to express all information necessary to ground the given utterance. This precludes language
understanding in unobserved (i.e., novel) or partially observed environments for which the world
model is empty or incomplete, making accurate inference (1) infeasible.

1 In this way, we assume that the instructions are grammatically correct.
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3.1. Approach Overview
We address this problem by treating symbol grounding as inference conditioned on a latent model
of the robot’s environment St. In particular, we learn a probabilistic world model that exploits
environmental information implicit in an utterance to build and maintain a distribution over the
topological, metric, and semantic properties of the environment

p(St|Λt, zt, ut), (2)

where Λt, zt, and ut denote the history of utterances, sensor observations (e.g., laser scans, image
streams, and object detections from the robot’s perception pipeline), and odometry, respectively.
In this way, we maintain a world model distribution that not only fuses information perceived with
sensors onboard the robot, but also models the unperceived information about the environment
that is expressed in the utterance. Treating the environment model as a latent random variable,
we formulate symbol grounding as a problem of inferring a distribution over robot behaviors βt. A
behavior in βt is a symbolic representation of the intended robot actions expressed by the symbols in
the inferred groundings Γ∗t , and may include navigating to a specific location, grasping a particular
object, etc.

The optimal trajectory x∗t that the robot should take in the context of a distribution over
behaviors then amounts to a planning under uncertainty problem formulated as inference over
a model that marginalizes over the space of world models and robot behaviors

x∗t = arg max
xt∈Xt

∫
St

∫
βt

p(xt|βt, St)︸ ︷︷ ︸
planning

× p(βt|Λt, St)︸ ︷︷ ︸
behavior
inference

× p(St|Λt, zt, ut)︸ ︷︷ ︸
semantic
mapping

dSt dβt (3)

By structuring the problem in this way, we approach language understanding in a priori unknown
environments as inference over three coupled learning problems. The framework (Figure 3) first

annotation
inference

semantic
mapping

motion
planning

behavior
inference

policy
plannermap distribution

p(St|αt, zt, ut)

annotation distribution
p(αt|Λt)

behavior distribution
p(βt|St,Λt)

parser

instruction:
“retrieve the ball
inside the box”

observations zt

parse tree(s) Λt

action atcontrol inputs ut

Figure 3. Our framework for language understanding in a priori unknown environments exploits environment
descriptions available in a given instruction together with traditional sensing modalities to maintain a distribution
over the environment model. A policy then reasons over this distribution together with inferred behaviors to
identify an appropriate high-level action (e.g., an intermediate goal). A motion planner converts these actions
into control inputs that the robot executes. This process then repeats as the robot makes new observations, until
the policy decides that the instruction has been satisfied. Details regarding state estimation, semantic perception,
etc. are omitted for clarity.
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converts the parsed natural-language instruction into a set of environment annotations using
a learned language grounding model. It then treats these annotations as observations of the
environment (i.e., the existence, name, and relative location of objects and rooms) that it uses
together with data from the robot’s onboard sensors to learn a distribution over possible world
models (the third term in Equation 3). Following the example of executing the command to “retrieve
the ball inside the box” (Figure 1), this may result in a distribution that hypothesizes the potential
location of boxes in the environment, some of which contain hypothesized balls (Figure 2(a)). Our
framework then infers a distribution over behaviors conditioned on the world models and the current
utterance (the second term in Equation 3). In our example, this distribution would favor performing
the “pick” action on an object of type “ball” whose location is consistent with being “inside” a box.
Note that we assume that relevant information in any previous utterances, i.e., Λt−1, is captured
in the map distribution. We then solve for the navigation and/or manipulation actions that are
consistent with this behavior distribution (the first term in Equation 3) using a learned belief-space
policy that commands a single, high-level action to the robot (e.g., navigating to a location where
there is a high likelihood of there being a box). As the robot executes this action, we update the
world model distribution based upon any new utterances and sensor observations, and subsequently
select an updated action according to the policy. This process repeats until the policy concludes
that the robot satisfied the instruction.

Reasoning over the entire space of behaviors and semantic maps would be intractable, particularly
as the environment and behavior spaces grow. In order to make instruction-following tractable, we
employ approximations to the individual distributions in Equation 3 as well as use approximate
inference methods. In particular, we represent the latent map and behaviors as discrete samples
from their respective distributions. Each map sample represents one hypothesis of the robot’s
environment, and each behavior sample is a set of action constraints inferred from language in the
context of a particular hypothesized map. We maintain the world model distribution using a Rao-
Blackwellized particle filtering framework. The following details each component of our approach.

3.2. Natural-Language Understanding
The approach to natural-language understanding of robot instructions in this paper relies on
variations of the Distributed Correspondence Graph (DCG) (Howard et al., 2014b; Hemachandra
et al., 2015; Boteanu et al., 2016; Barber et al., 2016; Broad et al., 2017; Oh et al., 2017; Patki
and Howard, 2018; Arkin et al., 2018; Patki et al., 2019; Arkin et al., 2020). The DCG and the
Hierarchical Distributed Correspondence Graph (HDCG) (Chung et al., 2015), Adaptive Distributed
Correspondence Graph (ADCG) (Paul et al., 2016), and Hierarchical Adaptive Distributed Corre-
spondence Graph (HADCG) (Paul et al., 2018) variations of the model formulate the problem
of natural-language understanding as probabilistic inference in a factor graph using models to
approximate the conditional probabilities of a correspondence variable φ in the context of language
Λ, symbols Γ, and the environment model S from corpora of annotated examples. Such models
have the ability to generalize to instructions that are not explicitly represented in the corpora
by independently learning the conditional probabilities of concepts for linguistic structures like
nouns (e.g., “the box” and “ briefcase”), prepositions (e.g., “near” and “inside”), and verbs (e.g.,
“drive” and “pick up”) and leveraging the structure of the parse tree for probabilistic inference.
Natural-language instructions are converted to parse tree representations to construct DCGs in this
framework as studied and more explicitly demonstrated in Paul et al. (2018). Inference is made
efficient by assuming conditional independence across linguistic and symbolic constituents. The
HDCG, ADCG, and HADCG employ approximations of the symbolic representation Γ informed
by expressed symbols to further improve the efficiency of probabilistic inference. Consider the
example illustrated in Figure 4. This figure shows the DCG and the corresponding parse tree for the
instruction “retrieve the ball inside the box”. Each of the symbols γij in this graph represent objects,
spatial relations, actions, and other concepts needed to interpret the meaning of the instruction.
The connection to the environment model S is implicit in this illustration of the DCG.
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Figure 4. The DCG for the expression “retrieve the ball inside the box" aligned with the corresponding parse
tree. The observed and unknown variable nodes in the factor graph are shown in white and gray, respectively.

Assuming that the symbol-grounding model is accurately trained from corpora of annotated
examples, there are three potential outcomes that are observed to be conditioned on the information
contained in the robot’s model of the environment. To illustrate such outcomes, we consider the
example utterance “the ball inside the box” from Figure 1. First, if the environment model is known
or partially known and there is only one “ball” object that is uniquely identified as being inside of
a “box” object, then the inference procedure returns a behavior that describes the navigation and
manipulation action with respect to those physically grounded objects. Second, if the environment
model is known or partially known and there is more than one “ball” object that satisfies the
relationship of being inside of a “box” object, then the model would express this ambiguity to the
user through a different set of symbols. The third case, which is the focus of this paper, is that the
environment model is partially known and there are no “ball” objects that satisfy the relationship
of being inside of a “box” object. The results of the inference procedure are no symbols that express
a relationship to this unknown object because the object and the corresponding actions and spatial
relations are not part of the symbolic representation Γ. However, the user implies that there is
an object that satisfies a specific relationship, indicating that their representation of the world is
richer in this dimension than the robot’s environment model. We therefore approach the problem
of natural-language understanding as a two-part process that first exploits the environment-related
information explicit or implicit in the utterance to build a distribution over possible world models
that now contains hypothesized objects and spatial relationships that were missing in the incomplete
world model. This is followed by a step that infers the behaviors in the context of this distribution
over environment models that is informed by sensor observations and the information gleaned from
the first step. The first and second steps, described as annotation inference and behavior inference,
respectively, use specially adapted symbolic representations suitable for each problem. We describe
the space of symbols in the annotation and behavior inference models as in Paul et al. (2018), which
expresses each space as the union of different symbols and their constituents.

For annotation inference, we assume a symbolic representation that is independent of an
environment model because it is meant to inform the state of the world, whereas behavior inference
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exploits the synthesized environment model from the semantic mapping process using the outputs
of annotation inference and past sensor observations. The symbolic representation for annotation
inference is defined by four different types of symbols. First, a space of object classes ΓOC is defined
by an object type OC . These symbols represent the meaning of noun phrases like “box” or “ball” in
the aforementioned example. Note that object class symbols do not correspond to specific instances
of these objects in the environment model. Object class symbols bridge the gap between the diversity
of language and the space of semantic object classes interpretative by the robot. Second, a space of
locations ΓL corresponds to physical locations in the environment model defined by a location type
L. These are similar to objects in that they occupy some bounded region in the environment model,
but they are not observed using traditional object detectors to infer their location. Third, a space
of spatial relation classes ΓS is defined by a spatial relation label S. Spatial relation classes can be
used to represent noun phrases like “the left” or “front”. Next, we define a space of region types ΓRS
by a spatial relationship class S for every object class in OC . Region classes are used to represent
prepositional phrases like “inside the box” or “to the left of the ball’. Lastly, a space of relationships
ΓRC is defined by a spatial relationship S between a pair of object classes in OC . Relationship classes
are used to represent spatial relationships between pairs of objects that occur in noun phrases
like “the ball inside the box” or “the car behind the garage”. When environments are partially
observed, the extraction of these relationships from language can inform the distribution of objects
and locations in the environment model constructed from visual perception. These relationships
can be extracted implicitly from instructions like “pick up the ball from inside the box,” or the
last of part of a dialogue that begins with an ambiguous instruction (e.g., “pick up the ball” in an
environment without a ball), a question that the robot poses to the human (“where is the ball”),
and a response describing one or more of these relationship (“the ball is inside the box underneath
the table on the far side of the room”). The space of symbols for annotation inference ΓA is defined
as the union of object, spatial relation, region, and relation symbols

ΓA =
{

ΓOC ∪ ΓL ∪ ΓS ∪ ΓRS ∪ ΓRC
}
, (4a)

where the constituent symbol spaces are defined as

ΓOC =
{
γoci |oci ∈ OC

}
(4b)

ΓL = {γli |li ∈ L} (4c)
ΓS = {si|si ∈ S} (4d)

ΓRS =
{
γsiocj
|si ∈ S, ocj ∈ OC

}
(4e)

ΓRC =
{
γsiocj ,ock

|si ∈ S, ocj ∈ OC , ock ∈ OC
}
. (4f)

For behavior inference, we assume a symbolic representation formed from objects, spatial
relations, and regions. The space of objects ΓO is described by the object O from the environment
model S. These symbols represent actual objects that the robot has a model of and enables unique
reference of objects by their semantic class (“the box” in an environment model with only one box)
or by their spatial, temporal, or other relationship to other objects in an environment not uniquely
defined by their semantic class (“the box underneath the table” in an environment with several
boxes but only one table or bench). The space of regions ΓRO is defined as the composition of a
spatial relation with an object. Notice that the space of regions is defined by the uniquely defined
objects in the environment model. The spaces of spatial relation and object classes are also applied
for behavior inference. The space of modes ΓM defines variations of actions that influence the cost
functions used to determine the optimal plan. Mode types such as “safe” and “quickly” given the
same set of goals may, for example, produce different actions in the same environment. Lastly, the
space of actions ΓAO is defined by a unique object, spatial relation, reference object, and action type
AO. The space of spatial relation classes is additionally used in behavior inference. The space of
symbols for behavior inference ΓB is defined by an object, spatial relation class, region, and action
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symbols.

ΓB =
{

ΓO ∪ ΓS ∪ ΓOC ∪ ΓRO ∪ ΓM ∪ ΓAO
}
, (5a)

where the new constituent symbol spaces are defined as

ΓM = {mi|mi ∈M} (5b)

ΓO = {γoi |oi ∈ O} (5c)

ΓRO =
{
γsioj |si ∈ S, oj ∈ O

}
(5d)

ΓAO =
{
γ
si,aom,mn
oj ,ok |si ∈ S, oj ∈ O, ok ∈ O, aom ∈ AO,mn ∈M,

}
(5e)

These symbols generally describe a uniform representation of the search space for the experiments
described in Section 4. Note that the complexity of these symbolic representations can be increased
or decreased depending on the diversity of tasks explored in the application of this framework.
Existing works (Paul et al., 2016, 2018) consider grounding natural-language expressions in relation
to inferred object sets, however this is not studied here.

3.3. Semantic Mapping
Integral to our approach is the ability to exploit environment-related information implicit in the
natural-language instruction to maintain a distribution over the world model. Here, we detail a
Bayesian filtering-based approach to maintaining this distribution. We represent the world model
as a modified semantic graph (Walter et al., 2013) St = {Gt, Xt, Lt}, a hybrid metric, topological,
and semantic representation of the robot’s environment, which we visualize in Figure 5.

The topology Gt consists of a set of nodes that represent objects (e.g., boxes, balls, cones, etc.)
and places (e.g., offices, lobbies, etc.) in the environment that have either been observed or visited
by the robot, or are hypothesized based upon language. Nodes are partitioned into regions Ri =
{n1, n2, . . . , nm} that represent spatially coherent areas (e.g., rooms and hallways), which we refer to
as spatial regions, as well as individual objects (e.g., boxes), which we refer to as object regions. Object
regions typically consist of a single node. Edges in the topology model spatial relationships between
nodes, and reflect the robot’s motion, or constraints inferred from language. More specifically, similar
to pose graph formulations of SLAM (Eustice et al., 2005; Olson et al., 2006; Kaess et al., 2008), an
edge connects two nodes (locations) that the robot has transitioned between or nodes (objects or
places) that it has observed, as well as nodes for which language indicates the existence of a specific
spatial relation (e.g., that the kitchen is “down” the hallway or that there is a ball “inside” a box).
We associate a pose xi with each node ni. The concatenation of these poses constitutes the metric
map Xt. The semantic layer Lt expresses the semantic attributes of each spatial and object region,
which include its colloquial name and type lRi .

Annotations that are inferred from a given instruction under our language model provide
information regarding the existence, type, and location (relative to the robot or another landmark) of
entities in the environment. We learn a distribution over possible world models consistent with these
annotations by treating them as observations αt in a filtering framework, effectively treating language
as another sensing modality. We combine these observations with those from other sensors onboard
the robot (e.g., LIDAR and camera-based object and spatial region appearance observations) zt to
maintain a distribution over the semantic map:

p(St|Λt, zt, ut) ≈ p(St|αt, zt, ut) (6a)

= p(Gt, Xt, Lt|αt, zt, ut) (6b)

= p(Lt|Xt, Gt, α
t, zt, ut) p(Xt|Gt, αt, zt, ut) p(Gt|αt, zt, ut), (6c)
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Figure 5. The semantic graph St models the metric (spatial), topological, and semantic properties of the
environment. The topology Gt consists of a set of nodes that represent objects and locations in the environment
that have either been observed or visited by the robot, or are hypothesized based upon language. Each node is
associated with a region Ri that represents spatially coherent areas in the environment. Edges in the topology,
where intra- and inter-region edges are rendered in blue and green, respectively, and model spatial relationships
between nodes, reflect the robot’s motion, observations, or constraints inferred from language. The edge rendered
in red between the two regions is for visualization purposes only. The topology induces a pose graph, which
corresponds to the metric map Xt . The semantic layer Lt models the category lR j of each region R j , which we
infer from language λR j and node-level scene and object classifiers ink .

where we replace the utterance Λt with the set of inferred annotations αt (Section 3.2). The
factorization in the last line models the metric map as being induced by the topology, much like is
done with pose graph approaches to SLAM (Kaess et al., 2008).

In theory, the set of possible graphs for any given environment is combinatorial, because the num-
ber of edges can be exponential in the number of nodes. This suggests that it would be intractable
to maintain a full distribution over the set of graphs for all but trivially small environments. To
simplify this complexity, we adopt an assumption made by others (Ranganathan and Dellaert,
2011)) that the distribution is dominated by only a few topologies. More specifically, unless the
environment is perceptually aliased, a large number of particles will be inconsistent with the robot’s
observations and will thus be assigned low likelihood. Conditioning on the environment annotations
further supports this assumption as it decreases the probability of edges that are inconsistent with
the command. Any structure in the environment will also bound the inter-connectivity of nodes (e.g.,
walls occluding the robot’s LIDAR prevent observations of an adjacent room that would otherwise
result in an edge to the node that denotes the robot’s pose) as does the limited field-of-view
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of the robot’s sensors, further increasing the number of topologies having near-zero likelihood.
Consequently, only a few topologies that are consistent with the observations and annotations will
be associated with non-negligible likelihoods. In environments for which this assumption does not
hold (e.g., open areas with objects distributed sparsely throughout), our framework can still be
used, but the computational cost will increase due to the need to maintain a distribution over the
larger set of topologies.

Leveraging this assumption, we use a sample-based representation of the posterior distribution
over graphs p(Gt|αt, zt, ut) in Equation 6c. Specifically, we maintain the factored semantic map
distribution using a Rao-Blackwellized particle filter (RBPF) (Doucet et al., 2000), where we employ
a sample-based representation of the distribution over the environment topology p(Gt|αt, zt, ut)
and a Gaussian representation of the metric (pose) distribution p(Xt|Gt, αt, zt, ut) that is induced
by the topology. We parameterize the Gaussian pose distribution in the canonical (information)
form, i.e., in terms of the information (inverse covariance) matrix and information vector, as
opposed to the standard covariance form. The structure of the information matrix follows that
of the topology (Eustice et al., 2005; Walter et al., 2007; Kaess et al., 2008), which is sparse
for typical environments, thereby allowing us to exploit this sparsity to improve the efficiency of
inference (Thrun et al., 2004; Eustice et al., 2005; Kaess et al., 2008; Walter et al., 2007).

We model the semantic distribution p(Lt|Xt, Gt, α
t, zt, ut) using a factor graph, which we visualize

in plate notation in Figure 5 (top). The factor graph includes a random variable for each region that
expresses its type (i.e., category) lRi . The factor graph includes variables that express language-based
annotations, where the node λRi denotes a potential reference to region Ri in the natural-language
utterance, while φi is a Boolean variable that specifies whether or not the reference corresponds
to the region. For each node n in the region, the robot makes indirect observations of the region’s
appearance an, which is coupled with the region’s category, via image-based scene classifiers in.

Together, this gives rise to the following parameterization of the posterior

Pt =
{
P

(1)
t , P

(2)
t , . . . , P

(n)
t

}
, (7)

where each particle P (i)
t includes a candidate topology G

(i)
t , Gaussian pose graph X

(i)
t , semantic

map L(i)
t , and particle weight w(i)

t

P
(i)
t =

{
G

(i)
t , X

(i)
t , L

(i)
t , w

(i)
t

}
. (8)

The robot detects and labels objects in the environment based on camera observations, using a
neural object detector built on top of the YOLO V3 architecture (Redmon and Farhadi, 2018). A
neural image-based scene classifier also provides noisy observations of the semantic class of spatial
regions. In addition to assigning labels, we use the inferred scene classes to segment spatial regions,
using the presence of conflicting appearance labels to suggest a region segmentation. As we describe
next, we couple this with a spectral clustering-based measure of the spatial coherence between
laser scans in order to refine the boundaries of spatial regions. Since this clustering reasons over the
similarity of laser scans associated with different nodes, it typically segments a region after the robot
last observes it. However, using inferred scene classes allows the method to be aware of new regions
when they are first observed, enabling us to immediately evaluate each particle’s likelihood based
on the observation of region appearance. In turn, we can down-weight particles that are inconsistent
with the actual layout of the world sooner, reducing the number of actions the robot must take to
satisfy the command.

We maintain each particle through the three steps of the RPBF as detailed in Algorithm 1. First,
we propagate the topology by sampling modifications to the graph when the robot receives new
sensor observations or annotations. Second, we perform a Bayesian update to the pose distribution
based upon the sampled modifications to the underlying graph. Third, we update the weight of each
particle based on the likelihood of generating the given observations, and resample as needed to
avoid particle depletion. We now outline this process in more detail.
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Algorithm 1. Semantic Mapping Algorithm

Input: Pt−1 =
{
P (i )

t−1

}
, and (ut , zt , at , αt ), where P (i )

t−1 =
{
G (i )

t−1,X
(i )

t−1, L
(i )
t−1,w

(i )
t−1

}
Output: Pt =

{
P (i )

t

}
for i = 1 to n do

1. Employ proposal distribution p(Gt |G (i )
t−1, zt−1, ut , αt ) to propagate the graph sample according to

odometry on ut , the inferred region labels lt , and scene classifications zt .
(a) Sample region allocation
(b) Sample region edges
(c) Merge newly connected regions

2. Update the Gaussian distribution over the node poses X (i )
t according to the constraints induced by

the newly-added graph edges.
3. Update the factor graph representing semantic properties for the topology based on appearance

observations zt and language-based annotations αt .
4. Compute the new particle weight w (i )

t based upon the previous weight w (i )
t−1 and the metric data zt .

end
Normalize weights and resample if needed, i.e., if Neff < n/2, where Neff =

1∑n
i=0 w2

i
.

3.3.1. The Proposal Distribution
We compute the predictive posterior over the graph Gt using a proposal that is the distribution over
the current graph given the previous graph Gt−1, sensor data (excluding the current time step),
appearance data, odometry, and language

p(Gt|G(i)
t−1, z

t−1, ut, αt). (9)

For each particle P (i)
t−1, we update the topology G(i)

t−1 according to the robot’s motion, annotations
inferred from language, and environment observations. In particular, we first add a node nt that
denotes the robot’s current pose and an edge between it and the previous node that encodes the
temporal (odometry) constraint between the two poses.2 We initially assign the new node to the
nearest region, which most often is that of the previous node, resulting in an intermediate graph
G

(i)−
t .3 We then propose modifications to the graph ∆(i)

t = {∆(i)
t,α,∆

(i)
t,z} based upon appearance

observations ∆(i)
t,z and natural-language annotations ∆(i)

t,α:

p(G(i)
t |G

(i)
t−1, z

t−1, ut, αt) = p(∆(i)
t,α|G

(i)−
t , αt) p(∆(i)

t,z|G
(i)−
t , zt−1) p(G(i)−|G(i)

t−1, ut), (10)

where we define the three distributions on the right-hand side below. This formulation updates
the graph G

(i)−
t with modifications ∆(i)

t that can include the addition and deletion of nodes and
regions, as well as the addition of edges that model spatial relations inferred from environment
observations and natural language-based annotations. We sample graph modifications from two
independent proposal distributions, one for those that reflect annotations αt and the other that
reflects traditional observations zt−1.

Updating the current spatial region. The term p(G(i)−|G(i)
t−1, ut) in Equation 10 is the distribution

that follows from adding the node and edge that account for the robot’s motion. which results in
the intermediate graph G(i)−

t . We then probabilistically bisect the robot’s current spatial region Rc
using the spectral clustering method proposed by Blanco et al. (2006). We generate the similarity

2 We add a node corresponding to the robot’s current pose when it observes a new object or spatial region, or has
traveled more than a specified distance. In practice, we typically use 1.0 m as the distance threshold.
3 This and the remainder of this discussion apply to individual particles, however we remove the particle label for
readability.
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matrix based on the overlap between the laser scans associated with each pair of nodes in the spatial
region. Equation 11 defines the likelihood of bisecting the region, which is based on the normalized
cut value Nc of the graph involving the proposed segments. The likelihood of accepting a proposed
segmentation increases as the value of Nc decreases, i.e., as the separation of the two segments
increases (minimizing the inter-region similarity).

P (s/Ncut) = 1
(1 + αN3

c ) (11)

The result is that areas that are more spatially distinct have a greater probability of being
represented as separate spatial regions, i.e., more particles will model these regions as distinct.
If a particle chooses to segment the current region, it creates a new spatial region Ri that does not
include the newly added node.

Modifying the graph based on observations. In the event that the algorithm creates a new region
Ri via segmentation, it then considers connecting the new region to existing regions in the topology,
including those that are hypothesized based on language. The method samples edges to observed re-
gions using a spatial distribution that is a function of the regions’ constituent nodes. We refer to these
modifications to each particle as ∆(i)

t,z, giving rise to the corresponding distribution from Equation 10

p(∆(i)
t,z|G

(i)−
t , zt−1, ut, αt−1) =

∏
j:eij /∈E−t

p(Gijt |G
(i)−
t , zt−1, ut, αt−1) (12)

Here, we assume that additional edges expressing constraints that involve the current node eij /∈ E−t
are conditionally independent.

We model the spatial distribution prior in terms of the distance dij between the nodes in each of
the two regions that are nearest to the center of the region

p(Gijt |G
(i)−
t , zt−1, ut, αt−1) =

∫
X−t

p(Gijt |X−t , G
(i)−
t , zt−1, ut, αt−1) p(X−t |G

(i)−
t , zt−1, ut, αt−1)

(13a)

≈
∫
dij

p(Gijt |dij , G
(i)−
t , zt−1, ut, αt−1) p(dij |G(i)−

t , zt−1, ut, αt−1). (13b)

The conditional distribution p(Gijt |dij , G
(i)−
t , zt−1, ut, αt−1) expresses the likelihood of adding an

edge between spatial regions Ri and Rj based upon the location of their mean nodes. We represent
the distribution for a particular edge between regions Ri and Rj with distance dij = |X̄Ri−X̄Rj |2 as

p(Gijt |dij , G
(i)−
t , zt−1, ut, αt−1) = p(Gijt |dij) ∝

1
1 + γd2

ij

, (14)

where γ expresses a distance bias.4 We approximate the distance prior p(dij |G(i)−
t , zt−1, ut, αt−1)

with a folded Gaussian distribution.

Merging with observed or hypothesized regions. After adding a new spatial region Ri and any
inter-region edges, we then evaluate whether to merge the region with any of the regions to which
it is connected. We merge the region with an existing (connected) region if the modes of their
distributions over region type (i.e., category) are the same. This results in regions being merged
when the robot revisits locations already represented in the graph. This merge process is designed
such that the complexity of the topology increases only when the robot explores new areas, leading
to more efficient region edge proposals as well as more compact language groundings.

If the newly added spatial region was not merged with one that was previously visited, or when
an object region was added based upon camera observations, we check whether it matches a region

4 In practice, we have found γ = 0.3 to work well empirically.
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that was previously hypothesized based on an annotation (for example, a toolbox that the robot
detected may be the same one that was hypothesized earlier based on the instruction). We do so by
sampling a grounding to any unobserved regions in the topology using a Dirichlet process prior. If
this results in a grounding to an existing hypothesized region, we remove the hypothesized region
and adjust the topology accordingly, resampling any edges to yet-unobserved regions. For example,
if an annotation suggested the existence of a “toolbox inside the garage,” and we grounded the
robot’s current region to the hypothesized garage, we would reevaluate the “inside” relation for the
hypothesized toolbox with respect to this detected garage.

Modifying the graph based on natural language. In the third part of the proposal step (Eqn. 10), we
sample modifications to the graph for each particle based on (the possibly empty) set of annotations
αt = {αt,j} using a factored form of the distribution:

p(∆(i)
t,α|S

(i)−
t , αt) =

∏
j

p(∆(i)
αt,j |S

(i)−
t , αt,j). (15)

An annotation αt,j contains a spatial relation and figure when the language describes one region (e.g.,
“go to the elevator lobby”), and an additional landmark when the language describes the relation
between two regions (e.g., “retrieve the wrench from inside the toolbox” or “get the mug from the
kitchen”), which may be spatial or object regions. We use a likelihood model over the spatial relation
to sample landmark and figure pairs for the grounding. This model employs a Dirichlet process prior
that accounts for the fact that the annotation may refer to regions that exist in the map or to regions
that are currently unknown. For each landmark and/or region that is sampled as being new, we add
a new node to the graph and assign the node to its own region. We then add an edge between the
figure and landmark and define the metric constraint associated with this edge based on the spatial
relation. We represent the distribution associated with this constraint as a Gaussian with a mean
expressed as a linear function of features that describe the locations of the regions, their bounding
boxes, and the robot’s location at the time of the utterance. We learn this function along with the
covariance of the Gaussian using a natural-language corpus of spatial relations (Tellex et al., 2011).

3.3.2. Updating the metric map based on new edges
The proposal step results in an update to the graph G(i)

t associated with each particle that includes
the addition of a node representing the robot’s current pose, the addition of edges, and the possible
creation and merging of regions. These modifications need to then be reflected in the distribution
over poses. To that end, we first augment the pose vector X−t to include the robot’s current pose. We
then incorporate the relative pose constraints expressed by the new edges, including the temporal
(odometry) edge between the current and previous poses, into the Gaussian representation for the
marginal distribution over the pose history

p(Xt|Gt, αt, zt, ut) = N−1(Xt; Σ−1
t , ηt), (16)

where Σ−1
t is the information (inverse covariance) matrix and ηt is the information vector that

together parameterize the canonical form of the Gaussian.5 Key to this parameterization is that it
corresponds to a Gaussian Markov random field, whereby the structure of the information matrix is
given by the topology of the underlying graph. Specifically, the off-diagonal blocks of the information
matrix relating pose xi and pose xj are non-zero if and only if there is an edge in the graph between
the corresponding nodes ni and nj . For any new edge added to the graph during the proposal step,
we update the corresponding entries of the information matrix following the standard information
filtering procedure (Eustice et al., 2005; Walter et al., 2007; Kaess et al., 2008). We refer the reader to
Walter et al. (2007) for a description of this process. Critically, the sparsity of the information matrix
is determined by the underlying graph Gt, which is generally sparse for typical environments. We

5 We maintain separate parameters for each particle, but omit the superscript indicating the particle ID for readability.
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exploit this sparsity to improve the computational cost of inference (Paskin, 2003; Thrun et al., 2004;
Eustice et al., 2005; Walter et al., 2007; Kaess et al., 2008). In particular, we utilize the iSAM algo-
rithm (Kaess et al., 2008) to update the canonical form by iteratively solving for the QR factorization
of the information matrix. We refer the reader to Kaess et al. (2008) for the details of this process.

3.3.3. Re-weighting particles and resampling
After modifying each particle’s topology, we perform a Bayesian update to its Gaussian distribution.
We then re-weight each particle according to the likelihood of generating language annotations and
region appearance observations:

w
(i)
t = p(zt, αt|S(i)

t−1)w(i)
t−1 = p(αt|S(i)

t−1)p(zt|S(i)
t−1)w(i)

t−1. (17)

When calculating the likelihood of each region appearance observation, we consider the current
node’s region type and calculate the likelihood of generating this observation given the topology. In
effect, this down-weights any particle with a sampled region of a particular type existing on top of a
known traversed region of a different type. We use a likelihood model that describes the observation
of a region’s type, with a latent binary variable v that denotes whether or not the observation is
valid. We marginalize over v to arrive at the likelihood of generating the given observation, where
Ru is the set of unobserved regions in particle S(i)

t−1:

p(zt|S(i)
t−1) =

∏
Ri∈Ru

(∑
v∈1,0

p(zt|v,Ri) p(v|Ri)
)
. (18)

We define the probability of annotations p(αt|S(i)
t−1) as the language grounding likelihood under the

map at the previous time step (Section 3.2). As such, a particle with an existing pair of regions that
conform to a specified language constraint will be weighted higher than one without. In an effort
to avoid particle depletion, we resample the particles when the variance of the weights exceeds a
threshold, as measured by the number of effective particles (Doucet, 1998)

Neff = 1∑n
i=0 w

2
i

. (19)

In the experiments conducted in this paper, we set the threshold to half of the number of particles.

3.4. Planning Under Uncertainty
It is intractable to search over the complete trajectory that is optimal in the distribution over
maps. Instead, we formulate instruction-following in unknown environments as a planning under
uncertainty problem, whereby we seek a policy π that minimizes the one-step expected cost c.

In earlier work (Duvallet et al., 2013), the cost was a function of a single topological representation
of the environment, which included nodes that were previously visited as well as those that represent
frontiers in the environment. In this work, however, the planner must reason over a distribution over
semantic maps as opposed to a single world model. Thus, we express the cost c as a function of the
robot’s current pose xt, the available actions at ∈ At, and the map distribution p(St)

π (xt, p(St)) = arg min
a∈At

c (xt, at, p(St)) , (20)

where the belief-space actions include paths from the robot’s current pose to each node (landmark)
in the graph vt ∈ Gt, paired with the distribution over the nodes. The action space also includes an
explicit stop action astop that declares that the planner has satisfied the instruction.

At = {path(xt, vt)× p(vt) ∀vt ∈ Gt} ∪ {astop} (21)

In this manner, the planner differentiates between landmarks that the robot has detected and
thus have low uncertainty, and those that are hypothesized from language and correspondingly
more uncertain. Represented in this way, the robot can choose to explore unknown locations (e.g.,
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continuing to search the hallway or navigating to a box that is hypothesized as containing the ball),
backtrack when a previous action hasn’t been fruitful (e.g., traveling to the wrong room or to an
empty box), and stop when the planner concludes that the instruction has been satisfied.

The following sections explain how the policy reasons in belief space, and the novel imitation
learning formulation to train the policy from demonstrations of correct behavior.

3.4.1. Belief-Space Reasoning using Distribution Embedding
A standard choice for the cost function is to represent it as a linear combination of features over
the current state and actions (Ratliff et al., 2006; Abbeel and Ng, 2004; Syed et al., 2008), where
the state nominally includes the robot’s pose, the semantic map, and the current time. However,
rather than a single world model, the semantic map distribution p(St) provides a distribution over
the observed and hypothesized location of landmarks (i.e., objects and regions) relevant to the given
natural-language instruction. As such, the policy π must represent and compute distances between
distributions over action features when computing the cost of any action at.

Hilbert Space embeddings (Smola et al., 2007; Gretton et al., 2007) provide a convenient repre-
sentation of distributions with which one can efficiently measure the distance between distributions
via a pseudometric. We embed the distribution over action features in a Reproducing Kernel Hilbert
Space (RKHS), using the mean feature map (Smola et al., 2007; Gretton et al., 2007) that consists
of the first K moments of the features computed with respect to each map sample S(i)

t and its
likelihood as a sample-based representation of the distribution

Φ̂1 (xt, at, St) =
∑
S

(i)
t

p(S(i)
t ) φ

(
xt, at, S

(i)
t

)
(22a)

Φ̂2 (xt, at, St) =
∑
S

(i)
t

p(S(i)
t )

(
φ
(
xt, at, S

(i)
t

)
− Φ̂1

)2
(22b)

...

Φ̂K (xt, at, St) =
∑
S

(i)
t

p(S(i)
t )

(
φ
(
xt, at, S

(i)
t

)
− Φ̂1

)K
. (22c)

The vector φ(xt, at, S(i)
t ) is a concatenation of features that are a function of action at and a single

landmark in S
(i)
t . These include geometric features that express the shape of the path associated

with the action, such as the cumulative change in angle, which may be correlated with actions that
go straight or that turn. They also include features that express the geometry of the landmark, such
as the area of the landmark region, and relationships between the action and landmark, such as
the difference between the distance from the landmark at the start and the distance at the end of
the path, which may be correlated with going towards vs. away from the landmark. Please see our
earlier work (Duvallet et al., 2013) for a thorough description of these features.

This RKHS-based representation of the features (Equation 22) computes features individually
for the action and all hypothesized landmarks in the sample-based representation of the map
distribution. We aggregate these feature vectors, and then compute moments of the feature vector
distribution (i.e., the mean, variance, and higher order statistics). Figure 6 provides a simple
illustration of how we compute belief-space features for two actions with a hypothesized box that
has two possible locations.

We express the cost function in Equation 20 as a weighted sum of the first K moments of the
feature distribution (Equation 22):

c (xt, at, St) =
K∑
k=1

w>k Φ̂k (xt, at, St) . (23)
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Figure 6. A simplified illustration of the computation of feature moments in the space of hypothesized landmarks.
In this example, there are two hypothesized boxes. In order to determine the features over a landmark distribution,
we compute the features for each action across all hypothesized landmark samples and aggregate by means of
moment statistics.

where wk is the weight vector associated with moment k. Concatenating the weights and moments
into column vectors W =

[
w1 · · · wK

]> and F =
[
Φ̂1 · · · Φ̂K

]>, we can express the policy
in Equation 20 as minimizing a weighted sum of the feature moments Fat for action at :

π (xt, St) = arg min
at∈At

W>Fat . (24)

3.4.2. Imitation Learning Formulation
We train the policy using imitation learning whereby we treat the problem of predicting the action
as a multi-class classification problem. Specifically, given an expert demonstration, we seek a policy
that correctly predicts their chosen action among all possible actions for the same state. Our earlier
work proposed the use of imitation learning for training a direction-following policy, however it
assumes that the environment is at least partially known a priori (Duvallet et al., 2013). We make
no such assumption here, and instead train a belief-space policy that reasons in a distribution of
hypothesized maps, thereby supporting instances in which the agent has no a priori knowledge of
the environment.

We assume that the expert’s policy π∗ minimizes the unknown immediate cost c(xt, a∗t , St) of
performing the demonstrated action a∗t from state xt, under the map distribution p(St). However,
since we cannot directly observe the true costs of the expert’s policy, we must instead minimize
a surrogate loss that penalizes disagreements between the expert’s action a∗t and the action at
selected by the policy using the multi-class hinge loss (Crammer and Singer, 2002), computed over
all demonstrations:

` (xt, a∗t , c, St) = max
(

0, 1 + c (xt, a∗t, St)− min
at 6=a∗t

[c (xt, at, St)]
)
. (25)

Formulated in this manner, the policy selects an action that differs from that of the expert (i.e.,
at 6= a∗t ) if and only if the cost associated with that action (c(xt, at, St)) is less than the cost of
the expert’s action (c (xt, a∗t, St)) by a margin of one. The loss can be re-written and combined with
Equation 24 to yield:

` (xt, a∗t ,W, St) = W>Fa∗t −min
at

[
W>Fat − lxa

]
, (26)

where the margin lxa = 0 if at = a∗t and lxa = 1 otherwise. This ensures that the expert’s action
is better than all other actions by a margin (Ratliff et al., 2006). We further add a regularization
term λ to Equation 26, yielding the complete optimization loss:

` (xt, a∗t ,W, St) = λ

2 ‖W‖
2 +W>Fa∗t −min

at

[
W>Fat − lxa

]
. (27)

Although this loss function is convex, it is not differentiable. However, we can optimize it efficiently
by taking the subgradient of Equation 27 and computing action predictions for the loss-augmented
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policy (Ratliff et al., 2006):
∂`

∂W
= λW + Fa∗t − Fa′t (28)

where a′t is the best loss-augmented action associated with state xt (i.e., the solution to our policy
using the loss-augmented cost):

a′t = arg min
at

[
W>Fat − lxa

]
. (29)

The subgradient leads to the update rule for the weights Wt:

Wt+1 ←Wt − α
∂`

∂W
(30)

with a learning rate α ∝ 1/tγ . Intuitively, if the current policy disagrees with the expert’s
demonstration, Equation 30 decreases the weight (and thus the cost) for the features of the
demonstrated action Fa∗t , and increases the weight for the features of the planned action Fa′t . If the
policy produces actions that are consistent with the expert’s demonstration, only the regularization
term is updated. As in our prior work, we train the policy using the DAgger algorithm (Ross
et al., 2011), which learns a policy by iterating between collecting data (using the current policy)
and applying expert corrections on all states visited by the policy (using the expert’s demonstrated
policy).

Treating direction following in the space of possible semantic maps as a problem of sequential
decision making under uncertainty provides an efficient approximate solution to the belief-space
planning problem. By using a kernel embedding of the distribution of features for a given action,
our approach can learn a policy that reasons about the distribution of semantic maps.

4. Experiments
To evaluate the effectiveness of the proposed approach to natural-language instruction-following in
a priori unknown environments, we performed experiments on the three different robotic systems
illustrated in Figure 7. For each of these, we used a form of a symbolic representation for annotation
inference and behavior inference that involved several different types of symbols.

(a) Clearpath Robotics Husky A200
UGV

(b) Robotic Wheelchair (c) Clearpath Robotics Husky A200 UGV
with a Universal Robotics UR5 Manipulator

Figure 7. The three robots used in physical experiments. The Clearpath Robotics Husky A200 UGV in (a) and
the Robotic Wheelchair in (b) were used for experiments involving following of route instructions in Section 5.1.2
while the Clearpath Robotics Husky A200 UGV outfitted with a Universal Robotics UR5 manipulator in (c) was
used for natural language understanding for mobile manipulation in Section 5.2
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The first system evaluated was an unmanned ground vehicle. For annotation and behavior
inference for these experiments we assumed seven different spatial relation types S (“unknown”,
“near”, “away”, “front”, “back”, “left”, “right”), eight object typesOC (” unknown”, “robot”, “cone”,
“tree”, “car”, “building”, “hydrant”, and “wall”) and no location types. For the space of behaviors, we
considered two possible action types AO (“unknown” and “navigation”) and three possible modes
M (“safely”, “quickly”, and “unknown”). For symbol grounding, both annotation and behavior
inference used the DCG model (Howard et al., 2014b) with a corpus of 39 fully labeled examples.
Additional information on the symbolic representation and corpus used in the experiments can be
found in Duvallet et al. (2014).

The second system evaluated was a robotic wheelchair. This system was evaluated in an office
building environment. For both annotation and behavior inference, we assumed 12 different spatial
relation types S (“unknown”, “near”, “away”, “front”, “back”, “left”, “right”, “down”, “through”,
“towards”, “past”, and “around”) and 17 object and location types. Specifically, we used eight object
types OC (“unkown”, “robot”, “cone”, “tree”, “car”, “building”, “hydrant”, and “wall”) and nine
location types L (“generic”, “kitchen”, “office”, “hallway”, “lab”,“lounge”, “elevator”, “conference
room”, and “cafeteria”). These experiments also included twelve spatial relation types. For the space
of behaviors, we considered four possible actions (“unknown”, “navigation”, “right”, and “left”)
and three possible modes M (“safely”, “quickly”, and “unknown”). For annotation inference and
behavior inference, we used the HDCG (Chung et al., 2015) model with a corpus of 54 fully labeled
examples. More information about the symbolic representation used in these experiments can be
found in Hemachandra et al. (2015).

The third system that we evaluated was a mobile manipulator consisting of a Clearpath Robotics
Husky A200 Unmanned Ground Vehicle outfitted with a Universal Robotic UR5 manipulator and
Robotiq Adaptive Robotic Gripper. We conducted experiments in both indoor and outdoor environ-
ments with a series of instructions that required the robot to both navigate and manipulate objects.
A subset of these objects were selected from the YCB dataset (Calli et al., 2015). For annotation
inference, the object types OC included “drill”, “suitcase”, “banana”, “pitcher”, “cracker box”, “mus-
tard bottle”, “ball”, “box”, and “cone”, the location types L included “lab”, “hallway”, and “office”,
and the spatial relation types S included “inside”, “behind”, “left”, “right”, “front”, and “back”. For
behavior inference, the action types AO included “pick”, “retrieve”, and “navigate”, the object types
OC included “drill”, “suitcase”, “banana”, “pitcher”, “cracker box”, “mustard bottle”, “ball”, “box”,
and “cone”, and the spatial relation types S included “inside” and “behind”. No model types were
used for the mobile manipulation experiments. For symbol grounding, both annotation and behavior
inference used the DCG model (Howard et al., 2014b) with a corpus of 115 fully labeled examples.
The corpus contained instructions such as “Pick up the drill behind the cone”, “Pick up the pitcher”,
“Go to the mustard bottle”, “Retrieve the crackers box inside the box” etc. Additional information on
the symbolic representation and corpus used in the experiments can be found in Patki et al. (2020).

5. Experimental Results
In the following, we discuss the results of the various experiments intended to evaluate the perfor-
mance of our framework. We first consider the experiments focused on route instruction-following
with the different robot platforms. We then analyze the results of the experiments that task a robot
with carrying out natural language commands that involve mobile manipulation.

5.1. Instruction Following for Robot Navigation
We evaluated our algorithm’s ability to follow route instructions in a priori unknown environments
through experiments conducted in simulation as well as those involving the Husky and wheelchair
robots. For comparison, we include a “Known Map” ground-truth baseline that performs language
understanding with the environment being completely known. In this manner, the baseline provides
an upper-bound on the performance of our framework.
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 8. The evolution of our framework for a simulation-based experiment that tasks the Husky with following
the instruction “go to the hydrant behind the cone”. When the robot receives the command, (a) the traffic cone
is visible, but not the hydrant, which is occluded by the cone. Our algorithm (b) proposes a distribution over the
environment that effectively hypothesizes the location of the hydrant, which we visualize as the mean location
for each of the particles. Based on this distribution, (c) the imitation learning-based policy decides to navigate
behind the cone. At this point, (d) the robot observes the hydrant upon which the environment distribution
effectively converges to the location of the detected hydrant (in practice, the distribution will still assign small,
but non-zero likelihood for the hydrant being located elsewhere), which the policy then identifies as the goal.

5.1.1. Monte Carlo Simulations
Object-relative navigation. We begin with a series of Monte Carlo simulation-based evaluations
of our framework for the task of following natural language route directions. The first set of
experiments considers a simple setup in which a Husky A200 Unmanned Ground Vehicle navigates
an open environment consisting of different combinations of objects. We consider four environment
templates, with different numbers of hydrants and cones. For each configuration, we sample ten
environments, each with different object poses. For these environments, we issued three natural
language instructions “go to the hydrant,” “go to the hydrant behind the cone,” and “go to the
hydrant nearest to the cone.” We note that these commands were not part of the corpus that we
used to train the DCG model. Additionally, we considered six different settings for the robot’s
field-of-view, 2 m, 3m, 5m, 10 m, 15 m, and 20 m, and performed approximately 100 simulations for
each combination of the environment, command, and field-of-view. As a ground-truth baseline, we
performed ten runs of each configuration with a completely known world model.

Table 1 presents the success rate and distance traveled by the robot for these 100 simulation
configurations. We considered a run to be successful if the planner stops within 1.5 m of the intended
goal. Comparing against commands such as “go to the hydrant” that do not provide an explicit
spatial relation, the results demonstrate that our algorithm achieves greater success and yields more
efficient paths by taking advantage of relations in the command (i.e., “go to the hydrant behind the
cone”). This is apparent in environments that consist of a single hydrant as well as more ambiguous
environments that consist of two hydrants. Particularly telling is the variation in performance as
a result of different fields-of-view. Figure 9 shows how the success rate increases and the distance
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Table 1. Monte Carlo simulation results with 1σ confidence intervals for the Husky experiments.
Success Rate (%) Distance (m)

Environment FOV (m) Relation Known Ours Known Ours
1 hydrant 1 cone 3.0 null 100.0 93.9 8.75 (1.69) 16.78 (7.90)
1 hydrant 1 cone 3.0 “behind” 100.0 98.3 8.75 (1.69) 13.43 (7.02)
1 hydrant 2 cones 3.0 null 100.0 100.0 11.18 (1.38) 32.54 (18.50)
1 hydrant 2 cones 3.0 “behind” 100.0 99.5 11.18 (1.38) 40.02 (29.66)
2 hydrants 1 cone 3.0 null 100.0 54.4 10.49 (1.81) 21.56 (10.32)
2 hydrants 1 cone 3.0 “behind” 100.0 67.4 10.38 (1.86) 18.72 (10.23)
2 hydrants 1 cone 5.0 “nearest” 100.0 46.2 9.19 (1.54) 12.05 (5.76)
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Figure 9. Plots of the (top) distance traveled and (bottom) success rate as a function of the field-of-view for
the commands (left) “go to the hydrant behind the cone” and (right) “go to the hydrant nearest to the cone” in
simulation.

(a) t = 0 sec (b) t = 4 sec (c) t = 8 sec

Figure 10. A visualization of the evolution of the semantic map distribution over time for the command “go to
the hydrant behind the cone,” where the triangle denotes the robot’s location, squares represent observed cones,
and circles denote hydrants that are either hypothesized (open) or observed (filled). (a) The robot starts off
observing both cones, and hypothesizes possible hydrants that are consistent with the command. (b) The robot
moves towards the left cluster, but having not observed the hydrant, the map distribution shifts the mass to the
right. (c) The robot then moves right and observes the actual hydrant.
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Table 2. Simulation-based evaluation of natural language route direction-following.
Distance (m) Time (sec)

Algorithm Mean Standard Deviation Mean Standard Deviation
Known Map 12.88 0.06 18.32 3.54
With Language (Ours) 16.64 6.84 82.78 10.56
Without Language 25.28 12.99 85.57 17.80

traveled decreases as the robot’s sensing range increases, quickly approaching the performance of
the system when it begins with a completely known map of the environment.

One interesting failure case is when the robot is instructed to “go to the hydrant nearest to the
cone” in an environment with two hydrants. In instances where the robot sees a hydrant first, it
hypothesizes the location of the cone, and then identifies the observed hydrants and hypothesized
cones as being consistent with the command. Since the robot never actually confirms the existence
of the cone in the real world, this results in the incorrect hydrant being labeled as the goal.

Multi-room navigation. The second set of Monte Carlo experiments goes beyond object-based
navigation and considers natural language direction-following in a larger environment modeled after
a multi-room office building (the MIT Stata Center) that consists of a laboratory, multiple hallways,
and a kitchen. We compare our framework against two baselines. The first baseline (“Known Map”)
considers the ideal case in which the world model is known a priori, employing our HDCG statistical
language grounding model to infer the actions consistent with the route instruction. The second
assumes no prior knowledge of the environment (as with our method), but does not use language
to modify the map. Instead, the baseline uses our HDCG framework to opportunistically ground
the command in the current semantic map generated from observations zt (but not language). Note
that, as with our framework, this baseline performs the grounding anew as the map evolves. We
refer to this method as the “Without Language” baseline. Note that this and the “Known Map”
baselines use an anytime RRT∗ planner (Karaman et al., 2011) to plan paths to the goal identified
by language grounding.

Table 2 compares the total distance traveled along with the execution time for the three methods,
averaged over ten Monte Carlo simulations, along with the standard deviation. As expected, with
access to the world model, the “Known Map” baseline has the robot navigate directly to the desired
goal, achieving the shortest path and smallest execution time. In contrast, the “Without Language”
baseline continues to ground the instructions in incomplete maps, often choosing to initially explore
the second (incorrect) hallway, before opportunistically discovering the kitchen. This results in
longer average paths (and higher standard deviation) as well as significantly higher execution times
(also with higher standard deviation). By taking advantage of the environment knowledge implicit
in the command, our method enables the robot to act more deliberately, reaching the intended
goal along paths that are only slightly longer than those of the “Known Map” baseline. However,
our framework does require significantly more time to follow the directions than the known map
scenario. In part, this increase results from the robot stopping each time it reaches an intermediate
goal selected by the policy, at which time the algorithm updates the semantic map distribution,
grounds the instruction to a set of behaviors, and then evaluates the policy to identify the next
action. In contrast, the robot navigates without stopping until it reaches the goal with the known
map baseline. The additional computational requirements of our framework will inherently result in
larger runtimes, however we note that a non-negligible fraction of the additional time is due to our
implementation, which explicitly required the robot to pause for several seconds before moving on
to the next waypoint.

5.1.2. Physical Experiments
We further evaluate our method through a series of experiments in which different robots were tasked
with following natural language navigation instructions in a priori unknown environments. The first
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(a) (b) (c)

(d) (e) (f)

Figure 11. Third- (top) and first-person (bottom) perspectives of a Clearpath Robotics Husky A200 Unmanned
Ground Vehicle responding to the command “navigate to the hydrant behind the barrel” in an a priori unknown
environment. Subfigures (a) and (d) show the third- and first-person perspective when the robot receives the initial
instruction. Note that the hydrant is not in view, so that object is not available for grounding in the baseline
approach. Subfigures (b) and (e) followed by (c) and (f) show the robot as it navigates to a hypothesized
hydrant behind the observed barrel. Once the hydrant becomes visible and is placed in the environment model,
the distribution converges to the visually observed state.

set of experiments emulates the aforementioned Monte Carlo experiments in which a Clearpath
Husky A200 Unmanned Ground Vehicle (Figure 7(a)) and a voice-commandable wheelchair (Fig-
ure 7(b))6 were instructed to navigate to an unknown object. As with the simulation-based
experiments, these commands did not match those used to train our language grounding models.

Each experiment involves a variation in the number and position of various objects in the envi-
ronment (namely, cones and hydrants), the command, as well as changes in the robot’s field-of-view.
Figure 11 shows one such experiment in which the Clearpath Husky robot is instructed to navigate
to the hydrant behind the cone. Initially, only the cone is visible to the robot (Figures 11(a) and
11(d)), at which point the algorithm hypothesizes the location of the hydrant. As the robot navigates
according to the world model distribution, it detects the presence of a hydrant (Figures 11(b) and
11(e)), and then drives straight to the goal (Figures 11(c) and 11(f)). For each configuration of
the environment, command, and field-of-view, we perform ten trials with our algorithm with the
wheelchair and six with the Husky. As a baseline, we perform an additional run with a completely
known world model. We consider a run to be a success when the robot’s final destination is within
1.5 m of the intended goal.

Table 3 presents the performance of our algorithm averaged over ten runs per scenario with
the wheelchair, and compares against the baseline that has full knowledge of the environment.

6 The wheelchair employs a cloud-based speech recognizer to convert spoken instructions to text, which is then
provided as input to our architecture. The platform also supports limited onboard recognition (Hetherington, 2007)
in the event that the cloud-based recognizer is unavailable.
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Table 3. Wheelchair object-relative navigation experimental results with 1σ confidence intervals.
Success Rate (%) Distance (m)

Environment FOV (m) Relation Known Ours Known Ours
1 hydrant 1 cone 2.5 null 100.0 100.0 4.69 16.56 (7.20)
1 hydrant 1 cone 2.5 “behind” 100.0 100.0 4.69 9.91 (3.41)
1 hydrant 2 cones 3.0 “behind” 100.0 100.0 4.58 7.64 (2.08)
2 hydrants 1 cone 2.5 “behind” 100.0 80.0 5.29 6.00 (1.38)
2 hydrants 1 cone 4.0 “nearest” 100.0 100.0 4.09 4.95 (0.39)
2 hydrants 1 cone 3.0 “nearest” 100.0 50.0 6.30 7.05 (0.58)

Go to the kitchen 
that is down 
the hallway

(a) Voice-commandable wheelchair

Lab

Hallway

Hallway

Kitchen

Copier room

Lab

Conference
room

Lounge

Hallway

Hallway

Start

(b) Occupancy grid map of the environment

Figure 12. A (a) voice-commandable wheelchair was tasked with following natural language route instructions
in (b) a 30m× 30m (approx.) office-like environment consisting of multiple hallways and rooms. The wheelchair
employs a cloud-based speech recognizer to convert spoken instructions to text, which is then provided as input
to our architecture. The platform also supports limited onboard recognition (Hetherington, 2007) in the event
that the cloud-based recognizer is unavailable.

Experiments with the Husky demonstrate similar results with an average distance traveled of 8.1 m
(σ = 1.3 m) with our method compared to 8.4m (σ = 0.6 m) with the known map baseline and
a success rate of 83.3% v.s. 100% with the baseline, based on six runs each. Together, the results
demonstrate that our algorithm is able to take advantage of spatial relations that may be implicit
in the instructions to identify more informed, deliberate paths to the goal. The ability to leverage
information about spatial relations is important when there are multiple objects in the environment
that match the figure in the instruction. For example, when there were two hydrants and the user
commands the robot to “go to the hydrant behind the cone”, the robot successfully identifies the
correct hydrant as the goal in eight of the ten experiments. Similar to the failure discussed above
for the simulation-based experiments, the two failures occur when the robot initially sees only the
incorrect hydrant, upon which the semantic map hypothesizes the existence of cones in front of
the hydrant. This results in a behavior distribution that is peaked around this goal. In the eight
successful trials, the robot observes all three objects and infers the correct behavior. Similarly, if
we consider the command “go to the hydrant nearest to the cone” we find that the robot reaches
the goal in all ten experiments with a 4 m field-of-view. However, reducing the field-of-view to 3 m
results in the robot reaching the goal in only half of the trials.

Next, we evaluate our framework on a mobile robot tasked with following natural language route
instructions in an unknown environment. We implemented our architecture on a voice-commandable
wheelchair (Figure 12(a)) that is equipped with three forward-facing monocular cameras with a
collective field-of-view of 120 degrees, and forward- and rearward-facing Hokuyo UTM LIDARs.
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Table 4. Evaluation of natural language route direction-following with the wheelchair.
Distance (m) Time (sec)

Algorithm Mean Standard Deviation Mean Standard Deviation
Known Map 13.10 0.67 62.48 16.61
With Language 12.62 0.62 122.14 32.48
Without Language 24.91 13.55 210.35 97.73

The wheelchair was placed in a lobby within MIT’s Stata Center, with several hallways, offices,
and lab spaces, as well as a kitchen on the same floor. In an effort to facilitate perception, these
experiments employed AprilTag fiducials (Olson, 2011) to identify the existence and semantic type
of regions in the environment. We trained the HDCG models on a parallel corpus of 54 fully labeled
examples. We then directed the wheelchair to execute the instruction “go to the kitchen that is
down the hallway” that was not seen during training.

As with the previous experiments, we compare our framework with two baselines. The “Known
Map” baseline emulates the previous state-of-the-art and uses a known map of the environment in
order to infer the actions consistent with the route direction. The second “Without Language”
baseline assumes no prior knowledge of the environment (as with ours) and opportunistically
grounds the command in the map, but does not use language to modify the map. We performed six
experiments with our algorithm, three with the known map method, and five with the method that
does not use language for environment inference, all of which were successful (the robot reached the
kitchen). Figure 13 visualizes the evolution of the planner’s cost function for one of the experiments.
The cost, which is a function of the semantic map distribution and the inferred behavior(s), initially
suggests that the wheelchair navigate down the wrong hallway (Figure 13(d)), but after not observing
the kitchen, the map updates and the planner later leads the robot to the correct goal. Figure 14
shows a visualization of the semantic maps over several time steps for one successful run on the robot.

Table 4 compares the total distance traveled and execution time for the three methods. Our
algorithm resulted in paths with lengths close to those of the known map, and significantly
outperformed the method that did not use language for mapping. As with the Monte Carlo
simulations, our framework required significantly more time to follow the directions than the known
map baseline. Some of this additional time results from the robot stopping each time it reaches an
intermediate goal selected by the policy (in contrast to the known map baseline, which does not
stop until it reaches the goal) at which time the algorithm updates the semantic map distribution,
grounds the instruction to a set of behaviors, evaluates the policy to identify the next action, and
then performs motion planning. While this will inherently result in larger runtimes compared to
the known map setting, we note that a non-negligible fraction of the additional time (nearly half in
some cases) is due to our implementation, which explicitly required the robot to pause for several
seconds before moving on to the next waypoint.

5.2. Instruction Following for Mobile Manipulation
Having evaluated the performance of the proposed model through simulated experiments and in
the real world by using fiducial based perception, we now expand upon our analysis by involving
non-fiducial based perception, which is computationally more expensive and often not as accurate
as fiducial-based perception. To analyze the runtime performance of the proposed framework for
mobile manipulation tasks, we implemented the architecture on a Clearpath Husky A200 Unmanned
Ground Vehicle fitted with a Universal Robotics UR5 arm and Robotiq 3-Finger Adaptive Robot
Gripper 7(c). Image data for visual perception was captured using an Intel RealSense RGB-D sensor
mounted on the wrist of the UR5 arm. The perception pipeline consisted of multiple custom-trained
YOLO-V3 (Redmon and Farhadi, 2018) detectors. Specifically, we used a full YOLO-V3 model
trained on the COCO (Lin et al., 2014) dataset and 15 tiny YOLO-V3 models trained on individual
classes from the YCB (Calli et al., 2015) and OpenImages-V4 (Kuznetsova et al., 2018) datasets. We
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(a) t = 0 sec (b) t = 15 sec (c) t = 38 sec (d) t = 65 sec

(e) t = 85 sec (f) t = 102 sec (g) t = 120 sec (h) t = 140 sec

Figure 13. The evolution of the planner cost function for the command “go to the kitchen that is down the
hallway”. Red nodes indicate candidate destinations and green nodes indicate previously visited locations. The
normalized cost function is rendered using the colormap: , where blue and red denote costs of
0 and 1, respectively. The planner (d) initially directs the robot down the wrong hallway, but after not seeing the
hypothesized kitchen, (f) the robot navigates down the correct hallway (h) to the goal.

Field Robotics, June, 2022 · 2:1191–1231



Language understanding for field and service robots in a priori unknown environments · 1219

Hallway

Lab

Kitchen

Figure 14. A visualization that shows how the semantic map evolves time as the robot follows the command
“go to the kitchen that is down the hallway.” Small circles and large filled-in areas denote sampled and visited
regions, respectively, each colored according to its class type. The robot (left) first samples possible locations
of the kitchen and moves towards them, (middle) then observes the hallway and refines its estimate using the
“down” relation provided by the user. Finally, the robot (right) reaches the actual kitchen and declares it has
finished following the direction.

projected the 2D image-space bounding boxes generated by the YOLO-V3 detectors to the aligned
3D point clouds in order to obtain metric information about the objects in the robot’s environment.
Associated with each detected object was its semantic label generated by YOLO-V3 detector, a six
degree-of-freedom pose estimate, and a 3D collision geometry represented by an oriented bounding
box. The range of sensing was restricted to 4.5m indoors and 7.0m outdoors to eliminate noisy
point cloud data.

Figure 15 illustrates the workspace setup for both indoor and outdoor environments. In both
environments, the robot was initially instructed to “retrieve the ball inside the box”. The indoor
experiment followed with a second command to “pick up the crackers box inside the box”, whereas
the outdoor experiment followed with “go to the crackers box”. In both of the settings, the box
containing the ball was past the sensing horizon of the robot at the start, while the box containing
the crackers box was observable. The workspace in the indoor environment was set up such that the
robot will most likely detect and check the second box after inspecting the closer box and finding it
empty. The larger workspace in the outdoor experiment allowed us to set up boxes far away from each
other so that the robot would need to explore the environment using the hypothesized distribution
to eventually reach the goal location. In order to build accurate models of the environment, a speed
of 0.3 m per perception cycle chosen for these experiments. We used 10 particles to represent the
distribution over world models in the indoor experiment, while we used 20 particles for the outdoor
experiment to account for the larger environment.

We developed and deployed a motion planner capable of performing manipulation actions that
used TRAC-IK (Beeson and Ames, 2015) for inverse kinematics. The architecture guided the robot
to perform the most likely action identified through behavior inference. Upon reaching a box, the
arm was positioned to look inside it. If this observation conveyed the absence of the object of interest,
the robot would back up, pan the camera ±30 deg, and navigate towards a new goal selected from
the updated distribution. If the desired object defined by the selected goal was observed in the box,
the robot would execute the remaining activities to complete its inferred action.

We analyzed the runtime of task execution by measuring the individual runtimes of perception
and behavior inference as outlined in Table 5. Figures 17 and 18 shows the state of the robot while
executing the instruction. The robot took approximately six minutes to execute the first task in the
indoor environment, while requiring approximately ten minutes for the outdoor experiments. Such
long task execution runtimes are undesirable for fluent human-robot collaboration. As observed
in Table 5, a large fraction of the task execution runtime was spent on perception, building a rich
model of the robot’s environment such as the one in Figure 18(f). Such high fidelity world models are
computationally expensive to build and are also unnecessarily detailed for grounding, planning, and
executing the instructed task. This raises open questions regarding how to optimally perceive the
robot’s world for collaborative robots which are required to understand and execute a diverse set of
instructions. Furthermore, Figure 16 indicates a positive correlation between the symbol grounding
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(a) indoor environment (b) outdoor environment

(c) indoor map at t = 57 sec (d) outdoor map at t = 177 sec

Figure 15. The mobile manipulation experiments involved placing the arm-equipped Husky in a priori unknown
(a) indoor and (b) outdoor environments with several boxes that contained different or no objects. The robot was
then given a natural language instruction to retrieve a specific object from a box. Without any prior knowledge
of the environment, the robot initially navigates towards a hypothesized box (rendered as solid red cubes in
the bottom figures). Upon detecting a box, the robot updates the world model distribution and then explores
the nearest observed box (a green wireframe denotes objects that the robot has observed), which does not
contain the object of interest. At this point, the robot either (c) explores the next box that comes within the
robot’s field-of-view (for the indoor experiments), or (d) continues to explore the environment (for the outdoor
experiments) as guided by the maintained world distribution.
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Figure 16. A graph that shows the increase in symbol grounding runtime per particle as a function of an increase
in the number of detected objects in the particle.

Table 5. Perception and symbol grounding runtime analysis for indoor and outdoor trials (three each).

Indoor Outdoor
average behavior inference runtime per particle (seconds) 0.035± 0.01 0.019± 0.002
average perception cycle runtime (seconds) 4.141± 0.11 4.099± 0.060
first task runtime (seconds) 351.2 593.5
second task runtime (seconds) 149.5 20.4
total number of detected objects 24 11
total number of perception cycles during first task 69 127
total number perception cycles during second task 27 3

runtime per particle and the number of objects present in the particle (i.e., the fidelity of the world
model). This means that maintaining a distribution over highly detailed world models and reasoning
in its context is computationally expensive in terms of both perception and symbol grounding. We
elaborate on this issue and possible ways to improve scalability below.

6. Discussion
As established through the experimental evaluation in simulation and on actual robots, the proposed
model enables natural-language instruction-following in previously unseen or partially observed
environments. It provides a guided and efficient exploration mechanism that allows faster runtimes
for task execution in previously unseen environments as compared to the baseline of opportunistic
exploration. However, we note that the spatial extent of the environments considered in the exper-
imental evaluation is small compared to those of typical field and service robotics settings. While
we have previously demonstrated the ability to learn maps of larger, multi-building environments
from human-provided descriptions (Walter et al., 2014), evaluating the proposed framework at this
scale remains as future work.

As the experiments demonstrate, maintaining a distribution of highly-detailed world models
and reasoning in its context is computationally expensive in terms of both perception and symbol
grounding. Addressing this scalability challenge, a recent line of work (Patki and Howard, 2018; Patki
et al., 2019, 2020) proposes learning to adapt the robot’s perception pipeline by exploiting implied
utterance information to construct task-relevant world models. These more compact, task-relevant
world models afford faster perception and symbol-grounding runtimes, as compared to a baseline
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(a) Time t = 0 sec (b) Time t = 90 sec

(c) Time t = 320 sec (d) Time t = 370 sec

(e) Time t = 500 sec (f) Time t = 563 sec

Figure 17. Visualization of the state of the robot while executing the instruction “retrieve the ball inside the
box” in the outdoor environment. In (a) we visualize the hypothesized locations of boxes (in red), each containing
a ball, sampled from the world model distribution that our algorithm maintains. The solid green cube denotes
the hypothesized box that is the current goal of the planner. The robot then (b) detects an actual box and looks
inside it to find that it does not contain a ball. As (c) the robot navigates to a hypothesized box, it (d) detects
actual boxes that are found to not contain a ball, while also failing to confirm the presence of hypothesized
boxes sampled from the distribution. The algorithm (e) updates the world model distribution accordingly, and the
planner updates the goal. This continues until (f) the robot observes a box containing a ball and subsequently
retrieves the ball, satisfying the instruction.

Field Robotics, June, 2022 · 2:1191–1231



Language understanding for field and service robots in a priori unknown environments · 1223

(a) Time t = 0 sec (b) Time t = 110 sec

(c) Time t = 141 sec (d) Time t = 193 sec

(e) Time t = 310 sec (f) Time t = 346 sec

Figure 18. Visualization of the state of the robot while executing the instruction “retrieve the ball inside the
box” in the indoor environment. In (a) we visualize the hypothesized locations of boxes (in red), each containing
a ball, sampled from the world model distribution that our algorithm maintains. The solid green cube denotes
the hypothesized box that is the current goal of the planner. The robot then detects an actual box (b) and looks
inside it to find (c) that it does not contain a ball, but instead contains a crackers box. The robot (d) eventually
detects the second box. The algorithm updates the world model distribution accordingly, and the planner updates
the goal. The robot (e) observes a box containing a ball and subsequently (f) retrieves the ball, satisfying the
instruction.
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configuration that uses a non-adaptive and flat perception pipeline. Recent work (Patki et al., 2020)
demonstrates approximately a 50% reduction in task-execution runtimes in both indoor and outdoor
experiments, and illustrates the performance gains that can be achieved by incorporating our pro-
posed adaptive-perception framework. Learning to constrain the robot’s perception pipeline adap-
tively shortens the perception runtime by obviating irrelevant detectors. This reduction in the per-
ception runtime enables our framework to operate more efficiently, while processing the same number
of observations, and so reduces overall task-execution time. Furthermore, as behavior inference is
performed on each hypothesized world model in the distribution, the efficiency gains provided by
adaptive perception enables reasoning over a larger number of environment hypotheses in the same
amount of time. This important ability allows maintaining more particles and thus to more efficiently
explore previously unseen environments. As part of ongoing work, we are investigating the ability
to extend our framework such that it is scalable to larger environments than those considered here.

Another limitation of the current approach is the reliance on fully-annotated data. Densely
labeling examples for both annotation and behavior inference with different symbolic representations
is a nontrivial task that involves inferring the presence of relationships needed to perform grounding
in a space of hypothesized worlds. Approaches that are amenable to partially-annotated data, e.g.,
by using the available annotations to learn how to automatically label the rest of the dataset,
would significantly facilitate integrating annotation- and behavior-inference and enable robots to
learn models for both processes in situ. A human operator attempting to demonstrate the concept
“pick up the cup on the table” would have to group physical objects “cup” and “table,” along
with the spatial relation represented by the phrase “on” for behavior inference, and also associate
the physical relationship between two hypothesized objects with their associated semantic labels to
properly capture this information for annotation inference. Algorithms capable of this remain an
open area of investigation.

Another deficiency of this approach is that the procedures for both annotation and behavior
inference does not express bounds on the space of worlds or language wherein the expressed symbols
would remain valid. Uncertainty in automatic speech-recognition and parsing could influence the
quality of annotation inference, and behavior inference could further be impacted by noise in
perception. More efficient and effective methods for evaluating confidence in an expressed set of
symbols may influence whether the robot should exploit these annotations or engage in dialogue
with a human to confirm that such information should be added to the environment model.

7. Conclusions
Significant progress in grounded natural-language understanding has enabled robots to interpret a
diverse array of free-form navigation, manipulation, and mobile-manipulation commands. However,
most contemporary approaches require a pre-existing, detailed spatial-semantic map of the robot’s
environment that represents the objects or regions that the utterance may reference. Consequently,
these methods fail when robots are deployed in previously unseen or partially-observed environments,
particularly when mental models of the environment differ between the human user and robot.
This paper describes a learning framework that allows field and service robots to execute natural-
language instructions in previously unseen or partially-observed environments. The experimental
results in simulation and on three different robotic platforms indicate that the proposed model
facilitates faster task execution in previously unseen environments as compared to a contemporary
language-grounding baseline that does not take advantage of environment information available in
the instruction. The results also show that the method is amenable to tasks that include navigation
and mobile manipulation. Importantly, experimental data also reveal limitations of the approach,
including the challenge of maintaining a distribution over highly-detailed world models and reasoning
in its context, which is computationally expensive in terms of both perception and symbol grounding.
This observation raises interesting, open-ended questions that are the focus on ongoing research,
such as how to represent complex environments efficiently while also supporting a diverse array of
tasks in large-scale environments.
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